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1 Introduction

In this thesis, we want to get some condition on if some subset of D is a Bergman zero set (i.e.,
there is a Bergman space function vanishing on this set) We first sketch the ingredients.

1.1 Bergman Spaces

The Bergman spaces A2
α are spaces of holomorphic functions in the unit disk square integrable

with respect to the measure (1− |z|2)αdxdy with z = x+ iy. Meaning f ∈ A2
α, if∫

D
|f(z)|2 (1− |z|2)αdxdy <∞.

The Bergman spaces where first defined by Stefan Bergman in the book [6]. These spaces are
known to be notoriously difficult, despite there relativly easy definition. This definition is at
the first glance quite similar to that of the Hardy space H2, which is the space of holomorphic
functions in the unit disk that satisfy

sup
0<r<1

(
1

2π

∫ 2π

0

∣∣∣f(reiθ)
∣∣∣2 dθ) 1

2

<∞.

But in many aspects, these spaces behave very differently.

1.2 Zero sets

A set S is said to be a zero set for a space of functions if for S and α > −1 there is a nonzero
function f ∈ A2

α with f(S) ≡ 0. The set S has to be countable for the Bergman and Hardy
space because otherwise the identity theorem for holomorphic functions implies that the only
holomorphic function vanishing on S is the zero function. Thus, we can write S = {zn|n ∈ N}.
For the Hardy space, the answer is well known. The Blaschke condition∑

n∈N
(1− |zn|) <∞

is equivalent to the existence of a nonzero function f ∈ H2 vanishing on S. In fact such a
function can be constructed explicitly with the help of Blaschke products. These are functions
of the form

D→ D, z 7→ zm
∏
n

|zn|
zn

zn − z
1− znz

(see [9] Chapter 2 and 10).

1.3 Main result

Finding such a condition for the Bergman spaces is difficult and seems out of reach at the
moment (see [13] Chapter 4). We will restrict ourselves to orbits of Fuchsian groups (these are
discrete subgroups of the 2 × 2 matrices that act on the upper half plane H and the unit disk
D via the automorphism group). One thing to note regarding Fuchsian groups is the so-called
covolume. This is the area with respect to the hyperbolic area of a fundamental domain. A
fundamental domain is the smallest connected domain that tesselates the upper half plane with
the action of the Fuchsian group. The main result of this thesis is the following theorem; it will
be proved in Chapter 6.

Theorem 6.14. Let Γ be a Fuchsian group and let O1, . . . , On be disjoint orbits in D of Γ. The
condition

s > 1 +
4π

covolume(Γ)

n∑
i=1

ki
|stabi|

,
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with stabi being the stabilizers of Oi, is a necessary and sufficient condition for the existence of
a function f ∈ A2

s−2 \ {0} with zero of order at least ki on Oi.

We do not use traditional Bergman space theory to prove this result, but rather use von
Neumann algebras. These are certain ∗-subalgebras of the operator algebra B(H) for some
Hilbert space H. Von Neumann algebras have a variety of applications, for example in quantum
field theory, knot theory and free probability. This is quite astonishing because these two topics
do not have much in common. Jones [19] combined these two theories and obtain this exciting
theorem above. Another point to note here is that at a first glance, the von Neumann theory
is hidden entirely in the proof. Jones had proven before some theorems in other fields of
mathematics with the help of von Neumann algebras which do not have much in common with
them (see [18]). To combine these two concepts, we use the so-called group von Neumann
algebra vNω(Γ). This is the von Neumann algebra generated by the action of the Fuchsian
group on the Bergman space. We are also going to compare this to the result of Korenblum
[20] and Seip [28], [29] who got results regarding zero sets, but using so-called asymptotic κ-
densities, which is the more traditional approach.
One drawback of the approach using von Neumann algebras is that it does not produce an
explicit function vanishing on the given subset. This can be done using cusp forms and for
orbits of PSL(2,Z). It is a known procedure and discribed by Jones [19]. The Fuchsian group
PSL(2,Z) is the so called modular group and cusp forms are in a sense invariant functions
with respect to the action of the modular group. This only works for PSL(2,Z) and not for
general Fuchsian groups. By multiplying with a cusp form vanishing on the orbit, one gets a
Bergman space function vanishing on the orbit. This technique has nothing in common with
the argument using von Neumann algebras before. This is a powerful tool we use to generate
these vanishing Bergman space functions and also we answer the question if all Bergman space
functions can be expressed as a product of a cusp form and another function from a Bergman
space with another weight.
At the end, we look at some more von Neumann theory that is specific to this case. We will
look at the commutant of vNω(Γ) (these are all operators that commute with all elements of
vNω(Γ)).

1.4 Overview of this work

This work is addressed to students that know the basics in functional analysis and complex
analysis. So, we will introduce all von Neumann algebra theory and Fuchsian groups that is
necessary, and we will give further references for these topics.
Before we prove the main theorem, we discuss the basics that we need to use to prove the main
theorem in Chapter 6. We will begin with the basics of Bergman spaces, such as all weighted
Bergman spaces are reproducing kernel Hilbert spaces. This will be an important element in
the proof of the main theorem. We do not need any sophisticated Bergman space theory for
the proof in Chapter 6.
In Chapter 3, we will discuss basic results concerning Fuchsian groups that will help us to prove
our main theorem in Chapter 6 and the results in Chapter 8. We will focus on the action of a
Fuchsian group on the upper half plane and the Bergman spaces.
The chapter after that will discuss the basics on von Neumann algebras, especially on group
von Neumann algebras that are generated by the action of a Fuchsian group on the upper half
plane.
Continuing with von Neumann algebras, we will construct in Chapter 5 the von Neumann
dimension, which will help us to measure the size of a Hilbert space on which a von Neumann
algebra acts (more precisely a type II1 factor). The von Neumann dimension will be central in
the following chapters. Therefore, we will prove some essential properties of the von Neumann
dimension. Unfortunately, there are two definitions of von Neumann dimension. The first
definition is due to Murray and von Neumann. We will mostly use the definition of Jones [19],
which measures in a sense the size of the image of the Hilbert space in the direct sum of the
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GNS construction of the von Neumann algebra. Both of these definitions will be important
later on. To prove some properties it is advantages to use one or the other definition. One
difficulty of the definition of Murray and von Neumann is that most sources use the definition
of Jones [19], in recent years almost all of them. Thus, it is quite difficult to find some good
sources on some of the properties.
At that point, we can use the results of the previous chapters and prove our main theorem. This
will be rather easy because most of the work has been done in the previous chapters, especially
in Chapter 5. We also will look at some other approaches to this problem and look at some
more classical results.
Chapter 7 will give us another view on our main question, but we will restrict our attention
to PSL(2,Z) and not arbitrary Fuchsian groups. There we will construct a Bergman space
function that vanishes on an orbit of a PSL(2,Z). For that, we will not use von Neumann
theory, but cusp forms, which are special modular forms.
In the last chapter, we turn our attention to the commutant of the group von Neumann algebra
vNω(Γ) in the case that the commutant also is a type II1 factor. We will get a condition for the
existence of a trace and separating vector, this vector will link the group von Neumann algebra
with its commutant. An element µ ∈ H in a Hilbert space H on which a von Neumann algebra
M acts is called trace vector if it satisfies

〈xµ, µ〉 = αtr(x)for all x ∈M.

An element µ ∈ H is called separating, if for x ∈ M we have xξ = 0 =⇒ x = 0. Thus, trace
vector describes the trace on a von Neumann algebra with the inner product on the Hilbert
space. And a separating vector embed M into H via the injective map x 7→ xξ. A vector
This theorem is an existence result. An explicit construction of such a vector remains an open
problem. We do not get any properties of this vector from this proof. One probably has to
consider other ways of proving this theorem to get any information on this trace and separating
vector.
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2 Bergman Spaces

In this chapter, we will go over the basics for Bergman spaces; we essentially only need that
they are Hilbert spaces and have a reproducing kernel on them. In the first section, we will
look at the general theory of reproducing kernels. These will be important at the end of this
chapter and for the proof of our main theorem. After this, we define the weighted Bergman
spaces on the unit disk and prove that these are reproducing kernel Hilbert spaces. At the end
of this chapter, we will port everything from the unit disk to the upper half plane with the
Cayley transform.
For the basic Bergman space theory, the books from Duren and Schuster [10] gives a great
introduction and Hedenmalm, Korenblum, and Zhu [13] go way deeper into the topic, it is
therefore a great further reading, if one already knows the basics. Paulsen and Raghupathi [24]
shows a nice introduction in the theory of reproducing kernel Hilbert spaces and give a good
overview to the topic.

2.1 Basics on reproducing kernels

Before we define Bergman spaces and look at some basic results, we have to study the more
general case of reproducing kernel Hilbert spaces. We will see later that Bergman spaces are
of this form and inherit some nice properties. Before we go into Bergman spaces, we define
and look at some properties of the more general reproducing kernel Hilbert spaces. The vector
space F(X,Y ) is the set of all maps from X to Y . (for more information, see [24])

Definition 2.1. Let X be a set, F = R or C. A vector subspace H of F(X,F) is called a
reproducing kernel Hilbert space (RKHS), if it admits the following conditions

1. H has an inner product 〈·, ·〉 which makes into a Hilbert space

2. the linear evaluation functional evx : H → F, f 7→ f(x) is continuous for every x ∈ X.

Reproducing kernel Hilbert spaces have a wide variety of applications, for example in ma-
chine learning and other spaces of holomorphic functions, e.g., Hardy and Bergman spaces (see
[24]). With the Riesz representation theorem, we get a unique vector εx for every x ∈ X with

f(x) = 〈f, εx〉 ∀f ∈ H.

This brings us to the definition of the kernel function.

Definition 2.2. The kernel function on a RKHS is given by

K(z, w) = εw(z)

with εw ∈ H as in the consideration above.

One important thing to note is that this kernel function is unique. The existence of such a
function is important in the following and in general (not only in Bergman space theory).
With the following theorem, we can calculate this kernel function explicitly. A version of this
theorem can be found in [24].

Theorem 2.3. For every reproducing kernel Hilbert space (RKHS) H the kernel function is
given by

K(z, w) =

∞∑
n=1

en(z)en(w)

where (en)n∈N is any orthonormal basis of H.
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Proof. Let K(z, w) = εw(z) be the reproducing kernel. Since εw ∈ H and

εw =
∞∑
n=0

〈εw, en〉en =
∞∑
n=0

en(w)en

the series
∑∞

n=0 en(w)en converges. Further, (en(w))n ∈ `2. Plugging in z we have

εw(z) =
∞∑
n=0

en(w)en(z).

2.2 Definition of Bergman space

We will first define the (weighted) Bergman space on the unit disk D. This is the standard
way of defining the Bergman and Hardy spaces. With that at hand we can define the Bergman
space over the upper half plane H via the Cayley transform, but more on that later.

Definition 2.4. The (weighted) Bergman space A2
α(D) with α > −1 is the space of holomorphic

functions on the disk circle that are square integrable with respect to the measure (1−|z|2)αdxdy.
I.e. f is holomorphic on D and satisfies∫

D
|f(z)|2 (1− |z|2)αdxdy <∞

Note that we write x and y for the real part and imaginary part of z respectively. It can
be helpful to write A2

α as A2
s−2, why this is advantageous will become clear, when we look at

Bergman spaces on the upper half plane.
If one puts dνs = (1 − |z|2)s−2dxdy, then A2

α(D) is a subspace of L2(D, νs). This will be
beneficial, when proving that the Bergman spaces are reproducing kernel Hilbert spaces. For
α = s− 2, Aα(D) inherits some properties from L2(D, να), but we will not use them very much.
In the next section, we will prove that the Bergman spaces are all Hilbert spaces with inner
product

〈f, g〉 =

∫
D
f(z) g(z) (1− |z|2)αdxy.

This will be an important byproduct when we show that the Bergman spaces are all RKHS.

2.3 Kernel Function

To see that the Bergman spaces are RKHS, we will look at first at point evaluations. With
the continuity of the point evaluation functions, we get the completeness of A2

α as a closed
subspace of L2(D, να). After that we will construct the kernel function on A2

α with the help of
Theorem 2.3. A version for the unweighted Bergman space can be found in [10], but we use
here a different proof.

Lemma 2.5. Let K ⊂ D be a compact set. Set 0 < ε < infx∈K d(x, ∂D). Then there is a
M > 0 such that for every z ∈ K

|f(z)| ≤ 1

ε
√
πM
‖f‖

for all f ∈ Aα(D). Hence, point evaluation is a bounded linear functional for all z ∈ D and
α > −1.
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Proof. Let K, ε be as in the lemma. Because ε < infx∈K d(x, ∂D) we have Kε = {z ∈
D|d(z,K) ≤ ε} ⊂ D. Since Kε is compact (as a closed bounded set) there is a M > 0 with
M ≤ infx∈Kε(1− |x|

2)α. Let z ∈ K. We have

f(a) =
1

πr2

∫
Dr(a)

f(z)dxdy.

for some r > 0. This formula follows from the Cauchy integral formula and integration in polar
coordinates

1

πr2

∫
Dr(a)

f(z)dxdy =
1

πr2

∫ r

0

∫ 2π

0
f(a+ seiθ)sdθds

=
1

πr2

∫ r

0

∫ 2π

0

f(a+ seiθ)

seiθ
sieiθdθ

s

i
ds

=
1

πr2

∫ r

0

∫
∂Ds(a)

f(ζ)

ζ − a
dζ
s

i
ds

=
1

πr2

∫ r

0
2πf(a)sds

= f(a).

Let a ∈ K, we have with the above

|f(a)|2 =
∣∣f2(a)

∣∣
=

∣∣∣∣∣ M

Mπε2

∫
Dε(a)

f2(z)dxdy

∣∣∣∣∣
≤ 1

Mπε2

∫
Dε(a)

|f(z)|2Mdxdy

≤ 1

Mπε2

∫
Dε(a)

|f(z)|2 (1− |z|2)αdxdy

≤ 1

Mπε2

∫
D
|f(z)|2 (1− |z|2)αdxdy = ‖f‖2 .

Duren and Schuster [10] approach the following corollary in the same manner, but for the
unweighted Bergman space. This shows that the weighted Bergman spaces are Hilbert spaces.
We only need to show that A2

α ⊂ L2(D, νs) is closed, since L2(D, νs) is a Hilbert space.

Corollary 2.6. Norm convergence implies uniform convergence on each compact subset of D.
Furthermore, the Bergman spaces are complete.

Proof. Let (fn)n∈N be a Cauchy sequence in A2
α, i.e., ‖fn − f‖

(n→∞)−−−−−→ 0. Let K ⊂ D be
compact, then there is some 0 < ε < 1 with K ⊂ Bε(0). Thus, by Theorem 2.5 there is some
M > 0 with

|fn(z)− fm(z)| ≤ (Mπ)−
1
2 ε−1 ‖fn − fm‖ ∀z ∈ K

So fn is a uniform Cauchy sequence on K.
For completeness, we first note that L2(D, νs) is complete. Thus, we only need to show that
every convergent sequence in A2

α converges to a holomorphic function. Let (fn)n∈N be a sequence
in A2

α norm convergent to a function f ∈ L2(D, νs). There is a subsequence (fnk
)k of (fn)n

converging to f almost everywhere. Since (fn)n is also a Cauchy sequence, that converges
uniformly on compact sets. Thus, (fn)n converges locally uniform to some analytic function g.
We have f(z) = g(z) almost everywhere. Therefore, A2

α is closed and hence complete.
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Combining Corollary 2.6 and Theorem 2.5, we get that the Bergman spaces are reproducing
kernel Hilbert spaces.
To obtain this kernel function, we also have to look at an orthonormal basis for A2

α. We will
use the gamma function Γ(n+ 1) =

∫∞
0 tne−tdt. This is well known as a generalization for the

factorial, since Γ(n + 1) = n! for all natural numbers. Another function used in the following
proof is the Beta function β(x, y) =

∫ 1
0 t

x−1(1 − t)y−1dt. It is linked to the gamma function

β(x, y) = Γ(x)Γ(y)
Γ(x+y) (For more information see [4]).

