
Saarland University

Faculty of Mathematics and Computer Science

Department of Mathematics and Computer
Science

Bachelor’s thesis

Towards a Concrete Model for the Quantum
Permutation Group

submitted by

Nicolas Faroß

submitted

October 16, 2020

Reviewers

Prof. Dr. Moritz Weber

Prof. Dr. Roland Speicher

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, October 16, 2020

Abstract

In this thesis we consider a magic unitary M3 and the C∗-algebra B3 which
is generated by the entries of M3. We give evidence that B3 is ∗-isomorphic to
C(S+

4) which would imply that (B3,M3) is a somewhat simple and concrete
model for the quantum permutation group S+

4 .
In particular, we show that each non-zero polynomial p in the generators

of C(S+
4) up to degree 50 does not vanish in the entries of M3. To prove

this result, we designed an efficient algorithm using Gröbner bases and finite
automata.

The model (B3,M3) was introduced by Jung-Weber while they presented
series of increasing models for the quantum permutation groups S+

n . The
fact that no vanishing polynomial up to degree 50 exists indicates that no
such polynomial exists for an arbitrary degree. This gives evidence that the
C∗-algebra B3 from Jung-Weber is already ∗-isomorphic to C(S+

4).

Contents

1 Introduction 1

2 Preliminaries 3
2.1 C∗-algebras . 4
2.2 Compact matrix quantum groups . 6
2.3 Gröbner bases . 8
2.4 Finite automata . 9

3 Models by Jung-Weber 11
3.1 The ©⊥-operator . 11
3.2 Inverse system . 12
3.3 Limit object . 14
3.4 A concrete example . 15

4 A concrete magic unitary 16
4.1 The magic unitary ideal and separating polynomials 17
4.2 Main result . 18
4.3 Dimension result . 20

5 Polynomial and quotient bases 21
5.1 Polynomial basis . 22
5.2 Quotient basis . 23
5.3 Dimension . 25

6 Algorithms and time complexity 27
6.1 Automaton construction . 27
6.2 Algorithm 1: Matrix construction . 30
6.3 Algorithm 2: Kernel of Ψm . 32
6.4 Time complexity . 33

7 Proofs of the main results 35

A Finite automaton 37

B Program output 39

C Code 40

1 Introduction

1 Introduction

In this thesis we consider a magic unitary M3 and the C∗-algebra B3 which is
generated by the entries of M3. We give evidence that B3 is ∗-isomorphic to C(S+

4)
which would imply that (B3,M3) is a concrete model for the quantum permutation
group S+

4 . In particular, we partially answer open questions about models of S+
n

from Jung-Weber in [JW20].
The quantum permutation groups S+

n were first defined in [Wan98] by Wang.
They are examples of compact matrix quantum groups which were introduced by
Woronowicz in [Wor87]. Compact matrix quantum groups can be seen as a gener-
alization of classical matrix groups G ⊆ GLn(C) and are an active research area.
However, in this thesis we focus only on the C∗-algebra structure of such quantum
groups.

The C∗-algebra C(S+
n) can be defined as the universal unital C∗-algebra which

is generated by a magic unitary:

C(S+
n) := C∗(uij, 1 ≤ i, j ≤ n | u is a magic unitary).

Here a magic unitary is a matrix over a unital C∗-algebra where the entries are
projections and the rows and columns sum up to one. This means the entries uij
satisfy the relations

u2ij = u∗ij = uij,
n∑
k=1

uik = 1,
n∑
k=1

ukj = 1 (1 ≤ i, j ≤ n).

The quantum permutation groups S+
n were used by Wang to describe so called

quantum automorphism groups of finite spaces in the context of non-commutative
geometry. However, they have further applications and can for example be used
to define quantum automorphism groups of graphs. Since classical automorphism
groups of finite sets and graphs are given by permutations, their quantum version
can be defined with the help of S+

n . See for example [Con94], [Wan98], [Bic99] and
[Ban05].