Following Jones [19], we find an orthonormal basis for A2
α.

Lemma 2.7. An orthonormal basis for A2
α is given by

en(z) =

√
Γ(n+ s)

4πΓ(n+ 1)Γ(s− 1)
zn

(with α = s− 2).

Proof. For the orthogonality, we calculate for n 6= m

〈zn, zm〉 =

∫ 1

0

∫ 2π

0
enem(1− r2)αrdθdr

=

∫ 1

0

∫ 2π

0
rneinθrme−imθ(1− r2)αrdθdr

=

∫ 1

0
rn+m+1(1− r2)α

∫ 2π

0
ei(n−m)θdθdr

= 0.

Thus, we only have to calculate the norm of zn to get that ‖en‖ = 1.

‖zn‖2 =

∫
D
|z|2n (1− |z|2)s−2dudv =

∫
D
r2n(1− r2)s−2dudv =

∫ 2π

0

∫ 1

0
r2n+1(1− r2)s−2drdθ

With the substitution t = r2, follows

4π

∫ 1

0
tn(1− t)s−2dt = 4πβ(n+ 1, s− 1) = 4π

Γ(n+ 1)Γ(s− 1)

Γ(n+ s)
.

Therefore, 〈en, em〉 = δn,m.
We now need to show, that the (en)n span the whole space. This is equivalent to Parseval’s
equation

∞∑
n=0

|〈f, en〉|2 = ‖f‖22

Let sn(z) =
∑n

k=0 akz
k be the partial Taylor series of f on Dε(0) for 0 < ε < 1. We then have∫

Dε(0)
|sn(z)|2 (1− |z|2)s−2dxdy =

n∑
k=0

|ak|2 〈zk, zk〉ε =
n∑
k=0

4π
Γ(k + 1)Γ(s− 1)

Γ(k + s)
|ak|2 ε2(k+1).

with 〈f, g〉ε =
∫
Dε(0) f(z)g(z)(1 − |z|2)αdxdy. Since sn(z) converges uniformly on Dε(0), we

have with monotone convergence∫
Dε(0)

|f(z)|2 (1− |z|2)αdxdy =
∞∑
k=0

4π
Γ(k + 1)Γ(s− 1)

Γ(k + s)
|ak|2 ε2(k+1).

Further we let ε→ 1 to get the desired result. Hence (en)n form a basis of A2
α.

13



The proof above also shows, that the measure (1− r2)αrdθdr is finite.

Notice that we can also write en(z) as

√
s−1
4π

s(s+1)...(s+n−1)
n! wn, since n is always a natural

number. We can now use Theorem 2.3 to obtain the kernel function.

Theorem 2.8. The kernel function in A2
α is given by

K(z, w) =
s− 1

4π
(1− zw)−s.

Proof. The Taylor series of (1− x)−s in x = 0 is

∞∑
n=0

s(s+ 1) . . . (s+ n− 1)

n!
xn.

This converges uniformly on compact subsets on D. We therefore have
(1− x)−s =

∑∞
n=0

s(s+1)...(s+n−1)
n! . Thus, we can conclude

∞∑
n=0

en(z)en(w) =
s− 1

4π

∞∑
n=0

s(s+ 1) . . . (s+ n− 1)

n!
(zw)n =

s− 1

4π
(1− zw)−s.

2.4 Transforming to the upper half plane

One can define the (weighted) Bergman spaces A2
α similarly on the upper half plane H =

{x+ iy|y > 0}.

Definition 2.9. The Bergman space on the upper half plane A2
α(H) is the Hilbert space of

holomorphic functions that are square integrable with respect to the measure ys−2dxdy. This
means f satisfies ∫

H
|f(z)|2 ys−2dxdy <∞.

Here we can see, why the notation A2
s−2 is quite useful.

We will also define the measure µs = ys−2dxdy on H and νs on D, like in Section 2.2.
We transform everything from the unit disk to the upper half plane with the Cayley transform.
This biholomorphic function is well known and often used for this type of tasks. Why we
transform everything to the upper half plane will be clear when talking about Fuchsian groups,
which act on the upper half plane. With these two representations of essentially the same
Bergman space, we can choose a domain that fits our needs best and makes computations much
easier. For example, finding an orthonormal basis in the space Aα(D) is easier than in Aα(H).
But everything concerning Fuchsian groups and the hyperbolic geometry is nicer on the upper
half plane.

Theorem 2.10. The Cayley transform

C(z) =
z − i
z + i

maps the upper half plane to the unit disk. Its inverse is

C−1(w) =
w + 1

i(w − 1)
.
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Proof. Obviously, C and C−1 are holomorphic on H and D, respectively. One can verify easily
that C−1 is the inverse of C. It also holds that for every z ∈ H and w ∈ D:

Im
w + 1

i(w − 1)
= Re

w + 1

1− w
= Re

(1 + w)(1− w)

|1− w|2
=

1− |w|2

|1− w|2
> 0∣∣∣∣z − iz + i

∣∣∣∣2 =
x2 + y2 − 2y + 1

x2 + y2 + 2y + 1
< 1

In the following, we will use the branch of logarithm

log(z) =

∫
κ

1

w
dw +

iπ

2
,

with κ being the line from i to z. To see, that this actually defines a branch of logarithm we
describe the line from i to z by the map

[0, 1]→ C, t 7→ r(t)eiΘ(t)

with r(t) and Θ real valued. Then we have

exp

(∫ 1

0

(r′(t) + ir(t)Θ′(t))eiΘ(t)

r(t)eiΘ(t)
dt+

iπ

2

)
= exp

(∫ 1

0

r′(t)

r(t)
+ iΘ′(t)dt+

iπ

2

)
= exp

(
log r(1)− log r(0) + iΘ(1)− iΘ(0) +

iπ

2

)
= exp (log |z|+ iΘ(1))

= |z| exp(iΘ(1)) = z.

Jones [19] describes a link between the Bergman spaces on the upper half plane and the unit
disk. This theorem transforms functions from the unit disk to the upper half plane.

Theorem 2.11. The mapping f 7→
(

2
z+i

)s
f
(
z−i
z+i

)
defines a unitary between A2

s−2(D) to

A2
s−2(H).

Proof. Linearity is clear. Note that the Jacobian determinant of the Cayley transform is given
by ∣∣C ′(z)∣∣2 =

∣∣∣∣ 2

(z + i)2

∣∣∣∣2 =
1

4

∣∣∣∣ 2

z + i

∣∣∣∣4 .
With the transformation theorem follows

‖f‖2D =

∫
D
|f(z)|2 4(1− |z|2)s−2dxdy

=

∫
H

∣∣∣∣f (z − iz + i

)∣∣∣∣2
(

1−
∣∣∣∣z − iz + i

∣∣∣∣2
)s−2 ∣∣∣∣ 2

z + i

∣∣∣∣4 dxdy
=

∫
H

∣∣∣∣f (z − iz + i

)∣∣∣∣2(x2 + y2 + 2y + 1− x2 − y2 + 2y − 1

|z + i|2

)s−2 ∣∣∣∣ 2

z + i

∣∣∣∣4 dxdy
=

∫
H

∣∣∣∣f (z − iz + i

)∣∣∣∣2( 4y

|z + i|2

)s−2 ∣∣∣∣ 2

z + i

∣∣∣∣4 dxdy
=

∫
H

∣∣∣∣f (z − iz + i

)∣∣∣∣2 ys−2

∣∣∣∣ 2

z + i

∣∣∣∣2s−4 ∣∣∣∣ 2

z + i

∣∣∣∣4 dxdy
=

∫
H

∣∣∣∣f (z − iz + i

)∣∣∣∣2 ys−2

∣∣∣∣ 2

z + i

∣∣∣∣2s dxdy
=

∫
H

∣∣∣∣f (z − iz + i

)(
2

z + i

)s∣∣∣∣2 ys−2dxdy =

∥∥∥∥( 2

z + i

)s
f

(
z − i
z + i

)∥∥∥∥2

H
.
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Thus, the map is an isometry. Surjectivity follows by using the inverse of the Cayley transform.

With the theorem above, we can now get the kernel function on the upper half plane.

Theorem 2.12. The map

KH(z, w) =
2s

(i(w − z))s

is the reproducing kernel of A2
s−2(H).

Proof. We have for every f ∈ A2
s−2(D) with the reproducing kernel property of KD and the

transformation theorem

f(C(w)) =

∫
H
KD(C(z), C(w))f(C(z))

∣∣∣∣ 2

z + i

∣∣∣∣2s y−sdxdy.
With that follows

f(C(w))

(
2

w + i

)s
=

(
2

w + i

)s ∫
H
KD(C(z), C(w))f(C(z))

∣∣∣∣ 2

z + i

∣∣∣∣2s y−sdxdy
=

∫
H
KD(C(z), C(w))

(
2

w + i

)s
f(C(z))

∣∣∣∣ 2

z + i

∣∣∣∣2s y−sdxdy
=

〈
KD(C(z), C(w))

(
2

z + i

)s( 2

w + i

)s
, f(C(z))

(
2

z + i

)s〉
.

Thus, by Theorem 2.11, KD(C(z), C(w))
(

2
z+i

)s (
2

w+i

)s
is a reproducing kernel in A2

s−2(H).It

also follows

KD(C(z), C(w))

(
2

z + i

)s( 2

w + i

)s
=

(
1− z − i

z + i

(
w − i
w + i

))−s(
2

z + i

)s( 2

w + i

)s
=

(
1− z − i

z + i

w + i

w − i

)−s( 2

z + i

)s( 2

w − i

)s
=

(
2i(w − z)

(z + i)(w − i)

)−s( 2

z + i

)s( 2

w − i

)s
= 2s (i(w − z))−s.

Thus KH(z, w) fulfills the reproducing kernel condition, thus KH is the reproducing kernel by
the uniqueness of the reproducing kernel.

Everything done in this section can be made in reverse, i.e., from the upper half plane to the
unit disk, in essentially the same manner as done above. Moreover, this porting can be done
with every domain Ω conformal to the unit disk, i.e., every simply connected domain except C
itself. For that we have to use some conformal map ϕ that maps D to Ω instead of the Cayley
transform. From Liouville’s theorem, it follows directly that Aα(C) only contains the constant
zero function. For more details, see [10].

16



3 Fuchsian Groups

Fuchsian groups are in a sense discrete subgroups of the automorphism group of the upper half
plane. The action of the Fuchsian group on the upper half plane and the Bergman spaces will
help us obtain our main result, since the zero sets we are looking at are orbits of Fuchsian
groups. In this chapter, we discuss some properties of Fuchsian groups which we need in the
following and also look at the actions on the Bergman space as well as on the upper half plane.
This is a well-understood topic, but we do not need much of it, so this is just a brief introduction
to this topic.
We used basic literature of Dal’Bo [8], which is more concentrated on hyperbolic geometry and
Tsuji [31] which describes in the last chapter Fuchsian groups acting on the unit disk, but this
is the same since the unit disk and upper half plane are conformally equivalent.

3.1 Basics

We will first look at the Möbius transformations on the upper half plane H. They are given by

z 7→ az + b

cz + d
∀a, b, c, d ∈ R and ad− bc > 0

and these are all automorphisms of the upper half plane into itself. The map from GL(R, 2)
(i.e., the invertible real 2× 2 matrices) to the automorphisms on H given by(

a b
c d

)
7→ az + b

cz + d

is a surjective group homomorphism. This map is clearly not injective because for every λ ∈ R+

is

λaz + λb

λcz + λd
=
az + b

cz + d

and

−az − b
−cz − d

=
az + b

cz + d

To solve this first ”problem”, we need to look at a subgroup of GL(2,R) namely the special
linear group.

Definition 3.1. The subgroup {(
a b
c d

)
; ad− bc = 1

}
of GL(2,R) is called the special linear group (short SL(2,R)).

The second ”problem” implies that A ∈ SL(2,R) and −A ∈ SL(2,R) correspond to the
same Möbius transformation. To solve this, we introduce the projective special linear group.

Definition 3.2. The projective special linear group or short PSL(2,R) is the quotient
SL(2,R)/{±I}, with I being the identity matrix.

In the following g ∈ PSL(2,R) with representative

g =

(
a b
c d

)
In the following we identify PSL(2,R) with the Möbius transforms on the upper half plane.

Lemma 3.3. The map PSL(2,R) → Aut(H), g 7→ az+b
cz+d is an isomorphsim where Aut(H) are

the conformal maps from the upper half plane onto itself.
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Proof. Surjectivity is clear. For injectivity, let g ∈ PSL(2,R) with az+b
cz+d = z. Then, az + b =

cz2 + dz and therefore c = 0, b = 0 and d = a. Since, det(g) = 1 we have d = a = 1 or
d = a = −1. Thus, g = ±I. Since, I = −I in PSL(2,R) we have that injectivity.

Now we can define what we mean by Fuchsian group.

Definition 3.4. A Fuchsian group is a discrete subgroup of PSL(2,R).

From now on, if not stated otherwise Γ is a Fuchsian group. Important examples for Fuchsian
groups are PSL(2,Z). Another important concept in this regard is the fundamental domain.
A fundamental domain is in a sense the smallest domain in H that spans everything with the
help of the action of G (see [8]).

Definition 3.5. A closed connected subset F of H is called fundamental domain, if it satisfies
the following conditions:

(i) int(F ) 6= ∅

(ii)
⋃
γ∈Γ γF = H

(iii) int(F ) ∩ int(γF ) = ∅ for all γ ∈ Γ \ {γ}

Dal’Bo [8, Ch.2.3] constructed a fundamental domain for every Fuchsian group. The funda-
mental domain tessellates the whole plane. This can be helpful, if we look at some Γ invariant
function. In this case, we only need to look at some fundamental domain and not the whole
plane. Furthermore, a fundamental domain gives a sense of how big the underlying Fuchsian
group is. This can be seen, when we define the covolume of a Fuchsian group. But to make
the area invariant under the action one has to use the hyperbolic area instead of the Lebesgue
area. The hyperbolic area is the measure µ := dxdy

y2
on H. For this we have to first look at the

imaginary part of after the translation on the upper half plane (see [19]).

Proposition 3.6. For g ∈ PSL(2,R) and z ∈ H we have Im(g(z)) = Im(z)

|cz+d|2 .

Proof. Let be g and z be fixed as in the assertion. Then

g(z) =
az + b

cz + d
=
ax+ b+ iay

cx+ d+ icy
=

(az + b)(cz + d)

|cz + d|2
=
ac |z|2 + adz + bcz + bd

|cz + d|2

=
ac |z|2 + adx+ bcx+ bd

|cz + d|2
+ i

ady − bcy
|cz + d|2

.

Here, ady − bcy = y, as the determinant of g is equal to 1. This ends the proof.

The next proposition shows a glimpse on why this is.

Proposition 3.7. The measure µ is invariant under the action of a Fuchsian group Γ. This
means ∫

gB

dxdy

y2
=

∫
B

dxdy

Im(g(z))2

for every g ∈ Γ, f ∈ L1(H, µ) and B ⊂ H Borel set.

Proof. The Jacobian determinate is (with the determinat of g being 1)

∣∣g′(z)∣∣2 =

∣∣∣∣ ad− bc(cz + d)2

∣∣∣∣2 =
1

|cz + d|4
.
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With the transformation theorem follows∫
gB

dxdy

y2
=

∫
1gB(z)

dxdy

Im(z)2

=

∫
1B(g(z))

1

|cz + d|4
dxdy

Im(g(z))2

=

∫
1B(g(z))

dxdy

Im(z)2

=

∫
B

dxdy

Im(z)2

The following lemma by Beardon [5] lets us define an important measure of Fuchsian groups
and their action on the upper half plane.

Lemma 3.8. For two fundamental domains F, F ′ of a Fuchsian group follows∫
F

dxdy

y2
=

∫
F ′

dxdy

y2
.

Proof. We write µ[F ] :=
∫
F
dxdy
y2

. With the invariance of the measure of dxdy
y2

with respect to

the action of the Fuchsian group follows (Proposition 3.7):

µ[F ] = µ

F ∩
⋃
γ∈Γ

γF ′

 = µ

⋃
γ∈Γ

(F ∩ γF ′)

 = µ

⋃
γ∈Γ

(γ−1F ∩ F ′)

 = µ[F ′]

The covolume describes in a sense the size of the Fuchsian group as well. But if the Fuchsian
group is bigger, then its covolume is smaller, since the ”tiles” that tessellates the upper half
plane are smaller.

Definition 3.9. The covolume(Γ) for a Fuchsian group Γ is the hyperbolic area of a funda-
mental domain F , i.e. ∫

F

dxdy

y2
.

Note that the definition of covolume does not depend on the choice of fundamental domain,
only on the Fuchsian group Γ.

Example 3.10. For Γ = PSL(2,Z) a fundamental domain is given by

F :=

{
z ∈ H | |z| > 1 and |x| ≤ 1

2

}
.

Figure 1 shows the tesselation of the fundamental domain F . It was created using the fact,
that for an element x ∈ ∂F we have g(x) ∈ ∂gF for some g ∈ PSL(2,Z), since g is a
homeomorphism and that the maps z 7→ z + 1 and z 7→ −1

z generate PSL(2,Z) (see [2]).
The figure is slightly inaccurate, since one cannot use all points on the boundary and cannot
form all combinations of the two maps, therefore it is not complete but gives a good impression
on how these fundamental domains can look like.
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Figure 1: fundamental domain of PSL(2,Z)

This follows by using the translations(
0 −1
1 0

)
,

(
1 1
0 1

)
which generate PSL(2,Z) and translating every point of H to F (for more details see[11]). To
calculate the covolume of Γ we just integrate over the fundamental domain.∫

F

dxdy

y2
=

∫ 1
2

− 1
2

∫ ∞
√

1−x2

dxdy

y2
=

∫ 1
2

− 1
2

−1

y

∣∣∣∣∞√
1−x2

dx =

∫ 1
2

− 1
2

1√
1− x2

dx = arcsin(x)|
1
2

− 1
2

=
π

3

In the following, we demand also that covolume(Γ) is finite for every Fuchsian group. This
need not be the case (see for example [31]).
Akemann [1] showed all Fuchsian groups have a nice property that will later be essential when
it comes to von Neumann algebras. This is a quite algebraic and technical proof, we will miss
out.

Theorem 3.11. All Fuchsian goups are icc. (infinite conjugacy classes, i.e., for all g ∈ Γ\{e}
the set {hgh−1|h ∈ Γ} is infinite).

3.2 PSL(2,R) on Bergman space

PSL(2,R) not only acts on the upper half plane, but also on the Bergman spaces A2
s−2. In the

following, we will use the branch of logarithm

log(cz + d) =

∫
κ

c

cw + d
dw + log(ci+ d)

with κ being the line from i to z and log(ci+d) some branch of logarithm, which cannot be the
same for every c, d ∈ R. This is a branch of logarithm, since log(cw + d) is an antiderivative of
c

cw+d . We showed, that this is a branch of logarithm in the last chapter.
Following Jones [19], we define the following unitary operator. This operator will be refined in
the next two chapter and will then be our main tool.

Theorem 3.12. The map

π̂s(g
−1)(f)(z) =

1

(cz + d)s
f(g(z))

defines a unitary operator on L2(H, µs). Furthermore π̂s(g
−1)(f) is holomorphic if f is holo-

morphic.

Proof. Linearity is clear. Let f, h ∈ L2(H, µs). With the transformation theorem it follows:

〈f, h〉 =

∫
H
f(z)h(z)ys

dxdy

y2

=

∫
H
f(g(z))h(g(z)) Im(g(z))s−2 1

|cz + d|4
dxdy

=

∫
H
f(g(z))h(g(z))

ys

|cz + d|2s
dxdy

y2
= 〈π̂s(g−1f), π̂s(g

−1h)〉
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Thus, f 7→ π̂s(g
−1f) is an isometry on L2(H, µs).

We now need to prove, that π̂s is surjective, but since π̂s(g
−1)(π̂s(g)(f)) = f this is clear. Hence

π̂s(g
−1) defines a unitary on L2(H, µs).

The holomophy of π̂s(g
−1)(f) is clear, if f is homomorphic, since multiplication and composition

of holomorphic function is holomorphic.
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4 Von Neumann algebras

We will first look at some basic properties of general von Neumann algebras. With this knowl-
edge, we dive deeper into group von Neumann algebras and which group properties imply
certain properties of the group von Neumann algebra. We then want to categorize factors fur-
ther. Therefore, we look at projections and what they tell us about the von Neumann algebra,
they belong to. We are then ready to define the types I,II and III, the type II factor being the
one of interest for us.
This chapter is mostly based on the works of Jones [15], Peterson [25] and Anantharaman and
Popa [3].

4.1 The Basics

Before we can define von Neumann algebras, we have to look at some topologies on B(H).

Definition 4.1. The weak operator topology is induced by the seminorms T 7→ |〈Tξ, ν〉| for all
ξ, ν ∈ H.
The strong operator topology is induced by the seminorms T 7→ ‖Tξ‖ for all ξ ∈ H.

For more details, see Peterson [25]. We now can define von Neumann algebras.

Definition 4.2. A von Neumann algebra is a ∗-subalgebra of the bounded operators B(H) over
some Hilbert space H that is closed in the weak operator topology and contains the identity
1B(H).

If we look at the definition of von Neumann algebra, it is quite similar to that of a C∗-
algebra, except that a C∗-algebra is closed under the norm topology. Notice also that every
C∗-algebra can be identified with a subalgebra of B(H) for some Hilbert space H via the sec-
ond Gelfand-Naimark theorem. This difference seems like a small detail at the first glance,
but changes quite a lot. For example, in von Neumann theory projections play a vital role in
describing the nature of a von Neumann algebra, as we will see later. In C∗-algebras it is not
the case. On the other hand it is easy to find some isomorphisms between C∗-algebras, but this
is way more difficult for von Neumann algebras.
In the following, let M be a von Neumann algebra. There are many types of von Neumann alge-
bras. The most important for us are factors. Following Peterson [25], we define the commutant
and center of von Neumann algebras.

Definition 4.3. (i) Let H be some Hilbert space and N ⊂ B(H). Then N ′ = {y ∈ B(H)|xy =
yx for all x ∈ N} is the commutant of N .

(ii) The center of a set N is N ∩N ′.

(iii) A von Neumann algebra M is called a factor if the center of M is trivial (i.e., the center
is equal to C1).

There are also subtypes of factors, but we will discuss them later in Section 4.4.
We will now define some important notions that will be useful when we look at group von
Neumann algebras. It also will be essential, when we look at the Gelfand-Naimark-Segal con-
struction in 5.1. Furthermore, these definitions are important in other operator algebras such
as C∗ algebras.

Definition 4.4. Let M be a von Neumann algebra and ϕ a functional on M .

(i) ϕ is called positive if ϕ(x∗x) ≥ 0 for all x ∈M .

(ii) If ϕ is positive and ϕ(1) = 1, then ϕ is a state.
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(iii) If ϕ is positive and satisfies

ϕ(x∗x) = 0 =⇒ x = 0,

then ϕ is faithful.

(iv) We call ϕ a trace, if it is positive and for all x, y ∈ M we have ϕ(xy) = ϕ(yx). If in
addition ϕ is a state, ϕ is called a tracial state.

For more details, see [15], [25] and [3]. The most known example of a faithful tracial state
is the normalized trace on the matrix algebra AN of N × N matrices. (The normalized trace
here means 1

N trN (·))

4.2 Group von Neumann algebra

The group von Neumann algebra is one of the central tools to prove our main theorem and
is also in other circumstances quite useful. The goal is essentially to describe the action of a
Fuchsian group on the Bergman space with the help of a von Neumann algebra on it. This von
Neumann algebra will be the group von Neumann algebra of this Fuchsian group.
We will in the following only consider discrete groups, if not stated otherwise. For a group
Γ we will construct a von Neumann algebra on `2(Γ), with `2(Γ) being the square summable
functions on Γ. We call (δg)g∈G the natural orthonormal basis for `2(Γ) with

δg(h) =

{
1 if h = g

0 otherwise
.

Obviously, this is an orthonormal basis.
We have to consider some sort of twisting of the action. This means we multiply by a factor of
modulus one in a specific manner. It is described by so called 2-cocycles (see [23]).

Definition 4.5. A 2-cocycle on Γ is a map ω : Γ×Γ→ T (T = {x ∈ C| |x| = 1}) that satisfies

(i) ω(g, h)ω(gh, k) = ω(h, k)ω(g, hk) for all g, h, k ∈ Γ,

(ii) ω(g, e) = ω(e, g) = 1 for all g ∈ Γ.

With a 2-cocycle we can define the action of the group Γ on `2(Γ). This action will later
generate the group von Neumann algebra.

Definition 4.6. Let ω be a 2-cocycle on Γ and λω and ρω the linear operators on `2(Γ) with

λω(h)δg = ω(h, g)δhg

ρω(h)δg = ω(gh−1, h)δgh−1 .

λω and ρω are called the left regular representation and right regular representation of Γ on
`2(Γ) respectively.

λω and ρω form a so called projective representation of the group Γ. This means that the
map g 7→ λω(g) forms a group homomorphism modulo multiplication by a complex number of
modulus one. For g, h, k ∈ Γ we get

λω(g)λω(h)δk = λω(g)ω(h, k)δhk

= ω(g, hk)ω(h, k)δgh,k

= ω(g, h)ω(gh, k)δ(gh)k

= ω(g, h)λω(gh)δk

Showing λω(g)λω(h) = ω(g, h)λ(gh). In a similar manner follows ρω(g)ρω(h) = ω(g, h)ρω(gh).
Following Anantharaman and Popa [3], we now define the group von Neumann algebra as the
weak closure of the span of actions of the group. It will be essential in the following chapters.
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Definition 4.7. The von Neumann algebra vNω(Γ) generated by λω(Γ), i.e., the weak operator
closure of the span of the λω(Γ), is called the (left) group von Neumann algebra of Γ.

Similarly one can define the right group von Neumann algebra Rω(Γ) with ρ instead of λ.

Lemma 4.8. Let h, g ∈ Γ. We have for some α ∈ C with |α| = 1

λω(h)ρω(g) = αρω(g)λω(h).

Proof. Let h, k, g ∈ Γ.

λω(h)ρω(g)δk = ω(kg−1, g)λω(h)δkg−1

= ω(kg−1, g)ω(h, kg−1)δhkg−1

= ω(kg−1, g)ω(h, kg−1)ω(hkg−1, g)−1ρω(g)δhk

= ω(kg−1, g)ω(h, kg−1)ω(hkg−1, g)−1ω(h, k)−1ρω(g)λω(h)δk

But we will not go more into detail.
Furthermore there is also a tracial state on vNω(Γ), but more on that in the next example.

Example 4.9. Let e be the neutral element of Γ. Note that vNω(Γ) acts naturally on the Hilbert
space `2(Γ). Then the map

τ(x) = 〈xδe, δe〉

is a faithful tracial state. By 〈·, ·〉 we mean the inner product on `2(Γ). Obviously τ is positive.
Faithful:
Let x ∈ vNω(Γ) with τ(x∗x) = 0 then 0 = 〈x∗xδe, δe〉 = 〈xδe, xδe〉 hence xδe = 0. Now, we want
to show that x = 0. We first look at λω(h):

λω(h)δg = ω(g, g−1)−1λω(h)ρω(g−1)δe = ω(g, g−1)−1αρω(g−1)λω(h)δe = 0

with α like in Lemma 4.8. Since, the left regular representations generate vNω(Γ) xδg = 0 for
all x ∈ vNω(Γ) Thus, x = 0. State:

τ(1) = 〈1δe, δe〉 = 〈δe, δe〉 = 1

For g ∈ Γ follows

τ(λω(g)) = 〈λω(g)δe, δe〉 = 〈δg, δe〉 =

{
1 for g = e

0 otherwise.

Further we have

τ(λω(g)λω(h)) = τ(ω(g, h)λω(gh)) =

{
1 for gh = 1

0 otherwise
= τ(ω(h, g)λω(hg)) = τ(λω(h)λω(g)).

Thus, τ is a trace.

We will see this nice appearance of the tracial state above again in the so called Gelfand-
Naimark-Segal construction. With this construction one can show that every tracial state is of
this form, but this is not of interest for us. It is essentially the same for von Neumann algebras
as for C∗ algebras, but more on that later.
There is also another way to define the left regular representation, which can be found in the
literature (see [15]). The following lemma shows that these two definitions are the same.
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Lemma 4.10. The action of λω(g) can also be expressed via

λω(h)f(k) = ω(h, h−1k)f(h−1k)

for all f ∈ `2(Γ).

Proof. For every g, h, k ∈ Γ we have

λω(h)δh−1g(k) = ω(h, h−1g)δg(k) = ω(h, h−1g)δh−1g(h
−1k).

The above equation remains valid for linear combinations and limits of {δa|a ∈ Γ}. Therefore,
the claim follows.

Following Omland [23], we define what it means to be ω-regular (ω is a 2-cocycle). When
using 2-cocycles we get that if two elements g, h ∈ Γ commute, then λω(g) and λω(h) need
not to commute. This will be helpful, when proving that if Γ is icc, then vNω(Γ) is a factor.
Proving this assertion, will be our goal in the rest of this section.

Definition 4.11. (i) We say that an element g is ω-regular, if ω(g, h) = ω(h, g) for all h
that commute with g. Moreover, if an element g commutes with h all elements of the
conjugacy classes commute. In this sense, it is beneficial to talk about ω-regular conjugacy
classes rather then ω-regular elements.

(ii) (Γ, ω) satisfies Kleppner’s condition, if every ω-regular conjugacy class is infinite.

Remark 4.12. (i) Note that if a group Γ is icc, then for all 2-cocycles ω (Γ, ω) satisfies the
Kleppner’s condition.

(ii) We will later also prove, that if (Γ, ω) satisfies the Kleppner’s condition, then vNω(Γ) is
a factor. Hence, if Γ is icc, then vNω(Γ) is a factor for all 2-cocycles ω.

Omland [23] builds a function on a regular conjugacy class that will be very useful when
deciding if a group von Neumann algebra is a factor or not.

Proposition 4.13. Let C be a conjugacy class. If C is ω-regular, then there is a function
f : Γ→ C with

(i) 0 /∈ f(C)

(ii) f(hgh−1) = ω(h, g)ω(hgh−1, h)−1f(g)

Proof. Define for a fixed k ∈ C

f(g) =

{
ω(h, k)ω(hkh−1, h)−1 if g ∈ C and g = hkh−1

0 otherwise

We have to first prove the well definedness of f . For that let hkh−1 = h′kh′−1. For this we only
need to show

ω(h, k)ω(hkh−1, h)−1 = ω(h′, k)ω(h′kh′−1, h′)−1.

First observe with Definition 4.5 follows

ω(h−1, hkh−1)ω(kh−1, h′) = ω(h−1, hkh−1h′)ω(hkh−1, h′) = ω(h−1, h′k)ω(h′kh′−1, h′). (1)

We have

kh−1h′ = h−1(hkh−1)h′ = h−1(h′kh′−1)h′ = h−1h′k.
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Thus, k commutes with h−1h′ and since C is ω-regular it follows ω(h−1h′, k) = ω(k, h−1h′).
Using this and Definition 4.5 we have

ω(k, h−1)ω(kh−1, h′)
4.5
= ω(k, h−1h′)ω(h−1, h′) = ω(h−1h′, k)ω(h−1, h′)

4.5
= ω(h−1, h′k)ω(h′, k).