In the article [JW20] Jung-Weber constructed sequences of models (Bk,Mk) and
corresponding ∗-homomorphisms ϕk : C(S+

n) → Bk given an initial pair (B1,M1).
By constructing additional ∗-homomorphisms πk+1,k : Bk+1 → Bk they obtained
inverse systems with inverse limits G := (B∞,M∞).

The models (Bk,Mk) are not required to have a comultiplication ∆ and hence
are not necessarily compact matrix quantum groups. However, it turns out that the
limit objects (B∞,M∞) are compact matrix quantum groups which are isomorphic
to S+

n . It remained open if the sequences of models (Bk,Mk) are strictly increasing
or if the limit objects are obtained in a finite number of steps. In particular, the
following question [JW20, Q. 4.9] was asked for such a sequence.

Question 3.3. Are there polynomials pk in the generators uij ∈ C(S+
n) such that

ϕk(pk) = 0 for ϕk : C(S+
n)→ Bk, but ϕk+1(pk) 6= 0?

The existence of such polynomials would imply that each ϕk is not injective in
contrast to the limit case. There the corresponding mapping ϕ∞ : C(S+

n) → B∞ is

1

1 Introduction

injective. In the following we focus on the case n = 4. In this case Jung-Weber
considered the matrix

R :=

p 0 1− p 0

1− p 0 p 0
0 q 0 1− q
0 1− q 0 q

 ∈M4(Apq).

Here Apq is the universal unital C∗-algebra which is generated by two projections p
and q:

Apq := C∗(1, p, q | 1, p, q are projections, 1p = p1 = p, 1q = q1 = 1)

With the so called ©⊥-product it is possible to define a sequence of magic unitaries
Mk := R©⊥k ∈M4(A

⊗k
pq). Let Bk ⊆ A⊗kpq be generated by the entries of Mk. Then the

sequence (Bk,Mk) allows the construction of an inverse limit as described above.

To answer Question 3.3 for this concrete sequence and k ≤ 2, Jung-Weber gave
examples of non-zero polynomials p1 and p2 in the generators of C(S+

4). These
polynomials satisfy p1(M1) = 0, p1(M2) 6= 0 and p2(M2) = 0, p2(M3) 6= 0. However,
the case k = 3 and the existence of a corresponding polynomial p3 remained open.

In this thesis we consider the matrix M3 := R©⊥3 and the C∗-algebra B3 ⊆ A⊗3pq
which is generated by the entries of M3. The matrix R©⊥3 ∈M4(A

⊗3
pq) is given by

R©⊥3 =

p⊗ p⊗ p p⊗ (1− p)⊗ q p⊗ p⊗ (1− p) p⊗ (1− p)⊗ (1− q)
+(1− p)⊗ q ⊗ (1− p) +(1− p)⊗ (1− q)⊗ (1− q) +(1− p)⊗ q ⊗ p +(1− p)⊗ (1− q)⊗ q

(1− p)⊗ p⊗ p (1− p)⊗ (1− p)⊗ q (1− p)⊗ p⊗ (1− p) (1− p)⊗ (1− p)⊗ (1− q)
+p⊗ q ⊗ (1− p) +p⊗ (1− q)⊗ (1− q) +p⊗ q ⊗ p +p⊗ (1− q)⊗ q

q ⊗ (1− p)⊗ p q ⊗ p⊗ q q ⊗ (1− p)⊗ (1− p) q ⊗ p⊗ (1− q)
+(1− q)⊗ (1− q)⊗ (1− p) +(1− q)⊗ q ⊗ (1− q) +(1− q)⊗ (1− q)⊗ p +(1− q)⊗ q ⊗ q

(1− q)⊗ (1− p)⊗ p (1− q)⊗ p⊗ q (1− q)⊗ (1− p)⊗ (1− p) (1− q)⊗ p⊗ (1− q)
+q ⊗ (1− q)⊗ (1− p) +q ⊗ q ⊗ (1− q) +q ⊗ (1− q)⊗ p +q ⊗ q ⊗ q

.