(2)

Combining (1) and (2) yields

ω(h−1, hkh−1)ω(h′, k) = ω(k, h−1)ω(h′kh′−1, h′)

Further we have again by using Definition 4.5

ω(h−1, hkh−1)
4.5
= ω(h−1, hkh−1)ω(kh−1, h)ω(kh−1, h)−1

= ω(h−1, hk)ω(hkh−1, h)ω(kh−1, h)−1

4.5
= ω(h−1, hk)ω(h, k)ω(h, k)−1ω(hkh−1, h)ω(kh−1, h)−1

= ω(k, h−1)ω(kh−1, h)ω(h, k)−1ω(hkh−1, h)ω(kh−1, h)−1

= ω(k, h−1)ω(h, k)−1ω(hkh−1, h)

From that follows by combining the last two results

ω(hkh−1, h)ω(h′, k) = ω(h, k)ω(h′kh′−1, h′),

which implies

ω(h, k)ω(hkh−1, h)−1 = ω(h′, k)ω(h′kh′−1, h′)−1.

It remains to show that (ii) holds for all g ∈ C and not only for the specific k choosen in the
definition of f . Let g ∈ C, then there is a h ∈ Γ with g = hkh−1.

f(g) = f(hkh−1) = ω(h, k)ω(hkh−1, h)−1 = ω(h, k)ω(g, h)−1

By using Definition 4.5 we get

ω(lgl−1, l)ω(lh, k)ω(lgl−1, lh)−1ω(h, k)−1

= ω(lgl−1, l)ω(lh, k)ω(lgl−1, lh)−1ω(h, k)−1ω(l, hk)−1ω(l, hk)

4.5
= ω(lgl−1, l)ω(lh, k)ω(lgl−1, lh)−1ω(l, h)−1ω(lh, k)−1ω(l, hk)

4.5
= ω(lgl−1, l)ω(lh, k)ω(lgl−1, l)−1ω(lg, h)−1ω(lh, k)−1ω(l, hk)

= ω(lg, h)−1ω(l, hk)

def. of g
= ω(lg, h)−1ω(l, gh)

= ω(lg, h)−1ω(l, g)−1ω(l, g)ω(l, gh)

4.5
= ω(g, h)−1ω(l, gh)−1ω(l, g)ω(l, gh)

= ω(g, h)−1ω(l, g)

Finally we get

f(lgl−1)
def. of g

= f(lhkh−1l−1)

def. of f
= ω(lh, k)ω(lhkh−1l−1, lh)−1

def. of g
= ω(lh, k)ω(lgl−1, lh)−1

= ω(lgl−1, l)ω(lh, k)ω(lgl−1, lh)−1ω(h, k)−1ω(lgl−1, l)−1ω(h, k)

(∗)
= ω(g, h)−1ω(l, g)ω(lgl−1, l)−1ω(h, k)

def. of f
= ω(l, g)ω(lgl−1, l)−1f(g)

where we used in (∗) the equation above.
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Lemma 4.14. For h ∈ Γ we have

λω(h)∗ = ω(h−1, h)−1λω(h−1)

Proof. Let g, h, k ∈ Γ.

〈δk, ω(h−1, h)−1)λω(h−1)δg〉 = ω(h−1, h)ω(h−1, g)−1〈δk, δh−1g〉

=

{
ω(h−1, h)ω(h−1, hk)−1 if hk = g

0 otherwise

= ω(h−1, h)ω(h−1, hk)−1〈δhk, δg〉
def λω(h)

= ω(h−1, h)ω(h−1, hk)−1ω(h, k)−1〈λω(h)δk, δg〉
4.5
= ω(h−1, h)ω(h−1, h)−1ω(e, k)−1〈λω(h)δk, δg〉
= 〈λω(h)δk, δg〉

Thus, λω(h)∗ = ω(h−1, h)−1λω(h−1).

Combining the results from above, we now can prove that the group von Neumann algebra
is a factor if and only if (Γ, ω) satisfies Kleppner’s condition. Note that all Fuchsian groups
are icc by Theorem 3.11. Thus, this implies Kleppner’s condition and therefore all group von
Neumann algebras that are generated by Fuchsian groups are factors. Why this is important
will be clear, when we discuss the von Neumann dimension in Chapter 5. In [23] one can find
this theorem, but it is proven slightly differently.

Theorem 4.15. The group von Neumann algebra vNω(Γ) is a factor, if and only if (Γ, ω)
satisfies Kleppner’s condition.

Proof. ⇐=: Let x be in the center of vNω(Γ). Notice first that ρω(h)δe = λω(h)∗δe on ω-regular
conjugacy classes. Therefore,

xδe(hgh
−1)

def. ρω
= ω(hgh−1, h)−1xρω(h)δe(hg))

def. λω= ω(hgh−1, h)−1ω(h, g)−1xρω(h)λω(h)δe(g)

x in center
= ω(hgh−1, h)−1ω(h, g)−1λω(h)xρω(h)δe(g)

= ω(hgh−1, h)−1ω(h, g)−1λω(h)xλω(h)∗δe(g)

x in center
= ω(hgh−1, h)−1ω(h, g)−1λω(h)λω(h)∗xδe(g)

4.14
= ω(hgh−1, h)−1ω(h, g)−1ω(h−1, h)−1λω(h)λω(h−1)xδe(g)

= ω(hgh−1, h)−1ω(h, g)−1xδe(g)

Thus xδe is a function like in Proposition 4.13. As |xδe| is constant on ω regular conjugacy
classes, it can only be non-zero on finite conjugacy classes, since xδe ∈ `2(G). But Γ has no
finite ω-regular conjugacy classes except for the trivial, thus xδe = αδe for some α ∈ C. With
that vNω(Γ) is a factor.
=⇒: Assume that Γ does not satisfy Kleppner’s condition. Then there is a finite non trivial
ω-regular conjugacy class C ⊂ Γ. The map

g : `2(Γ)→ `2(Γ), g =
∑
c∈C

f(c)λω(c)
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with f being a function like in Proposition 4.13, is in the center of vNω(Γ) and g /∈ C1. To see
this first notice that for h ∈ C

gλω(h) =
∑
c∈C

f(c)λω(c)λω(h)

c∈C
=
∑
c′∈C

f(hc′h−1)λω(hc′h−1)λω(h)

4.13(ii)
=

∑
c′∈C

ω(h, c′)ω(hc′h−1, h)−1f(c′)λω(hch−1)λω(h)

def. of λω=
∑
c′∈C

ω(h, c′)f(c′)λω(hc′)

4.10+4.5
=

∑
c′∈C

ω(h−1, h)λω(h)f(c′)λω(c′)

def. of g
= ω(h, h−1)λω(h)g

Thus the center of vNω(Γ) is not trivial and therefor it is not a factor.

Recall, that that a group Γ is icc (infinite conjugacy class), if for all g 6= e the conjugacy
class {h−1gh|h ∈ Γ} is infinite. With Theorem 4.15 follows that if Γ is icc, vNω(Γ) is a factor
for every 2-cocycle ω. We are going to use this implication if we look at the action of Fuchsian
goups on Bergman spaces in more detail.

4.3 Projections

Projections play a major role in von Neumann algebras, unlike in C∗ algebras. The following
remark describes why that is the case. In essence, we know the entire von Neumann algebra, if
we know their projections. We will look at some properties of these projections and will later
on characterize factors with their projections.
One can associate von Neumann algebras to measurable functions in some measure space, as C∗

algebras to continuous functions. This is the so called Borel functional calculus. I.e., commuta-
tive von Neumann algebras are essentially measurable functions and for every normal element
in a von Neumann algebra there is a measurable functional calculus. With this association,
the projections in the von Neumann algebra get mapped to characteristic functions, since the
characteristic functions describe all measurable functions (they are the pointwise closure of the
span). Thus, we can see that the von Neumann algebra can be studied entirely by looking at
the projections. For more details on this, see [3]. We define an order on the projections on
B(H) by

p ≤ q ⇔ pH ⊂ qH

(see [15]). We refer to the orthogonal projection onto pH ∩ qH as p ∧ q and write p⊥ for
1− p. Continuing in this manner we write p∨ q for the orthogonal projection onto pH+ qH or
(p⊥ ∧ q⊥)⊥. Following Peterson [25], we look at some properties of projections.

Definition 4.16. Let M be a von Neumann algebra and p, q be projections in M .

(i) A bounded operator u is a partial isometry, if u = uu∗u.

(ii) p, q are called equivalent and write p ∼ q, if there is some partial isometry u ∈ M with
p = uu∗ and q = u∗u.

(iii) For a von Neumann algebra M , a non zero projection p ∈ M is called minimal, if (q ≤
p) =⇒ (q = 0 or q = p).
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Note also that it is important that p, q, u are in M , thus for the relation between p and
q it is important in which algebra they lie. The next example demonstrates this. Thus, the
existence of a minimal projection in M is just dependent of the structure of M .

Example 4.17. If we look at the von Neumann algebra M in the 4×4 matrices M4(C) generated
by

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and B =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


Then A is clearly minimal in M , but A is also clearly not minimal in M4(C).

Following Peterson [25], we define, what it means for a projection to be finite or infinite.
This is also dependent on the von Neumann algebra in which the projection lie for the same
reasons.

Definition 4.18. A projection p is called

• finite, if there is no projection q < p with p ∼ q

• infinite, if p is not finite

Note here that if the dimension of pH is finite, then p is finite. The converse of this statement
needs not to be true. A similar observation can be made for infinite projections.

Proposition 4.19. If a projection pB(H) is infinite, then there are projections q, r ∈ B(H)
with q ∼ r ∼ p with p = q + r.

Proof. Obviously pH is infinite dimensional, so there is a subspace K of pH isomorphic to pH
and K⊥ isomorphic to K. The orthogonal projection q on K is equivalent to p and 1 − q is
equivalent to p.

4.4 Types of Factors

Factors can be categorized into three different types named type I, II and III. These differ in
the structure of their projections and therefore in their whole ”appearance”. One can define
these types just on properties of their projections, but this would not be helpful in getting some
intuition on these types and their behavior (for a definition based just on projections, see [25]).
There are also subtypes of these types, which we will discuss briefly. The next example shows
that there are indeed different types of von Neumann algebras. Remember that there is a trace
in a group von Neumann algebra. The following example can be found in [3].

Example 4.20. We want to show that there is no tracial state on B(H) for every infinite
dimensional Hilbert space H. Suppose there is a trace tr on B(H). The identity id is infinite
in B(H), then there is p, q with p ∼ id ∼ q and id = p+ q. Then there are partial isometries u1

and u2 with u1u
∗
1 = p, u∗1u1 = id, u2u

∗
2 = q and u∗2u2 = id. We have then

1 = tr(id) = tr(p) + tr(q) = tr(u1u
∗
1) + tr(u2u

∗
2) = tr(u∗1u1) + tr(u∗2u2) = 2

This is a contradiction, thus there is no trace on B(H).

We begin by the simplest of all of them: the type I factor. We will not go deeper into type
I factors, but include them for completeness. Following Anantharaman and Popa [3] we define
type I factors.
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Definition 4.21. A factor is called a type I factor, if it is isomorphic to B(H) for some Hilbert
space H.

This is also equivalent to the existence of a minimal projection (see [25]).
If the Hilbert space H from the definition above has dimension n := dimH ∈ [0,∞], one says
M is a type In factor.
We now come to the most important type, the type II factor. This and especially the II1 type is
the one that we are focusing on. It will help us prove the main theorem, and we will define the
von Neumann dimension for these types of factors. The type I and II1 factors are also known
as finite types. These are special because they have a tracial state defined on them, that is
essential for the construction in the next chapter (see [15]). Following Jones [15], we define type
II factors.

Definition 4.22. Let M be a factor. If M has finite projections, but no minimal projection, it
is a type II factor. We distinguish two subcategories

(i) M is a II1, if there is a tracial state on M .

(ii) A type II∞ factor, if the identity is infinite.

Notice that there cannot be a tracial state if the identity is infinite (see Example 4.20).
With this definition, it follows immediately that vNω(Γ) is a type II1 factor (see Example 4.9).
We will focus on this type of factor. Moreover, the normalized trace on a type II1 factor is
unique. (see [15]). We will later consider von Neumann algebras M that act on some Hilbert
space H. Therefore we have to define what this actually means. In [15] we can find a definition
of M -module.

Definition 4.23. Let M be a type II1 factor. We call a Hilbert space together with a unital
∗-homomorhpism from M to a type II1 factor on H an M -module.

We write xξ for the action of x ∈ M on ξ ∈ H. Similarly, we mean by Mξ = {xξ|x ∈ M}.
To compare the actions of two von Neumann algebras on two Hilbert spaces, one uses the notion
of unitarily equivalence. Following Jones [15], we define what it means for two actions to be
equivalent.

Definition 4.24. Let M,N be von Neumann algebras acting on Hilbert spaces H and K re-
spectively. We call the action of M on H and N on K unitarily equivalent, if there is a unitary
u : H → K with M → N, x 7→ uxu∗ being an isomorphism between von Neumann algebras.

The next definition will become important in the next chapter. It will help us show that
the two definitions of von Neumann dimension are the same. A definition can be found in [19]
and [15].

Definition 4.25. Let M be a von Neumann algebra that acts on a Hilbert space H, then we
call a vector ξ ∈ H cyclic if Mξ is dense in H.
We call a vector ξ ∈ H separating, if for x ∈M we have xξ = 0 =⇒ x = 0.

The following lemma can be found in [30] and will help us, when we look at some properties
of the von Neumann dimension. It is also a vital part of the well definedness of the definition
of von Neumann dimension from Murray and von Neumann. But this will be the easy part to
show the well definedness, but more on that in the next chapter.

Lemma 4.26. For a von Neumann algebra M on H the projection p onto Mξ for some ξ ∈M
belongs to M ′.

Proof. Let x ∈M . We have to show xp = px. With the orthogonal decomposition Mξ⊕(Mξ)⊥

it suffices to show the assertion for elements of the form yξ + ν with y ∈ M and ν ∈ (Mξ)⊥.
Notice also, that since M is a ∗-algebra, xν ∈ (Mξ)⊥. We have

px(yξ + ν) = pxyξ + pxν = xyξ = xpyξ = xpyξ + xpν = xp(yξ + ν).

30



The connection between the lemma above and below will be clear in the next chapter. It
says that a cyclic vector is also a separating vector for the commutant, thus if we have a cyclic
and separating vector for M , then M and M ′ are almost the same, because a separating and
cyclic vector describes the von Neumann algebra entirely, this will come apparent in the next
chapter.

Lemma 4.27. Let M be a von Neumann algebra acting on a Hilbert space H. A vector ξ ∈ H
is cyclic for M if and only if ξ is separating for M ′.

Proof. =⇒: Let ξ be cyclic, then Mξ = H.
Suppose: There is a x ∈M ′ with x 6= 0 and xξ = 0, i.e. ξ is not separating.
Since x 6= 0 and Mξ is dense in H, there is a y ∈M with xyξ 6= 0. It follows 0 = yxξ = xyξ 6= 0
is a contradiction.
⇐=: Let ξ be separating for M ′.
Suppose: ξ is not cyclic for M .
With Lemma 4.26 the projection p onto (Mξ)⊥ is in M ′. Since ξ is not cyclic, p is non zero.
But pξ = 0 and p 6= 0. This is a contradiction to ξ being separating for M ′.

We will now note that there is a third type of factor, but this is not important for our
considerations, so we will not go deeper into it. It is only mentioned for completeness.

Definition 4.28. A factor M is said to be a type III factor, if M is not a type I or type II
factor.
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5 Von Neumann Dimension and Gelfand-Naimark-Segal con-
struction

In this chapter, we will do the Gelfand-Naimark-Segal construction. Using the GNS construc-
tion, we define the von Neumann dimension, which measures the size of M -modules with respect
to the GNS construction. At the end, we prove some properties of the von Neumann dimension
and calculate the von Neumann dimension of the weighted Bergman spaces with the group von
Neumann algebra of a Fuchsian group.
This chapter is mostly based on [3] for the GNS construction and [15] for the von Neumann
dimension.

5.1 Gelfand-Naimark-Segal construction

Following Anantharaman and Popa [3] we construct for a von Neumann algebra and tracial state
ϕ : M → C a Hilbert space M on which M acts. We will use the well known Gelfand-Naimark-
Segal construction or short GNS construction. This construction comes from the theory of
C∗-algebras, and we will use some C∗-theory since von Neumann algebras are ∗-subalgebras of
the C∗-algebra B(H). The map

〈x, y〉 = ϕ(y∗x)

defines a semi-definite sesquilinear form on M ×M . To turn 〈·, ·〉 into a scalar product we have
to consider the set I := {x ∈M |〈x, x〉 = 0}. We can use the Cauchy-Schwarz inequality to get
for every x ∈ I and y ∈M

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 = 0.

It follows immediately for x, z ∈ I

〈λx+ z, λx+ z〉 = |λ|2 〈x, x〉+ λ〈x, z〉+ λ〈z, x〉+ 〈z, z〉 = 0.

Thus, I is a closed linear subspace in M . With basic algebra, we get that M/I is also an
algebra. If we factor out I we get a scalar product on M/I with

〈x+ I, y + I〉 = ϕ(y∗x)

For well definedness consider for x, x̃ ∈ I and y, ỹ ∈M

〈y + x, ỹ + x̃〉 = 〈y, ỹ〉+ 〈x, ỹ〉+ 〈y, x̃〉+ 〈x, x̃〉 = 〈y, ỹ〉.

We will denote the norm induced by ϕ as ‖·‖ϕ.
The operator Lx : M/I →M/I, y + I 7→ xy + I is a bounded linear operator.

‖Lx(y + I)‖2ϕ = ‖xy + I‖ϕ = ϕ(y∗x∗xy) ≤ ‖x∗x‖ϕ(y∗y) = ‖x‖2 ‖y + I‖2ϕ
The inequality above shows also that Lx is well-defined. (We have ‖x∗x‖ 1−x∗x is positive and
therefore ‖x∗x‖ y∗y − y∗x∗xy is positive. This follows from C∗ theory. (see [3])). Moreover, if
we set ξϕ = 1 + I, we have

〈Lxξϕ, ξϕ〉ϕ = 〈x+ I, ξϕ〉ϕ = ϕ(1∗x) = ϕ(x).

We see that ξϕ is cyclic for LM .

Definition 5.1. The triplet (L·,M/I, ξϕ) is called the Gelfand-Naimark-Segal construction or

short the GNS construction and is denoted L2(M). Here, M/I is the completion of M/I.

The operator Lx extends to a bounded operator on L2(M). If ϕ is faithful, then the map
M → B(L2(M)), x 7→ Lx is injective and L2(M) is isomorphic to the completion of M with
respect to the norm ‖·‖ϕ. The Hilbert space L2(M) is going to be our baseline to measure
Hilbert spaces on which M acts.
If we look at group von Neumann algebras, we see that they are already in the ”GNS-construction
form”, but for general von Neumann algebras this need not to be the case.
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5.2 Definition and basic properties

We now focus on type II1 factors that act on separable Hilbert spaces. The von Neumann
dimension discussed in this section describes the Hilbert space with respect to the action of the
type II1 factor acting on it and not the underlying field. The isometry in the next theorem will
help us compare the M -module H and L2(M).
We construct this isometry as follows. The following theorem can be found in [19] and [30].

Theorem 5.2. For a separable M -module H, there exists an isometry

u : H →
∞⊕
n=1

L2(M)

with u being M -linear (i.e. ux = (x⊗ 1)u).

Proof. M acts on H⊕ (⊕∞n=1L
2(M)) via

x(ξ,⊕∞n=1mn) = (xξ,⊗∞n=1xmn)

The projections p = 1⊕ 0 and q = 0⊕ 1 commute with the action of M , thus p, q ∈M ′. There
is a partial isometry v ∈M ′ with v∗v = p and vv∗ ≤ q since q is infinite in M ′.

v =

(
a b
c d

)
with a ∈ B(H), b ∈ B(

⊕∞
n=1 L

2(M),H), c ∈ B(H,
⊕∞

n=1 L
2(M)), d ∈ B(

⊕∞
n=1 L

2(M)). It
follows

v∗ =

(
a∗ c∗

b∗ d∗

)
and (

1 0
0 0

)
= p = v∗v =

(
a∗a+ c∗c a∗b+ c∗b
b∗a+ d∗c b∗b+ d∗d

)
Thus, b∗b + d∗d = 0 hence b = d = 0. In the same manner follows a = 0, when we use q. We
have further

v∗v =

(
c∗c 0
0 0

)
=

(
1 0
0 0

)
= p

Thus, c∗c = 1 (and similarly follows cc∗ ≤ 1) hence c is an isometry. Now, set u = c. We also
have, since v ∈M ′ (

0 0
u 0

)(
x 0
0 x⊗ 1

)
=

(
x 0
0 x⊗ 1

)(
0 0
u 0

)
Hence ux = (x⊗ 1)u.

This isometry is not unique. It is the central element in defining the von Neumann dimen-
sion. Following Jones [19], we now define with it the von Neumann dimension.

Definition 5.3. The von Neumann dimension of a M -module H is defined as

dimM (H) = trL2(uu∗)

with u being the isometry from Theorem 5.2.
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We mean by trL2 the trace of the commutant M ′ on
⊕∞

n=1 L
2(M), but normalized in such a

way that the projections on one of the L2(M) is one. The von Neumann dimension can attain
every non-negative real value and∞. The definition of von Neumann dimension is independent
of u. Suppose there is another unitary v satisfying the conditions in Theorem 5.2. Then u and
v are unitarily equivalent with respect to the commutant M ′ on

⊕∞
n=1 L

2(M). Thus, the traces
are the same.

Remark 5.4. The above definition differs from the original Murray and von Neumann defini-
tion. In chapter X of [22] Murry and von Neumann took any nonzero element ξ in an M -module
H and get the orthogonal projections p and q onto Mξ and M ′ξ respectively. Then the ratio
trM (p)
trM′ (q)

is independent of ξ. To show this fact is rather difficult and elaborate, we will therefore

skip this proof and assume it is independent. These two definitions of von Neumann dimension
are the same, but to prove that we have to first look at some basic properties of the von Neumann
dimension.

The idea behind the von Neumann dimension is the same as the classical dimension concept.
Here, we do not want to count how many copies of the underlying field are contained in the
Hilbert space that we are investigating, instead we use the GNS construction as our base
measure. Therefore, when using C as our von Neumann algebra we get the classical dimension.
The difference here is that the von Neumann dimension can be any non-negative real number
and infinity, instead of only the natural numbers and infinity. Before we conduct basic properties
of the von Neumann dimension, we have to get a good description of the commutant M ′ acting
on L2(M). We will look at a more general case, instead of only looking at the GNS construction,
we look at all M -modules H that have a cyclic and separating vector. In the following, Ω ∈ H
is this cyclic and separating vector. Then the trace on M is given by tr(x) = 〈xΩ,Ω〉 (see
[15]). We define the antilinear unitary involution J . Following Jones [16], we define the map
J : H → H, that we need for proving some properties of the von Neumann dimension.

Definition 5.5. We define the map J : H → H as the extension of the antilinear isometry

J : H → H, J(xΩ) = x∗Ω

for all x ∈M .

The map J is an isometry, since it holds for x, y ∈M

〈J(xΩ), J(yΩ)〉 = tr(yx∗) = tr(x∗y) = 〈y, x〉

and Ω ∈ H is cyclic and separating. We now can describe the commutant of M with the help
of the map J (see [16]).

Proposition 5.6. Let M be a von Neumann algebra acting on H. We have

JMJ = M ′

Proof. We first show JMJ ⊂M ′. First observe for every x ∈M and a ∈M ′ we have

JxJ(aΩ) = J(xa∗Ω) = ax∗Ω = aJ(xΩ) = aJxJΩ.

Since the map a 7→ aΩ is injective as Ω is separating we get JxJ commutes with a.
Secondly, we are going to prove JxΩ = x∗Ω for all x ∈M ′. Let y ∈M .

〈JxΩ, yΩ〉 = 〈JyΩ, JJxΩ〉 = 〈JyΩ, xΩ〉 = 〈y∗Ω, xΩ〉 = 〈Ω, yxΩ〉 = 〈Ω, xyΩ〉 = 〈x∗Ω, yΩ〉.

Thus, since MΩ is dense it follows JxΩ = x∗Ω.
Thirdly, we prove that x 7→ 〈xΩ,Ω〉 is a trace on M ′. Let x, y ∈M ′.

〈xyΩ,Ω〉 = 〈yΩ, x∗Ω〉 = 〈yΩ, JxΩ〉 = 〈xΩ, JyΩ〉 = 〈xΩ, y∗Ω〉 = 〈yxΩ,Ω〉
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Thus, this map defines a trace with separating vector Ω. We get with our first assertion
JM ′J ⊂M . All in all, we have

M ′ = JJM ′JJ ⊂ JMJ ⊂M ′

Thus, JMJ = M .

We can now show a bunch of properties of the von Neumann dimension, which we will use
in the next chapters. At first, we discuss the ones that we can prove with our definition of
the von Neumann dimension. With these properties, we see that the two definitions of von
Neumann dimension coincide and prove some properties with the Murray and von Neumann
definition. We will need all the properties in the next or last chapter in one form or the other.
Some elementary properties of the von Neumann dimension that Jones [15] describes are the
following.

Proposition 5.7. Let M be a II1 factor and H be a M -module. Then

(i) dimM (H) <∞ if and only if M ′ is a II1 factor.

(ii) dimM (H) = dimM (K), if and only if the actions of M on H and M on K are unitarily
equivalent.

(iii) dimM (H) = 0⇐⇒ H = {0}

(iv) For a projection p ∈M we have dimM (L2(M)p) = trM (p).

(v) For a projection p ∈M we have dimpMp(pH) = trM (p)−1 dimM (H) if trM (p) 6= 0.

(vi) dimM

(⊕
i∈NHi

)
=
∑

i∈N dimM (Hi)

Let in the following be M ′ a II2 factor.

(vii) (dimM H)(dimM ′ H) = 1.

(viii) There exists a cyclic ξ ∈ H if dimM H ≤ 1.

(ix) There exists a separating vector if dimM (H) ≥ 1.

Proof.

(i) =⇒: Let dimM (H) < ∞. Let u be as in Theorem 5.2, then uu∗ ∈ M ′ on
⊕∞

n=1 L
2(M).

M on H is unitarily equivalent to the M on uu∗
⊕∞

n=1 L
2(M). The commutant M ′ on

uu∗
⊕∞

n=1 L
2(M) is given by the commutant uu∗M̂ ′ with M̂ ′ being the commutant on⊕∞

n=1 L
2(M).

⇐=: Let M ′ be a II1 factor. Since uu∗ is an element of M ′, then trL2(uu∗) < ∞, since
M ′ is a finite subalgebra of the commutant of

⊕∞
n=1.

(ii) =⇒: Let dimM (H) = dimM (K). Then trL2(uu∗) = trL2(vv∗) with u and v being the
unitaries as in Theorem 5.2 for H and K respectively. Thus, uu∗

⊕∞
n=1 L

2(M) and
vv∗

⊕∞
n=1 L

2(M) are unitarily equivalent, with this follows the assertion.
⇐=: Let be the action of M on H and K unitarily equivalent. Then there is a unitary u
with u : H → K as in Definition 4.24. Let v be as in Theorem 5.2 for M and K. Then uv
is a unitary as in Theorem 5.2 for M and H. We have finally

dimM (H) = trL2(uv(uv)∗) = trL2((uv)∗uv) = trL2(v∗u∗uv) = trL2(v∗v) = dimM (K)

(iii) This follows immediately from (ii).
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(iv) Define u(v) = v⊕
⊕

n∈N 0. Then u is a unitary and uu∗ = JqJ⊕
⊕

n∈N 0. Thus tr2
L(uu∗) =

tr(q).

(v) We will first prove the assertion for H = L2(M)q with q ≤ p. The map L2(pMp) →
pL2(M)p, pxpΩ 7→ p(xΩ)p defines a unitary. Thus the action of pMp on pL2(M)pq =
pL2(M)q is unitarily equivalent to the action of pMp on L2(pMp)q. With (ii) and (iv) we
have

dimpMp(pL
2(M)q) = dimpMp(L

2(pMp)q) = trpMp(q)

= trM (p)−1trM (q) = trM (p)−1 dimM (L2(M)q)

For arbitrary H, M on H is unitarily equivalent to M on q
(⊕

n ∈ NL2(M)
)

with q being
some projection (q is i.e. uu∗ with the unitary u from Theorem 5.2). One can write q as
an orthogonal sum of projections qi with qi ≤ p. Then with the case H = L2(M)q follows
the assertion.

(vi) Choose a M -linear isometry ui for allHi like in Theorem 5.2 in such a way that uiHi⊥ujHj
for all i 6= j. Define the M -linear isometry

u =
∑
i∈N

ui.

Now u is a M -linear isometry from
⊕

i∈NHi →
⊕∞

n=1 L
2(M). With the definition of von

Neumann dimension follows

dimM

(⊕
i∈N
Hi

)
= trL2(uu∗) = trL2

(∑
i∈N

uiu
∗
i

)
=
∑
i∈N

trL2(uiu
∗
i ) =

∑
i∈N

dimM (Hi)

(vii) On L2(M) is dimM (H) dimM ′(H) = 1. If H is of the form L2(M)p, then by (iv) and (v)
we get

dimpMp(L
2(M)p) dimM ′p(L

2(M)p) = trM (p) dimM (L2(M))trM (p)−1 dimM (L2(M)) = 1

For K =
⊕k

n=1H follows with (iv)

dimM⊗1(K) = k dimM (H)

and with (v)

dim(M⊗1)′(K) = k−1 dimM ′(H)

With H of the form L2(M)p follows the assertion. We can express every K in this form
since uu∗ with u from the Theorem 5.2 is a projection in the type II1 M

′. Further, by
picking a projection q with the same element p on the diagonal with trM ′(uu

∗) = trM ′(q)
we get, that uu∗ and q are unitarily equivalent, hence K is of the desired form.

(viii) Let dimM (H) ≤ 1 , then the action of M on H is equivalent to the action of M on L2(M)p
for some projection p. Since L2(M) is the GNS construction of M there is a cyclic vector.

(ix) Let dimM (H) ≥ 1, then dimM ′(H) ≤ 1 by part (vii), thus there is a cyclic vector ξ for M ′

by (viii). But ξ is then a separating vector for M by Lemma 4.27.

We will now prove that our definition of von Neumann dimension and that of Murray and
von Neumann coincide. This is not a well documented fact because the definition of Murray
and von Neumann is rarely used anymore. The literature where this definition is mentioned
(see [15],[19]) lack this proof. After completing this task, we can prove that (viii) and (ix) in
the proposition above are equivalences.
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Lemma 5.8. Let M be a type II1 factor, H a M -module and ξ ∈ H. If the commutant M ′ is
a type II1 factor, then we have

dimM (H) =
trM (q)

trM ′(p)

with p and q being the projections onto Mξ and M ′ξ respectively.

Proof. First observe that by Theorem 4.26 the projections p and q are elements of M and M ′

respectively. We prove the assertion first for the case H = L2(M)q for a projection q ∈ M .
Then dimM (H) ≤ 1, and there is a cyclic vector ξ ∈ H by Proposition 5.7. Since ξ is cyclic, the
projection p onto Mξ = H is id. With that follows

trM (q)

trM ′(p)
= trM (q) = dimM (L2(M)q) = dimM (H).