We then obtain the following result.

Theorem 4.8. Let p ∈ C 〈X4〉 with deg p ≤ 50. If p(M3) = 0 then p ∈ I4.

Here X4 are the entries of a general 4 × 4 matrix and I4 ⊆ C 〈X4〉 is the ideal
which is generated by relations of a general 4 × 4 magic unitary. These relations
include the ones defining a magic unitary and pairwise products of the entries. In
other words, Theorem 4.8 shows that polynomials p 6= 0 with deg p ≤ 50 vanish
in M3 exactly because M3 is a magic unitary. Hence, the entries of M3 satisfy no
further polynomial relations up to degree 50. This result can then be reformulated
as follows.

Corollary 4.10. Let ϕ3 : C(S+
4) → B3 the ∗-homomorphism which maps uij to

(M3)ij and let p ∈ C 〈X4〉 with deg p ≤ 50. If p(u) 6= 0 then ϕ3(p(u)) 6= 0.

This implies that no non-zero vanishing polynomial p up to degree 50 exists,
which satisfies p(M3) = 0 and p(M4) 6= 0. As mentioned before, Jung-Weber con-
structed polynomials p1 with deg p1 = 1 and p2 with deg p2 = 2 which satisfy

2

2 Preliminaries

p1(M1) = 0, p1(M2) 6= 0 and p2(M2) = 0, p2(M3) 6= 0. If a similar polynomial p3
would exist for M3 it would have to satisfy deg p3 > 50. However, such a large jump
in the degree seems unreasonable. This indicates that no vanishing polynomial p3
exists for M3. This is a strong hint, but no proof, that ϕ3 is already injective. Hence,
the limit object (B∞,M∞) is already reached at k = 3. Then C(S+

4) is ∗-isomorphic
to B3 and (B3,M3) would be a somewhat simple concrete model of S+

4 .
Other models of C(S+

4) can for example be found in [BB07] where Banica and
Bichon showed that C(S+

4) ' C(SO−1(3)).
The proof of Theorem 4.8 is done with the help of a computer. The key step

is to construct a matrix Ψm such that ker Ψm \ {0} contains all polynomials p with
deg p ≤ m and p(M3) = 0 but p /∈ I4. It is then verified that ker Ψm = {0}
for m ≤ 50 which proves Theorem 4.8. A difficulty is that the dimension of non-
commutative polynomials in a 4× 4-matrix up to degree m grows exponentially in
m. Hence, to reduce the space of possible polynomials and make the computations
feasible, we make use of Gröbner bases and finite automata. We refer to Remark 4.9
for more details on the proof of Theorem 4.8.

In addition, we use finite automata to obtain the following combinatorial result.

Theorem 4.17. Let Vm := {p ∈ Pm | p(M3) = 0} ⊆ Pm be the vector space of
polynomials up to degree m which vanish in M3. Then codimVm ≤

(
2m+3

3

)
for all

m ∈ N. Furthermore, equality implies that Corollary 4.10 holds for an arbitrary
degree.

This can be seen as a step towards showing that Theorem 4.8 holds for an
arbitrary degree.

Let us now give a short overview on how this thesis is structured. At first we give
some basic definitions in Section 2. In particular, we define the quantum permuta-
tion group S+

4 which is the main subject of this work. We also introduce Gröbner
bases and finite automata which will be used later.

In Section 3 we recall some results from [JW20]. In particular, we give an
overview how the inverse system and the corresponding limit were constructed.
Furthermore, we focus on the case n = 4 were the concrete magic unitary R is
defined. In addition we recall the open questions which our work partially answers.

In Section 4 we first introduce some definitions and notations before we for-
mulate and discuss our main results. The proof is then shifted to Section 5 and
Section 6. In Section 5 we present some mathematical results in order to prove the
main theorems. In particular, we construct bases of vector spaces and show how
finite automata can be used to compute the dimension of them. Section 6 then
contains the computational part. We give a construction of a finite automaton and
present our algorithm for building and solving a resulting linear system. In addition,
we analyse the complexity of these algorithms at the end of this section.

Finally, we present our computational results in Section 7 and complete the
proofs of our main theorems.

2 Preliminaries

Throughout the rest of this thesis let n,m ∈ N if not stated otherwise.

3

2 Preliminaries 2.1 C∗-algebras

2.1 C∗-algebras

We first recall some definitions and facts about C∗-algebras which are then used in
Section 2.2 to define compact matrix quantum groups and in particular S+

n . More
details about C∗-algebras can for example be found in [Mur90] and [Bla06].

Definition 2.1 (C∗-algebras). A C∗-algebra A is a C-algebra equiped with a norm
‖·‖ and a mapping ∗ : A→ A which statisfies the following properties.

1. The algebra is complete with respect to the norm and it holds ‖xy‖ ≤ ‖x‖·‖y‖
for all x, y ∈ A.

2. The mapping ∗ satisfies (λx)∗ = λx∗, (x + y)∗ = x∗ + y∗, (x∗)∗ = x and
(xy)∗ = y∗x∗ for all λ ∈ C, x, y ∈ A.

3. The C∗-identity ‖x‖2 = ‖x∗x‖ holds for all x ∈ A.

A C∗-algebra is called unital if it contains a unit which we denote by 1. An al-
gebra homomorphism ϕ : A → B between two C∗-algebras A and B is called ∗-
homomorphism if it holds ϕ(x∗) = ϕ(x)∗ for all x ∈ A.

An example of a C∗-algebra is the algebra C(X) of continuous functions on a
compact Hausdorff space X with ‖·‖∞ and ∗ given as pointwise complex conjugation.
Another example of a C∗-algebra is the algebra B(H) of bounded linear operators
on a Hilbert space H, where ∗ denotes the adjoint operator. A concrete example of
the latter is the algebra of all complex n× n-matrices Mn(C).

The Gelfand-Naimark theorem shows that every C∗-algebra is isometrically ∗-
isomorphic to a subalgebra of B(H) for some Hilbert space H. However, it is also
possible to construct C∗-algebras in an abstract way. See for example Chapter II.8
in [Bla06] for more information on the construction of C∗-algebras and on universal
C∗-algebras.

Definition 2.2 (Universal C∗-algebra). Let X = {x1, . . . , xn} be a set of generators

and put X̂ = {x1, . . . , xn, x∗1, . . . , x∗n}. Let R be a set of polynomials in X̂ and define

A to be the quotient of the non-commutative polynomials in X̂ by the two-sided
ideal generated by R. Consider the seminorm

‖x‖ := sup{p(x) | p is a C∗-seminorm on A} ∀x ∈ A.

Here a C∗-seminorm is a seminorm which satisfies ‖xy‖ ≤ ‖x‖ · ‖y‖ and the C∗-
identity ‖x‖2 = ‖x∗x‖ for all x, y ∈ A. If ‖x‖ < ∞ for all x ∈ A we let N = {x ∈
A | ‖x‖ = 0}. Then we define

C∗(X|R) := A/N
‖·‖

as the universal C∗-algebra with generators X and relations R. We write universal
unital C∗-algebra if C∗(X|R) contains in addition a unit 1. Note that in general we
can get ‖x‖ =∞ for some x ∈ A. However, if ‖x‖ <∞ for all generators x ∈ X it
follows that ‖x‖ <∞ for all x ∈ A. In this case we say that the universal C∗-algebra
exists.

4

2 Preliminaries 2.1 C∗-algebras

Example 2.3. Consider the universal C∗-algebra

Apq := C∗(1, p, q | p = p∗ = p2, q = q∗ = q2, 1p = p1 = p, 1q = q1 = q).