Before we proceed, we have to prove that the Murray and von Neumann definition is additive
for direct sums. Let H be an arbitrary M -module and s be a projection in M . Define ξ =
(0, µ) ∈ H ⊕ L2(M)q and µ be cyclic vector for L2(M)s. Then p is the projection onto Mξ =
{0} ×Mµ = {0} × L2(M)q and q is the projection onto M ′ξ = {0} ×M ′µ. Let now be H
be an arbitrary M -module and q a projection in M . Then M on H is equivalent to M on⊕k

j=1 L
2(M)q for some projection q ∈ M and k ∈ N. This fact follows in the same way as in

the proof of Proposition 5.7 (vii) and k <∞ since M ′ is a type II1 factor and with Proposition
5.7 (ii). Then M on

⊕k
j=1 L

2(M)q acts diagonally, this means M has the from
u 0 0 . . . 0
0 u 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 u 0
0 0 . . . 0 u


for u ∈M . Thus the commutant M ′ for M on

⊕k
j=1 L

2(M)p isx1,1 x1,2 . . . x1,k
...

...
. . .

...
xk,1 xk,1 . . . xk,k


for xi,j in M ′ on L2(M)q. Now define ξ = (ξ1, 0, . . . , 0) ∈

⊕k
j=1 L

2(M)q with ξ1 ∈ L2(M)q
cyclic. If we look at M ′ξ we getx1,1 x1,2 . . . x1,k

...
...

. . .
...

xk,1 xk,1 . . . xk,k


ξ1

...
0

 =

x1,1ξ1
...

xk,1ξ1


Thus M ′ξ =

⊕k
j=1M

′ξ1. Let s be the projection onto M ′ξ, then s is in M and has trace
trM (s) = trM (q). If we now look at Mξ we get

u 0 0 . . . 0
0 u 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 u 0
0 0 . . . 0 u




ξ1

0
...
0
0

 =


uξ1

0
...
0
0


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Thus Mξ = Mξ1 ⊕
⊕k−1

j=1{0}. So we get the projection onto Mξ

p =


1 0 . . . 0
0 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0


For the trace of p it follows trM (p) = 1

k . All in all we get

trM (s)

trM (p)
=
trM (q)

1
k

= k trM (q)

The assertion follows now from Proposition 5.7.

We can now show the equivalence of (viii) and (iv) of Proposition 5.7 with the help of
the von Neumann dimension definition of Murray and von Neumann. This will be especially
important in the last chapter, when we show the existence of a wandering and tracelike vector.

Lemma 5.9. For a M -module H with M ′ being a type II1 factor, then

(i) there is a cyclic vector for M if and only if dimM H ≤ 1,

(ii) there is a separating vector if and only if dimM H ≥ 1.

Proof.

(i) Let ξ be a cyclic vector, then Mξ = H. If we use the Murray and von Neumann definition
of von Neumann dimension, then the projection p must be equal to id and trM ′(p) = 1.
Since trM (q) ≤ 1, it follows

dimM (H) =
trM (q)

trM ′(p)
≤ 1

The other implication was proven in Proposition 5.7 (viii).

(ii) Let ξ be a separating vector, then ξ is a cyclic vector for M ′. Thus dimM ′(H) ≤ 1, by (i).
With (vii) of Proposition 5.7 we then have dimM (H) ≥ 1.

For the next proposition, we need the definition of Murray and von Neumann again. It will
help us construct a wandering subspace in the next chapter. We need this wandering subspace
to show that there is a function vanishing if and only if the von Neumann dimension of the
Bergman space is greater than one. Following Jones [19], we show the following proposition.

Proposition 5.10. Let M be a type II1 factor with M ′ be a type II1 factor. If p is a projection
in M with pξ = ξ, then dimM (Mξ) ≤ trM (p).

Proof. We are going to use the Murray and von Neumann definition of von Neumann dimension.
W.l.o.g: Mξ = H (we can restrict the action of M on H to of Mξ).
Now let H = Mξ. This yields

M ′ξ = M ′pξ = pM ′ξ ⊂ pH.

Thus, trM (q) ≤ trM (p). And therefore

dimM (Mξ) =
trM (q)

trM ′(1)
= trM (q) ≤ trM (p)
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The next remark does not fit into our main goal. Nevertheless, it is an important question
concerning subfactors, Fuchsian groups and von Neumann dimension. It fits nicely to the topic
of the last three chapters. Therefore, we look at a short overview of this question that include
the so called Hecke group. These Hecke groups are special Fuchsian groups.

Remark 5.11. Another question arising from the theory of von Neumann dimension is the
dimension of subfactors. If we take a subfactor N of a type II1 factor M , then L2(M) is an
N -module by left multiplication. One defines the index [M : N ] = dimN (L2(M)). Jones [17]
showed that the index can only attain the values

{
4 cos2

(
π
4

)
;n = 3, 4, . . .

}
∪[4,∞]. These values

are the squares of the Hecke group generators (see [12]). The Hecke groups are Fuchsian groups
generated by (

0 −1
1 0

)
and

(
1 λ
0 1

)
for λ ∈ R. Only for λ ∈

{
2 cos

(
π
4

)
;n = 3, 4, . . .

}
∪ [2,∞) the generated group is discrete, thus

a Fuchsian group. This is remarkable, but the connection between the two is unknown to this
day.

Jones [19] describes another way to calculate the von Neumann dimension. This will be
helpful, when calculating the von Neumann dimension of the weighted Bergman spaces. It will
close the gap between this and the previous chapters. We introduce some new concepts and
some necessary results.

Lemma 5.12. Let Γ be a discrete icc group and γ 7→ vγ a projective unitary group representation
on H. If there is a projection q on H such that

vγqv
−1
γ ⊥q∀γ ∈ Γ, γ 6= 1 and

∑
γ∈Γ

vγqv
−1
γ = id

then there is a unitary u : H → `2(Γ)⊗ qH with uvγu
−1 = λωγ ⊗ id for all γ ∈ Γ.

Proof. Let {en|n ∈ N} be an orthonormal basis of qH. Then {vγen|γ ∈ Γ, n ∈ N} is an
orthonormal basis for H. Obviously the vγen has unit norm. For all γ, µ ∈ Γ with γ 6= µ and
all n,m ∈ N follows

〈vγen, vµem〉 = 〈vµ−1γen, em〉 = 〈vµ−1γqv
−1
µ−1γ

(vµ−1γen), em〉 = 0.

For m 6= n vγen and vγem are orthogonal since vγ is an unitary. And vγen form a basis, because
for all x ∈ H is

x =
∑
γ∈Γ

vγqv
−1
γ x.

As en is a orthonormal basis for qH there are αγ,n with qv−1
γ x =

∑
n∈N αγ,nen. Combining

yields

x =
∑
γ∈Γ

vγ

(∑
n∈N

αγ,nen

)
=
∑
γ∈Γ

∑
n∈N

αγ,nvγen.

Now set u(vγen) = δγ ⊗ en with δγ being the characteristic function of {γ}.

There is also another definition of trace, in the concept of positive operators on some Hilbert
space and not as trace in a von Neumann algebra. We will use a different notation for those
two concepts. In the next theorems, we use it to obtain a way to calculate the von Neumann
dimension. Calculating the von Neumann dimension with our definition or with the definition
of Murray and von Neumann is difficult, because finding an isometry u like in Theorem 5.2 or
determining the trace of the projections is difficult.
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Definition 5.13. For a Hilbert space H with orthonormal basis (en)n∈N and a positive operator
x ∈ B(H), the trace of x is defined as

TrB(H)(x) =
∑
n∈N
〈xen, en〉.

The definition above is independent from the choice of the orthonormal basis. The trace vec-
tor will play a major role in the next chapter and especially in the last chapter. We need it also,
to calculate the von Neumann dimension of the weighted Bergman spaces. More information
on trace vectors can be found in [19].

Definition 5.14. Let M be a von Neumann algebra on H. A vector µ ∈ H is called a trace
vector for M , if there is some α ∈ C with

〈xµ, µ〉 = αtr(x)for all x ∈M.

The concept of trace vectors will come up at different points later on and can describe the
von Neumann algebra completely. It will also give us a link between the von Neumann algebra
and its commutant in certain circumstances. Another common way of defining a trace vector
is the following: If 〈abµ, µ〉 = 〈baµ, µ〉 for all a, b ∈M , then µ is a trace vector (see for example
[19], but there are both definitions stated). These two definitions are the same. Before we can
move on we have to define the tensor product of two type II1 factors (for more details see [3]).

Definition 5.15. Let M and N be type II1 factors and H and K be M -modules and N -modules
respectivly. The tensor product M ⊗N acts on the algebraic tensor product H⊗K as follows

(x⊗ y)(ξ ⊗ µ) = (xξ)⊗ (yµ)

Jones [19] combined Lemma 5.12 and the notion of trace vectors to calculate the von Neu-
mann dimension.

Theorem 5.16. Let γ, v, q and u as in Lemma 5.12. If p is a projection on H commuting with
vγ for all γ, then the action of Γ on H makes it into a vNω(Γ)-module. Then one has

dimvNω(Γ)H = TrB(H)(pqp) = TrB(H)(qpq)

Proof. The commutant of vNω(Γ) on `2(Γ)⊗ qH is M ′ := vNω(Γ)′ ⊗B(qH). Note that εid is a
trace vector for vNω(Γ)′. For some positive x ∈M ′ follows

TrM ′(x) =
∑
n∈N
〈x(δid ⊗ en), δid ⊗ en〉 = TrB(`2(Γ)⊗qH)(exe)

with e being the orthogonal projection onto δid ⊗ qH. Up maps H to `2(Γ)⊗ qH isometrically
and is vNω(Γ)-linear Thus,

dimvNω(Γ) pH = TrB(`2(Γ)⊗pH)(eUpU
∗e) = TrB(`2(Γ)⊗pH)(U

∗eUpU∗eU) = TrB(`2(Γ)⊗pH)(qpq).

With the theorem above, we now can finally determine the von Neumann dimension of
the Bergman spaces. With respect to a Fuchsian group Jones [19] uses the projection onto a
fundamental domain and the identity. By the use of the unitary (projective) representation π̂s
we can identify the weighted Bergman spaces as vNω(Γ) modules for a Fuchsian group Γ. The
2-cocycle is defined by the branch of logarithm used in Theorem 3.12.

Theorem 5.17. The von Neumann dimension of A2
s−2 is

dimvNω(Γ)(A
2
s−2) =

s− 1

4π
covolume(Γ).
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Proof. We want to use Theorem 5.16. Let F be the fundamental domain of Γ in the unit disk.
Set q as the restriction of functions to the fundamental domain and p as the identity, then we
have

π(γ)qπ(γ)−1⊥q ∀γ ∈ Γ \ {e}
∑
γ∈Γ

π(γ)qπ(γ)−1 = id.

Obviously, p commutes with every π(γ).
Thus, the assumptions of Theorem 5.16 are fulfilled, we can continue with

TrB(H)(pqp) =
∑
n∈N
〈pqpen, en〉 =

∑
n∈N
〈qen, en〉 =

∑
n∈N

∫
F
|en(z)|2 4(1− |z|2)s−2dxdy

with (en)n being the orthonormal basis ofA2
s−2 from Lemma 2.7. We can interchange summation

and integration, since everything is positive.

TrB(H)(pqp) =

∫
F

∑
n∈N
|en(z)|2 4(1− |z|2)s−2dxdy

=

∫
F

∑
n∈N

s− 1

4π

s(s+ 1) . . . (s+ n− 1)

n!
|z|2n 4(1− |z|2)s−2dxdy

=
s− 1

4π

∫
F

∑
n∈N

s(s+ 1) . . . (s+ n− 1)

n!
|z|2n 4(1− |z|2)s−2dxdy

We have
∑

n∈N
s(s+1)...(s+n−1)

n! |z|2n = (1− |z|2)−s. So

TrB(H)(pqp) =
s− 1

4π

∫
F

4(1− |z|2)−2dxdy

=
s− 1

4π
covolume(Γ)

This result is essential in the next chapter, and gives us a criterion for the existence of a
function vanishing on the orbit of a Fuchsian group.
In the next example we explicitly calculate the von Neumann dimension of the weighted
Bergman spaces with the Fuchsian group PSL(2,Z). We need this result in Chapter 7, when
we construct a Bergman space function vanishing on the orbit of PSL(2,Z). The calculation
is straight forward, and we just calculate the covolume of PSL(2,Z) by integrating over the
fundamental domain.

Example 5.18. For the Fuchsian group PSL(2,Z) the von Neumann dimension of A2
s−2 is

given by

dimvNω(PSL(2,Z))A
2
s−2 =

s− 1

4π

π

3
=
s− 1

12

(see Example 3.10).

At the end of this chapter, we discuss some remarks concerning the action of a Fuchsian
group on the Bergman space. It is fairly important, for the following chapters, but one can
follow the next chapters if one only knows that the action is a projective representation of
PSL(2,R).

Remark 5.19. For s ∈ R+ the map π̂s is a projective unitary representation of SL(2,R). If
s is not an integer we might have to use a 2-cocycle. For positive even integers s the map π̂s
defines a unitary representation of PSL(2,R) because π̂s(−id) = π̂s(id). (Recall π̂s(g)(f)(z) =

1
(cz+d)s f(g(z)) with g ∈ Γ, f ∈ A2

s−2(H) see Theorem 3.12) Otherwise, we only get a projective
representation, for this we have to use 2-cocycles. Notice that this 2-cocycles depends on the
chosen branch of logarithm. For more details, see [19].
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6 Bergman space function vanishing on orbit

In this chapter, we prove the main theorem. Firstly, we prove it for fix point free Fuchsian
groups. We will use most of the results from the previous sections. Furthermore, we look at
some more traditional approach to this question. We prove our many result in the most general
case.
This chapter is manly based on [19] for the proof of our main theorem. The more traditional
approach can be found in [13].

6.1 Fixpoint free setting

Before we can study conditions that imply the existence of a function f ∈ A2
s−2 that vanishes

on an orbit of a Fuchsian group, we have to first introduce some notions and some other results,
such as the concept of wandering vector which will pop up later on many times.

Definition 6.1. Let π be a representation of a group Γ on a Hilbert space H.

(i) A wandering vector ξ ∈ H \ {0} for π satisfies 〈π(γ)ξ, ξ〉 = 0 for all γ ∈ Γ \ {e}.

(ii) Similarly a wandering subspace V is orthogonal to its translates or more precisely

π(γ)V⊥V for all γ ∈ Γ \ {e}

Jones [15] links the concept of wandering vector and trace vector. This is a subtle detail in
the proof at the end of this section. It will also come into play a major role in the last chapter.

Theorem 6.2. Let π be a projective representation of a group Γ on a Hilbert space H. If ξ is
a wandering vector for π then ξ is a trace vector for the von Neumann algebra M generated by
π(Γ). In this case, M on Mξ is isomorphic to the group von Neumann algebra vNω(Γ) acting
on L2(vNω(Γ)) with ω being the 2-cocycle of the projective representation.

Proof. Let ξ be a wandering vector for π. Then the map M → C, x 7→ 1
‖ξ‖2 〈xξ, x〉 defines a

tracial state on M . This can be proven in the same way as in Example 4.9. Thus, by the
uniqueness of the trace ξ is a trace vector for M (see [3]).
With Proposition 5.7 follows M on Mξ and M on L2(M) are unitarily equivalent. Furthermore,
the actions of π(g) on L2(M) and λω(g) on L2(vNω(Γ)) are the same for all g ∈ Γ.

For the end of this section, we will essentially only work with orderable Fuchsian groups.
These will allow us to find a wandering subspace of sufficient size that we need to show that
there is no vanishing function if the Bergman space is not big enough.

Definition 6.3. We call a Fuchsian group Γ orderable, if there is a total order < with

g < h⇐⇒ kg < kh ∀k ∈ Γ

Example 6.4. Let π : PSL(2,Z)→ PSL(2,Z/2Z) be the canonical projection (we map every-
thing componentwise). Then the group Γ(2) = kerπ is a Fuchsian group (as a subgroup of a
Fuchsian group). It has index 6 in PSL(2Z) and has finite covolume (for more information see
[8, Ch. 2.3.2])

We are going to restrict us to orderable subgroups of Fuchsian group. A necessary result of
Hoare, Karrass, and Solitar [14] is the following proposition, which allows us to restrict ourselves
to orderable subgroups by stating the existence of them. We will not go into detail, but rather
build on the results of [14] because it is a rather algebraic consideration, which does not help
to understand the topic in more detail. It is also important that this orderable subgroup has
finite index, but more on that later in the proof of the main theorem.
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Proposition 6.5. Let Γ be a Fuchsian Group. Then there is a orderable subgroup Ψ with index
[Γ : Ψ] <∞.