Then Apq is a unital C∗-algebra which is generated by two projections p and q. Since
p and q are projections, it follows ‖p‖ , ‖q‖ ≤ 1. Hence, every element has a finite
norm and the universal C∗-algebra Apq exists as in Definition 2.2.

An important tool for working with universal C∗-algebras is their following uni-
versal property.

Proposition 2.4. Let A be a C∗-algebra, X = {x1, . . . , xn} be a set of generators
and R be corresponding relations. If A has elements Y = {y1, . . . , yn} which satisfy
the relations R, then there exists a ∗-homomorphism ϕ : C(X|R)→ A with ϕ(xi) =
yi for all i = 1, . . . , n.

This universal property can for example be used to show the following result
about the algebra Apq from Example 2.3.

Lemma 2.5. Let Apq be the universal unital C∗-algebra which is generated by two
projections p and q. Then Apq is non-commutative.

Proof. Consider the matrices

P :=

(
1 0

0 0

)
, Q :=

(1
2

1
2

1
2

1
2

)
. Then PQ =

(1
2

1
2

0 0

)
, QP =

(1
2

0
1
2

0

)
,

P 2 = P ∗ = P , Q2 = Q∗ = Q and PQ 6= QP . By the universal property in
Proposition 2.4 there exists a ∗-homomorphism Apq → M2(2) with p 7→ P and
q 7→ Q. But this implies pq 6= qp.

It is also possible to define a tensor product for C∗-algebras.

Definition 2.6 (Minimal tensor product). Let A and B be two C∗-algebras and
consider their vector space tensor product A⊗B. It is possible to turn A⊗B into
a ∗-algebra by defining

(a⊗ b) · (a′ ⊗ b′) := (aa′)⊗ (bb′),

(a⊗ b)∗ := a∗ ⊗ b∗

for all a, a′ ∈ A, b, b′ ∈ B. If one equipes this algebra A⊗B with a suitable C∗-norm
and considers the completion with respect to this norm, one obtains a C∗-algebra.
In general, there are several choices for a C∗-norm on A ⊗ B which have different
completions.

In the following we will use ⊗ as the minimal tensor product for C∗-algebras,
which can be constructed this way. More details about this construction and tensor
products of C∗-algebra can be found in Chapter 3 of [BO08].

In addition to the previous constructions we will use basic results about positive
elements and about the spectrum of elements throughout this thesis. These facts
can for example be found in Chapter 1 and Chapter 2 of [Mur90].

5

2 Preliminaries 2.2 Compact matrix quantum groups

2.2 Compact matrix quantum groups

After giving some facts about C∗-algebras we now continue with compact matrix
quantum groups. These were first introduced by Woronowicz in [Wor87] and can be
seen as a generalization of classical groups. Since our main results are in the context
of quantum groups, we give the definition of compact matrix quantum groups and
S+
n in this section. However, the main part of this thesis will then focus mostly on

the algebraic properties of C(S+
n).

Definition 2.7 (Compact matrix quantum group). Let A be a unital C∗-algebra
and u ∈ Mn(A) a matrix such that A is generated by the entries uij, 1 ≤ i, j ≤ n.
The pair G := (A, u) is called compact matrix quantum group of size n if

1. u and ū = (u∗ji)
n
i,j=1 are invertible.

2. the mapping ∆: A→ A⊗ A with

∆(uij) =
n∑
k=1

uik ⊗ ukj

is a ∗-homomorphism.

The C∗-algebra A is then denoted by C(G).

In [Wan98] Wang introduced quantum permutation groups S+
n which are an

example of compact matrix quantum groups. They can be seen as a generalization
of the classical symmetric group Sn in the sense of compact matrix quantum groups.
We first introduce magic unitaries which will be used to define S+

n .
The name magic unitary was first used by Banica in [BN06] and is similiar to

magic squares. In such a square the entries in each row and each column sum up to
the same number.