Proof. By Hoare, Karrass, and Solitar [14] Γ has a surface group of finite index or Γ is a free
product of cyclic groups. Surface groups are bi-orderable, except for the Klein bottle group and
the projective plane group (see [7]). The later two being only left orderable, thus in this case Γ
has an orderable subgroup of finite index.
If Γ is a free product of cyclic groups, then Γ is free and by [7] it is left orderable.

The next ingredient for our result is the following proposition, which lets us remove a zero
at a specific point and does not touch the zeros at other points. This will be important in the
next lemma, which allows us to create a wandering subspace of sufficient size. This lemma can
be found in [19] but with a different proof.

Proposition 6.6. If f is a nonzero function in A2
s−2 with a zero of order k at w, then (z −

w)−jf(z) ∈ A2
s−2 for all 1 ≤ j ≤ k

Proof. Let ε > 0 with Dε(w) ⊂ H and 1 ≤ j ≤ k. Since f is holomorphic, the map (z−w)−jf(z)
is bounded on Dε(w) by some m > 0. In H \Dε(w) (z − w)−j is bounded by ε−j . Combining
everything, we have∫

H

∣∣(z − w)jf(z)
∣∣2 dxdy
y2−s =

∫
Dε(w)

∣∣(z − w)jf(z)
∣∣2 dxdy
y2−s +

∫
H\Dε(w)

∣∣(z − w)jf(z)
∣∣2 dxdy
y2−s

≤ m
∫
Dε(w)

dxdy

y2−s + ε−j
∫
H
|f(z)|2 dxdy

y2−s <∞

Thus, (z − w)−jf(z) ∈ A2
s−2.

Jones [19] constructed a wandering subspace with the help of a function that vanishes on
orbits of an orderable Fuchsian group. This is the central lemma for the sufficient condition for
our main theorem. The proof of the sufficient condition requires most of the work. The rest
will be a combination of the results from previous chapters.

Lemma 6.7. Let Γ be an orderable Fuchsian group and O1, . . . , On be disjoint orbits of Γ. If
there is a function f ∈ A2

s−2 \ {0} with a zero of order at least ki on all points of Oi then there
is a wandering subspace W of dimension

∑n
i=1 ki for the representation πs and πs(γ)(f) ∈W⊥

for all γ ∈ Γ.

Proof. Fix zi ∈ Oi for every 1 ≤ i ≤ n. Define the subspaces

U = {ξ|ξ(j)(γ(zi)) = 0 for γ ≤ e for all i and 0 ≤ j < ki}
V = {ξ|ξ(j)(γ(zi)) = 0 for γ < e for all i and 0 ≤ j < ki}

We obviously have U ⊂ V . To show V 6= U , let ξ ∈ U . We will use Proposition 6.6 to remove
the zero at zi. If ξ has a zero of order k in zi, then (z − zi)−kξ(z) has no zero at zi, but it is
still in V . Thus, (z − zi)−kξ(z) ∈ V and (z − zi)−kξ(z) /∈ U .
We are going to show now that W := U⊥ ∩ V is the wandering subspace. Let ξ ∈ W , then for
some g < e and h ≤ e we have

gh ≤ ge = g < e

With that follows

πs(g
−1)ξ(h(zi)) =

1

(cz + d)s
ξ(gh(zi)) = 0

for all i. Thus πs(g
−1)ξ ∈ U and

〈πs(g−1)ξ, µ〉 = 0
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for all µ ∈W , which means W is wandering. πs(g)(f) ∈W⊥ follows from πs(g)(f) ∈ U .
We only need to show that W has dimension

∑n
i=1 ki. W.lo.g.: the order of zeros at zi of f is

ki (if this is not the case use Proposition 6.6 to lower the number of zeros)
The functions

f

(z − zi)j

for i = 1, . . . , n and j = 1, . . . , ki are in V by Proposition 6.6. Let ai,j ∈ C such that∑
i,j

ai,j
f

(z − zi)j
= g ∈ U

This means that the function g
f is holomorphic in each zi, thus all the ai,j are zero. Thus the

f
(z−zi)j are linearly independent in V/U . Since V/U 'W , W has at least dimension

∑n
i=1 ki.

With the lemma from above, Jones [19] states necessary and sufficient conditions for the
existence of a Bergman space function vanishing on the orbit. This is a rather short proof for
this result because most of the work has been outsourced to the previous chapters or the results
from immediately above. We only need to combine all the results from earlier.

Theorem 6.8. Let Γ be a fixed point free Fuchsian group. There is a function f ∈ A2
α \ {0}

with f(Γ(z)) ≡ 0, if and only if

α >
4π

covolume(Γ)
− 1.

Proof. =⇒: Let α > 4π
covolume(Γ) − 1, then by Proposition 5.7 dimvNω(Γ) vNω(Γ)εz ≤ 1 with εz

being the reproducing kernel for z. Thus there is some non zero f ∈ A2
α orthogonal to vNω(Γ)εz

(This follows from Proposition 5.17). This means f is orthogonal to πs(γ)εz for all γ.

f(γ(z)) = 〈f, εγ(z)〉 = 〈f, πs(γ)εz〉 = 0

So f vanishes on Γ(z).
⇐=: There is a orderable subgroup Ψ of Γ with index n <∞ by Proposition 6.5.
Suppose there is a function f ∈ A2

s−2 with s ≤ 1 + 4π
covolume(Γ) vanishes on the Γ-orbit of z

Γ(z) is made up of n disjoint Ψ-orbits since Γ is supposed to be fixed point free. With Lemma 6.7
we get a n-dimensional wandering subspace W . Let (ξi)

n
i=1 be a orthonormal basis of W . Then

all the ξi are trace vectors for the II1 factor vNω(Ψ). Moreover the vNω(Ψ)-modules vNω(Ψ)ξi
are orthogonal to each other and have von Neumann dimension one. That these vNω(Ψ)ξi have
von Neumann dimension one is clear, since all the ξi are wandering. The orthogonality follows
from

〈xξi, yξj〉 = 〈y∗xξi, ξj〉 = 0

for x, y ∈ vNω(Ψ). With Proposition 5.7 follows

n ≤ dimvNω(Ψ)A
2
s−2 = n dimvNω(Γ)A

2
s−2

Thus dimvNω(Γ)A
2
s−2 ≥ 1. Also with Lemma 6.7 follows that f is orthogonal to vNω(W ) and

dimvNω(Γ) vNω(W ) = 1. So there can not be such a function f .

The proof for the general main theorem will be very similar, except we have to account
for the stabilizer that is here empty. For the necessary condition, we only needed basic von
Neumann dimension theory and the reproducing kernel on the Bergman space. The other
implication was much more difficult to prove and needed all the results stated in this chapter
so far. Note also that we needed that the orderable subgroup has finite index, otherwise we
could not do the estimate that finished essentially the proof. We also needed Theorem 6.2 for
the properties of vNω(Ψ).
We get an immediate result concerning Fuchsian groups and the Blaschke condition (see [19]).
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Corollary 6.9. For every Fuchsian group Γ with finite covolume and z ∈ H∑
g∈Γ

(1− |g(z)|) diverges.

Proof. If the Blaschke condition is satisfied, there is a Hardy space function f ∈ H2 vanishing
on the orbit of z. Since the Hardy space H2 is contained in every Bergman space we have
f ∈ A2

α for all α > −1. This is not possible, since there has to be some α0 > −1 with f ∈ B2
α

for all α > α0.

Thus, there is no Hardy space function that vanishes on an orbit of a Fuchsian group.
Tsuji [31] describes this topic more in depth and in a more traditional way.
This is an unusual way to get a necessary and sufficient condition for the existence of a vanishing
function in A2

s−2. Usually one looks at so-called densities D+(S) for some S ⊆ H.

6.2 Asymptotic density

In this section, we look into a more classical approach. The idea behind these so-called densities
is that the change the Blaschke condition in such a way that it is true for the weighted Bergman
spaces. We have to use more sophisticated methods to get our desired condition.
Furthermore, we will give a result for these densities that have only been proven by the results
in the previous section.
Before we can define the asymptotic density, we have to think about the unit circle. An arc
is the path of a continuous function γ : [0, 1] → C. Thus an arc in the unit circle is just a
connected closed subset. For a countable subset F , there are arcs (In)n∈N with T = F ∪

⋃
n∈N In.

Following Hedenmalm, Korenblum, and Zhu [13] we define the Beurling-Carleson characteristic
for a countable subset F of T.

Definition 6.10. Let F ( T be a countable subset. Then there are arcs (In)n∈N with T \ F =⋃
n∈N In. We define the Beurling-Carleson characteristic of F by

κ(F ) =
∑
n

|In| log
e

|In|

Another important concept are Stolz angles, these are often used to study limits from
the inside of D to a point on the boundary. These are also often used in the theory of
Hardy and Dirichlet spaces, so it is natural to consider them for Bergman space theory.

Figure 2: Stolz angle at 1

Definition 6.11. (i) The Stolz angle at x ∈ T with aperture
α > 0 is defined by

sx =

{
z ∈ D;

|z − x|
1− |z|

< 1 + α

}
(ii) For a finite F ⊂ T the Stolz star domain is

sF =
⋃
x∈F

sx

Figure 2 shows the Stolz angle at 1 with aperture π
2 . In the

following, we are only going to use Stolz angles with aperture π
2 .

The partial Blaschke sum of a sequence A = (an)n∈N in D and
some subset E of D is

Σ(A,E) =
1

2

∑
n∈N;an∈E

1− |an|2
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The square in Σ(A,E) changes nothing with respect to the Blaschke sum from above, since
|an| < 1 and we have

(1− |an|) ≤ (1− |an|2) = (1− |an|)(1 + |an|) ≤ 2(1− |an|).

Korenblum [20] and Seip [28],[29] stated a similar result using densities. But before we can
state the result, we have to generalize and adjust the Blaschke sum.

Definition 6.12. Let A = (an)n∈N be a sequence in D.

(i) The κ-density of A with respect to F is

D(A, sF ) =
Σ(A, sF )

κ(F )

(ii) The upper asymptotic κ-density D+(A) is defined by

D+(A) = lim sup
κ(F )→∞

D(A, sF )

In [13] one can find the following theorem with a proof. It is in a sense similar to our main
result, but is not restricted to Fuchsian groups. But it is much more difficult to calculate the
upper asymptotic κ-density for general subsets of D. We will see in a moment that we can
calculate the asymptotic κ-density for the orbit of a Fuchsian group with the help of the next
theorem.

Theorem 6.13. Let S ⊂ D. The condition

D+(S) ≤ 1 + α

p

is necessary and

D+(S) <
1 + α

p

is sufficient for S to be an Apα zero.

We will skip the proof of the theorem above because it is quite elaborate and uses more
classical approaches. Also notice that we are only working with p = 2. We can now get the
κ-density for the orbit of a fix point free Fuchsian group. We just use the theorem above the
other way round as one would normally do.

Corollary 6.14. If Γ and z are as in Theorem 6.8 then

D+(Γ(z)) =
2π

covolume(Γ)

Proof. With Theorem 6.13 and Theorem 6.8 we get

D+(Γ(z)) =
1 + α

2
=
s− 1

2
=

2π

covolume(Γ)
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6.3 Addressing Fixpoints

In the first part of this chapter, we assumed that Γ has no fixed points in the orbit. We will now
generalize the ideas from above to Fuchsian groups that have fixed points. The idea behind is,
we just factor out the stabilizer group. When we do that, we have a fix point free group and
can continue like we did before. At the end, we have to factor in the stabilizer.
Jones [19] proved the following proposition, which is a generalization of Theorem 6.8.

Theorem 6.15. Let Γ be a Fuchsian group and let O1, . . . , On be disjoint orbits in D of Γ. The
condition

s > 1 +
4π

covolume(Γ)

n∑
i=1

ki
|stabi|

,

with stabi being the stabilizers of Oi, is a necessary and sufficient condition for the existence of
a function f ∈ A2

s−2 \ {0} with zero of order at least ki on Oi.

Proof.
⇐=: Let Ψ be an orderable subgroup of Γ as in the proof of Theorem 6.8. First observe that
the action of Γ and Γ/stabi create the same orbits. There are [Γ:Ψ]

|stabi| disjoint orbits of Ψ in Oi.

There are ki
[Γ:Ψ]
|stabi| Ψ-orthogonal trace vectors by Lemma 6.7. Therefore

dimvNω(Ψ)(A
2
s−2) =

s− 2

4π
covolume(Γ)[Γ : Ψ] ≥ [Γ : Ψ]

n∑
i=1

vi
|stabi|

Like in the proof of Theorem 6.8 f itself is orthogonal to the vNω(Ψ)-linear span. With that
follows the assertion.
=⇒: Let zi ∈ Oi for 1 ≤ i ≤ n and εji ∈ A2

s−2 with

〈f, εji 〉 = f (j)(zi)

Let gi be a generator for stabi. Set the 2-cocycle ω in such a way that πs(gi)
|stabi| = 1. We also

have that πs(gi)ε
j
i is multiple of εji . Thus εji is in the eigenspace of πs(gi). Let p ∈ vNω(Γ) be

the projection onto the image of πs(gi), then p has trace 1
|stabi| . With Proposition 5.7 follows

dimvNω(Γ)(vNω(Γ)εji ) ≤ trvNω(Γ)(p) =
1

|stabi|

Again by Proposition 5.7 follows∑
i,j

dimvNω(Γ)(vNω(Γ)εji ) ≤
∑
i

ki
|stabi|

≤ dimvNω(Γ)(A
2
s−2)

Thus there is a ξ ∈ A2
s−2 orthogonal to vNω(Γ)εji for all i, j. Therefore ξ is the desired function.

We get a similar result to Theorem 6.8, this is only a more general proposition because, if
Γ is fix point free, the stabilizer is only the neutral element. Thus, we get Theorem 6.8. Also,
the corollaries drawn from Theorem 6.8 holds true in a similar manner.

Corollary 6.16. If Γ and z are as in Theorem 6.15, then we have

D+(Γ(z)) =
2π

|stabz| covolume(Γ)

Proof. This follows in the same way as Corollary 6.14.
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7 Cusp forms

In this chapter, we briefly introduce modular forms and cusp forms. We go then straight to
some examples of cusp forms, which we need for the considerations at the end of this chapter.
In the second half, we consider the multiplication operator of a cusp form on the weighted
Bergman spaces. These operators map a weighted Bergman space to another and is compatible
with the action of the modular group. With these operators, we have finally a tool to explicitly
construct a function vanishing on an orbit of PSL(2,Z). Zagier [32] describes the general theory
of modular forms and cusp forms. The second half of this chapter is mostly based on [19].

7.1 Basics on Cusp forms

Cusp forms are a special kind of modular form. Therefore, we first have to define what it means
to be a modular form. Modular forms are in a sense invariant holomorphic functions with
respect to the action of PSL(2,Z). Notice also that PSL(2,Z) is a Fuchsian group because it
is a discrete subgroup with finite covolume. Following Jones [19], we define modular forms.

Definition 7.1. A holomorphic function f : H → C satisfying f(g(z)) = (cz + d)pf(z) for all
g ∈ PSL(2,Z) is called a modular from of weight p.

We will use cusp forms to get a function vanishing on the orbit for certain values of s. But
first we have to look at some properties of cusp forms. The next lemma is well-known and the
key to the definition of cusp forms. It is i.e., the Fourier transformation. For more details see
[21].

Lemma 7.2. Every modular form f can be expressed as

f(z) =
∞∑
n=0

anq
n

with q = e2πiz. The series above converges locally uniformly on H.

Proof. Let f be a modular form, then we have

f(z + 1) = f(g(z)) = f(z)

with

g =

(
1 1
0 1

)
.