Definition 2.8 (Magic unitary). Let A be a unital C∗-algebra and u ∈ Mn(A).
The matrix u is called magic unitary if its entries are projections and each row and
column sums up to 1. This means the entries satisfy

u2ij = u∗ij = uij,
n∑
k=1

uik = 1,
n∑
k=1

ukj = 1 (1 ≤ i, j ≤ n).

Magic unitaries can be seen as generalizations of classical permutation matrices
where each row and column contains exactly one 1 and all other entries are zeros.
Now we can define S+

n as the universal C∗-algebra which is generated by a magic
unitary.

Definition 2.9 (Quantum permutation group). Let u = (uij)
n
i,j=1 be a matrix of n2

generators. Define the universal unital C∗-algebra

A := C∗(uij, 1 ≤ i, j ≤ n | u is a magic unitary).

Then the compact matrix quantum group S+
n := (A, u) is called the quantum per-

mutation group. Since all uij are projections, we get ‖uij‖ ≤ 1 and hence C(S+
n)

exists as universal C∗-algebra as in Definition 2.2.

6

2 Preliminaries 2.2 Compact matrix quantum groups

Remark 2.10. Consider magic unitaries in Mn(C), then one obtains exactly per-
mutation matrices. Hence, these magic unitaries correspond to the classical per-
mutation groups Sn. Consequently, one can view a general magic unitary as a
permutation matrix with operator-valued entries. This justifies the name quantum
permutation group for S+

n as a quantum version of Sn.

The next lemma shows an important property of magic unitaries, in particular
of S+

n , which does not follow algebraically from the definition.

Lemma 2.11. Let A be a C∗-algebra and M ∈ Mn(A) a magic unitary. Then the
product of two different elements in the same row or column equals zero. This means

Mik ·Mjk = 0, Mki ·Mkj = 0 (1 ≤ i, j, k ≤ n, i 6= j).

Proof. We consider the case MikMjk = 0 for 1 ≤ i, j, k ≤ n and i 6= j. The case
MkiMkj = 0 follows then by the same argument with swapped indicies. Consider
the element MjkMikMjk, then we have MjkMikMjk ≥ 0 since it is of the form

MjkMikMjk = (MikMjk)
∗(MikMjk).

On the other hand, we obtain

MjkMikMjk = Mjk

(
1−

n∑
l=1

Mlk

)
Mjk = −

∑
l 6=i

MjkMlkMjk.

Since each MjkMlkMjk ≥ 0 as before, we get MjkMikMjk ≤ 0 as negative sum
of positive elements. From this follows MjkMikMjk = 0. We conclude with the
C∗-identity that

‖MikMjk‖2 = ‖(MikMjk)
∗(MikMjk)‖ = ‖MjkMikMjk‖ = 0,

hence MikMjk = 0.

During this work we will focus on S+
4 . One can show that C(S+

4) is a non-
commutative C∗-algebra whereas C(S+

n) is commutative for n ≤ 3. For the non-
commutativity consider again the universal unital C∗-algebra Apq from Example 2.3,
which is generated by two projections p, q. Define the matrix

M :=

p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q

 .

Then M is a magic unitary and there exists a surjective ∗-homomorphism C(S+
4)→

Apq by the universal property of C(S+
4). SinceApq is non-commutative by Lemma 2.5,

it follows that C(S+
4) is also non-commutative.

7

2 Preliminaries 2.3 Gröbner bases

2.3 Gröbner bases

Gröbner bases were first introduced by Buchberger in [Buc65]. They are constructed
given a monomial ordering and allow computations with ideals in multivariate poly-
nomial rings, for example to solve the ideal membership problem. In this section we
introduce basic notations and definitions which will then be used in Section 5. A
more detailed introduction can be found in [Mor94].

Let X be a set of generators. We denote by C 〈X〉 the free C-algebra generated
by X. It can be regarded as the algebra of non-commutative polynomials in the
variables X. In the following we denote the set of all monomials in C 〈X〉 (including
1) with X?.

Given a well-ordering ≤ on X, we can define an ordering on X?. First we
compare the degree of two monomials and if they have the same degree we compare
them lexicographicaly from the left to the right. This ordering on X? is then also a
well-ordering.