There is a holomorphic function h : D \ {0} → C with f(z) = h(e2πiz). We let h(z) = f
(

log(z)
2πi

)
for some branch of logarithm depending on z. But h is independent from the chosen branch of
logarithm, since let log′ be another branch of logarithm, then there is a k ∈ N with log′(z) =
log(z) + 2πik. With the equation above we get inductively

f

(
log′(z)

2πi

)
= f

(
log(z) + 2πik

2πi

)
= f

(
log(z)

2πi
+ k

)
= f

(
log(z)

2πi

)
.

Thus, h is welldefined and holomorphic as a composition of holomorphic functions. Forming
the Laurent series of g yields

f(z) =
∞∑

n=−∞
anq

n
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In the following let q(z) = e2πiz. Following Jones [19], we define cusp forms. These differ
from regular modular forms in the sense, that their q-extension from the theorem above starts
by one instead of zero. We will use them to in a sense lift a Bergman space function to another
weight and spread its zero on the orbit of PSL(2,Z).

Definition 7.3. A modular form of weight p f with representation

f =
∞∑
n=1

anq
n

and |f(z)| Im(z)
p
2 bounded on H is called cusp from of weight p.

Cusp forms fulfil a certain boundness condition. It will be important for the boundness of
the multiplication operator defined in the next section. For more details, see [19].

Lemma 7.4. For a cusp form f of weight p there exists a constant c ∈ R with

|f(z)| ≤ c(Im(z))−
p
2

Proof. We have for every g ∈ PSL(2,Z)

|f(g(z))| Im(g(z))
p
2 = |cz + d|p |f(z)| Im(z)

p
2

|cz + d|p
= |f(z)| Im(z)

p
2 .

It is enough to look at a fundamental domain and not the whole plane, since we can translate
every point to the fundamental domain. Since |f(z)| Im(z) is bounded by definition, we have
proven the assertion.

We will have a look at some well-known examples of cusp forms. All the following examples
will be used in the next section. The j-invariant is only a modular form of weight 0, but the
product of a modular form and a cusp form is a cusp form. One can find that these are cusp
forms or modular forms in [32].

Example 7.5.

(i) The Eisenstein series

Gk(w) =
∑

(m,n)∈Z2\{(0,0)}

1

(m+ nw)2k

is a cusp from of weight 2k

(ii) The modular discriminant

∆(w) = q

∞∏
n=1

(1− qn)24

is a cusp form of weight 12.

(iii) The j-invariant

j(w) = 1728
g2(w)3

∆(w)

is a modular form of weight 0.
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7.2 Cusp forms and Bergman spaces

In this section, we define first the multiplication operatorMf for some cusp form f on L2(H, dxdy
y2−s )

and the compatibility with the action of PSL(2,Z) and holomorphic functions. We then can
restrict Mf to the Bergman space and choose f in such a way that we can construct a function
vanishing on an orbit of PSL(2,Z). In [19], one finds the following proposition.

Proposition 7.6. Let f be a cusp form of weight p. The multiplication operator

Mf : L2(H, ys−2dxdy)→ L2(H, ys+p−2dxdy), g 7→ fg

is bounded and satisfies

π̂s+p(γ
−1)(Mfξ) = Mf (π̂s(γ

−1)ξ)

Furthermore M∗f (ξ)(z) = Im(z)pf(z)ξ(z).

Proof. For g ∈ L2(H, ys−2dxdy) follows with Lemma 7.4

‖Mfg‖2 =

∫
H
|f(z)|2 |g(z)|2 ys+p−2dxdy ≤ c

∫
H
|g(z)|2 ys−2dxdy

The second statement follows with

π̂s+p(γ
−1)(Mfg)(z) =

1

(cz + d)s+p
f(γ(z))g(γ(z)) =

(cz + d)p

(cz + d)s+p
f(z)g(γ(z)) = Mf (π̂s(γ

−1g)(z)

Let h ∈ L2(H, ys−2dxdy)

〈Mfg, h〉 =

∫
H
f(z)g(z)h(z)y2+p−2dxdy =

∫
H
g(z)f(z)h(z) Im(z)pys−2dxdy

With the proposition above, we can define the operator Tf which is in essence the restriction
of Mf to the Bergman spaces. Following Jones [19], we define the operator Tf .

Definition 7.7. The operator Tf : A2
α → A2

α+p is given by

Tf = Mf

We construct in the following the cusp form in the multiplication operator that helps us
construct the desired Bergman space function at the end of this chapter. Now the functions
from Example 7.5 come into play. This function described in [19] helps us construct a function
vanishing on an orbit of PSL(2,Z).

Lemma 7.8. Let z0 ∈ H. Then the function

hr(z) = (j(z)− j(z0))∆η(z)r

(with η(z) = q
1
24
∏∞
n=1(1 − qn)) is a cusp form of weight 12 + r

2 and vanishes on the orbit of
PSL(2,Z) of z0.

Proof. The j-invariant is a modular form of weight zero. Thus, multiplying by ∆ turns it into
a cusp form of weight 12. As η(z)24 = ∆(z) it is clear that η(z)r is a cusp form of weight r

2 .

With the help of the function hr we can give an explicit function in A2
s−2 vanishing on an

orbit of PSL(2,Z) for s > 13 (see [19]).

Theorem 7.9. Let s > 13 and z0, hr as in Lemma 7.8. Choose t > 1 and r > 0 such that
s = 12 + t+ r

2 . Then Thrf ∈ A2
s−2 for f ∈ A2

t−2 vanishes on the orbit of PSL(2,Z) of z0
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Proof. The function hr vanishes on the orbit of z0 because

hr(g(z0)) = (cz + d)12+ r
2h(z0) = 0

Thus, the assertion follows from Lemma 7.8 and Proposition 7.6.

We now look at another application of cusp forms and von Neumann algebras. The under-
lying question is ”how big is the image of Tf?”. Jones [19] answered this question with the
following proposition.

Proposition 7.10. Let f be a cusp form. Then TfA
2
s−2 is an M -module with

dimM (TfA
2
s−2) = dimM (A2

s−2)

Proof. First, observe that multiplication by f is injective. For this, we see that f has only
countable many zeros. With this result, we get that if fg = fh for two functions g and h, then
g = h except on the zeros of f . But since g and h are holomorphic they have to be the same.
Thus, Tf is injective.
With the polar decomposition, we get a partial isometry U and a non-negative P with Tf = UP

and with kerU = kerP = kerTf = {0}. Furthermore, U has range TfA
2
s−2. Thus U is a unitary

from A2
s−2 to TfA

2
s−2. Now, the assertion follows from Proposition 5.7.

The following corollary is trivial, if f has a zero at z, then εz is clearly orthogonal to fA2
s−2.

But if f has no zeros, we do not have a constructive proof (see [19]).

Corollary 7.11. Let s > 1 and f be a cusp form of weight p. Then there is a ξ ∈ A2
s+p−2 with

ξ⊥fA2
s−2

Proof. This follows easily from Lemma 7.10 with

dimM (As+p−2) > dimM (TfA
2
s−2) = dimM (A2

s−2).
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8 Tracelike and trace vectors

We will first introduce the Poincaré series, which will later be central for the definition of a
tracelike vector. We use Toeplitz operators to get a dense subset in the commutant of vNω(Γ)
with respect to the norm

√
trM (x∗x). With this knowledge, we can prove that it is equivalent to

be a trace vector and tracelike for the commutant. At the end, we come to the result that there
is a wandering and tracelike vector if and only if dimM (A2

s−2) = 1. It is quite an astonishing
result because this vector is a link between M ′ and M , leading to the conclusion that these are
isomorphic. To this day, an explicit construction of a wandering and tracelike vectors remains
an open problem. We will prove, if dimM (A2

s−2) = 1, then there is a wandering and tracelike
vector a second time, but with the help of reproducing kernels and not with the argument using
von Neumann dimension. This chapter is manly based on [19] and [26].
Following Jones [19], we show the existence of the Poincaré series. It is a well-known result,
and we sum over all the translations a Bergman space function.

Proposition 8.1. For f ∈ A2
s−2 the Poincaré series

∑
g∈Γ

f(g(z))2

(cz+d)2s
converges locally uniformly

in H to a holomorphic function. Furthermore
∑

g∈Γ
|f(g(z))|2

|(cz+d)|2s converges locally uniformly in H
to a continuous function.

Proof. Let F ⊂ H be a fundamental domain of Γ and Dr(z) ⊂ F a ball in F . Set fg(z) =
(πs(g

−1)f)(z)2. Then

‖f‖22 =

∫
H
|f(z)|2 dxdy

ys−2
=
∑
g∈Γ

∫
F

∣∣(πs(g−1)f)(z)
∣∣ dxdy
ys−2

=
∑
g∈Γ

∫
F
|fg(z)|

dxdy

ys−2
.

With the holomophy of fg follows with the mean value property similar as in Lemma 2.5

|fg(z)| ≤ c
∫
F
|fg(z)|

dxdy

ys−2
for all g ∈ Γ, z ∈ K

for some c > 0. Combing these two results and applying the Weierstraß M-test yields the
uniform convergence on K of the two stated functions. By varying the fundamental domain
(run over gF for all g ∈ Γ) we get the locally uniform convergence for both functions.

We can now define the notion of tracelike and will link it to trace vectors of the commutant
of vNω(Γ). Note also that Im(z)−sdxdy is the measure for A2

s−2. This will later come in handy
and is not a coincidence.

Definition 8.2. We call a function f ∈ A2
s−2 tracelike, if there exists a c > 0 such that

∑
g∈Γ

|f(g(z))|2

|cz + d|2s
= c Im(z)−s

for all z ∈ H.

We are going to look at the commutant of vNω(Γ). Denote M := vNω(Γ). The next
definition is similar to Definition 7.7, but now we do not restrict ourselves to cusp forms.

Definition 8.3. Let f be a L∞ function on H that is invariant with respect to the action of
a Fuchsian group Γ and P be the projection from L2(H) onto A2

s−2. We define the Toeplitz
operator Tf by

Tf = PMf : A2
s−2 → A2

s−2

for a L∞ function f .
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Rădulescu [27] showed in Chapter 3 that we can calculate the trace of a Toeplitz operator
with a very nice formula. We will not prove this theorem because it is quite elaborate and needs
much more theory of Toeplitz operators and is not helpful for the comprehension of our goal in
this chapter.

Theorem 8.4. For a Fuchsian group Γ with fundamental domain F and f ∈ L∞(H) there is
a constant c with

trM (Tf ) = c

∫
F
f(z)

dxdy

y2
.

Radulescu [26] proved the following theorem that is the second ingredient for our existence
prove at the end.

Proposition 8.5. The set of Toeplitz operators is dense in M with respect to the norm ‖x‖ =√
trM (x∗x)

Following Jones [19], we show that a tracelike vector is a trace vector and visa versa. It is
the first and major step to prove the existence of a tracelike vector in the next theorem.

Proposition 8.6. A function ξ ∈ A2
s−2 is tracelike, if and only if it is a trace vector for the

commutant M .

Proof. =⇒: Let f ∈ A2
s−2 be tracelike. We have by the definition of tracelike for some ξ ∈ A2

s−2

〈Tfξ, ξ〉 =

∫
H
f(z) |ξ(z)|2 dxdy

y2−s =

∫
F
f(z)

∑
g∈Γ

∣∣(πs(g−1)ξ)(z)
∣∣2 dxdy
y2−s

=

∫
F
f(z)cy−s

dxdy

y2−s = c

∫
F
f(z)

dxdy

y2
.

With Theorem 8.4 follows that ξ is tracelike.
⇐=: Let f ∈ A2

s−2 be a trace vector. By Theorem 8.4 we have up to a multiplicative constant

trM (Tf ) =

∫
F
f(z)

dxdy

y2

Thus since ξ is a trace vector, it is∫
F
f(z)

dxdy

y2
= 〈Tfξ, ξ〉 =

∫
H
f(z) |ξ(z)|2 dxdy

y2−s =

∫
F
f(z)

∑
g∈Γ

∣∣(πs(g−1)ξ)(z)
∣∣2 dxdy
y2−s (3)

for all f ∈ L∞(F ). By Proposition 8.1 the series
∑

g∈Γ

∣∣(πs(g−1)ξ)(z)
∣∣2 converges to a contin-

uous function, this implies ∑
g∈Γ

∣∣(πs(g−1)ξ)(z)
∣∣2 = Im(z)−s

up to a multiplicative constant for all z ∈ F . Otherwise the equality 3 would be false since f was
arbitrary. By running through gF for g ∈ Γ (like in Proposition 8.1) follows ξ is tracelike.

The next proposition is a minor (but important) step that we need to prove the next theorem.
Jones [19] stated this statement incorporated in the proof of the next theorem.

Proposition 8.7. Let M be a von Neumann algebra and H be a M -module with dimM (H) = 1.
Then x ∈ H is a trace vector for M , if and only if x is a trace vector for M ′.

Proof. Since dimM (H) = 1, the action of M on H is unitarily equivalent to M on L2(M). With
the same arguments M ′ on H is unitarily equivalent to M ′ on L2(M ′).
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Jones [19] combines the notion of tracelike, wandering vector and give necessary and suffi-
cient conditions for the existence of a tracelike function. It is a major result of this work, and
most of the effort has been done above. Unfortunately, the proof of this theorem gives us no
clue on how to construct this wandering and tracelike vector.

Theorem 8.8. The existence of a tracelike function f ∈ A2
s−2 is equivalent to s ≤ 1+ 4π

covolume(Γ) .

f is addition a wandering vector for Γ, if and only if s = 1 + 4π
covolume(Γ) .

Proof. By Proposition 8.6 the existence of a tracelike function is equivalent to the existence of
a trace vector for vNω(Γ)′. With Proposition 5.7 this is equivalent to dimvNω(Γ)′(A

2
s−2) ≤ 1.

Again with Proposition 5.7 this is equivalent to s ≤ 1 + 4π
covolume(Γ) .

A trace vector f ∈ A2
s−2 for vNω(Γ) is wandering if and only if dimvNω(Γ)(A

2
s−2) = 1. This

follows from Theorem 6.2. Furthermore by Proposition 8.7 f is also a trace vector for M . The
second assertion now follows from Proposition 8.6.

The theorem above is very important, because it means that vNω(Γ) is the same as its
commutant vNω(Γ)′. If one finds this wandering and tracelike vector, we have the link between
these two factors. But up to this day no one has found a way to construct such a vector.
The implication f ∈ A2

s−2 is wandering for s = 1+ 4π
covolume(Γ) , then f is tracelike, can be proven

with the help of kernels. After a conversation with Alexandru Aleman, the following proof came
to my mind.

Proof. Let f ∈ A2
s−2 be a wandering vector.

W.l.o.g: ‖f‖ = 1 (otherwise use f
‖f‖)

Now πs(g)f forms an orthonormal basis of A2
s−2. Orthogonality follows immediately with the

definition of wandering. Let g, h ∈ Γ

〈πs(g)f, πs(h)f〉 = ω(h, h−1)〈πs(h−1)πs(g)f, f〉 = ω(h, h−1)ω(h−1, g)〈πs(h−1g)f, f〉 = 0.

Suppose for sake of contradiction that πs(g)f is not a basis. Then we can write A2
s−2 =

vNω(Γ)f ⊕ (vNω(Γ)f)⊥. By Proposition 5.7 dimvNω(Γ)(vNω(Γ)f) ≥ 1.

And 1 = dimvNω(Γ)(A
2
s−2) = dimvNω(Γ)(vNω(Γ)f) + dimvNω(Γ)((vNω(Γ)f)⊥) > 1 which is a

contradiction.
With Theorem 2.3 and Theorem 2.12 follows

2s

(i(w − z))s
=
∑
g∈Γ

(πs(g)f)(z)(πs(g)f)(w)

Finally looking at K(z, z) we get

Im(z)−s =
2s

(i(z − z))s
=
∑
g∈Γ

(
((πs(g)f)(z))

(
(πs(g)f)(z)

))
=
∑
g∈Γ

|πs(g)f)(z)|2

Thus f is tracelike.
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