A non-zero polynomial p ∈ C 〈X〉 has a unique representation as p =
∑n

i=1 αimi

with a1, . . . , αn ∈ C \ {0} and m1, . . . ,mn ∈ X?. Let i0 be the index of the largest
monomial in this representation. Then we define the leading term LT(p) = mi0 and
the leading coefficient LC(p) = αi0 . In this case the degree deg p is given the total
number of factors of LT(p). Note that LT(p) = 1 and deg p = 0 for all non-zero
constant polynomials p ∈ C 〈X〉.

Example 2.12. Consider X = {x, y, z} with x < y < z. Then we obtain the
following ordering on X?:

1 < x < y < z < xx < xy < xz < yx < yy < yz < zz < zy < zz < . . .

Let for example p = 2x2 + 3xy − z ∈ C 〈X〉 with deg p = 2. Then the leading term
and leading coefficient are given by LT(p) = xy and LC(p) = 3.

Next we present a lemma which follows directly from the previous definitions
and will be useful later in Section 5.

Lemma 2.13. Let x, y ∈ X? such that x ≤ y. Then axb ≤ ayb for all a, b ∈ X?.
Furthermore, it holds that LT(apb) = aLT(p)b for all p ∈ C 〈X〉 and a, b ∈ X?.

Proof. Let a, b, x, y ∈ X? such that x ≤ y. If deg x ≤ deg y, then deg axb ≤ deg ayb
and axb ≤ ayb. Otherwise we get axb ≤ ayb by lexicographical comparison from
the left to right. Now consider the polynomial

p =
n∑
i=1

αixi ∈ C 〈X〉

and assume without loss of generality x1 ≤ . . . ≤ xn. The previous inequality yields
ax1b ≤ . . . ≤ axnb. Hence

LT(apb) = axnb = aLT(p)b.

In the following we will require an ideal I ⊆ C 〈X〉 to be two-sided since C 〈X〉
is non-commutative. With these definitions we can now introduce Gröbner bases.

8

2 Preliminaries 2.4 Finite automata

Definition 2.14 (Gröbner basis). Let I ⊆ C 〈X〉 an ideal. A finite set G ⊆ I is
called Gröbner basis for I if:

1. The ideal I is generated by G.

2. For every p ∈ I exists a g ∈ G and a, b ∈ X? such that LT(p) = aLT(g)b.

Remark 2.15. Note that a Gröbner basis depends on the monomial ordering defined
on C 〈X〉. It is possible that a set is a Gröbner basis with respect to a given monomial
ordering but is not a Gröbner basis with respect to other orderings. This has also
practical implications since changing the monomial odering can affect the difficulty
of computing a Gröbner basis on a computer.

A main application of Gröbner bases is to determine wether a polynomial is
contained in a given ideal and to solve the ideal membership problem. Next we give
some background and show how Gröber bases can be used in this context. Howerver,
in this thesis we will use Gröbner bases to describe a basis for the quotient C 〈X〉 /I.
These results will then be proven diffently in Section 5.

Example 2.16 (Ideal membership problem). Let I ⊆ C 〈X〉 be an ideal and p0 ∈
C 〈X〉, then the ideal membership problem asks, if p0 ∈ I. This problem can be
solved as follows. Let G be a Gröbner basis for I and assume there are a0, b0 ∈ X?

and g0 ∈ G such that LT(p0) = a0 LT(g0)b0. Then it is possible to perform a
reduction step and eliminate LT(p0) by defining

p1 := p0 −
LC(p0)

LC(g0)
· a0g0b0.

As long as those conditions are satisfied we can repeat this reduction step and
obtain a sequence p0, p1, Since X? is well-ordered and LT(pi) is decreasing, we
can perform at most finitely many of such steps. Hence, we obtain finitely many
polynomials p0, . . . , pn. If pn = 0 then we can write p0 as

p0 =
n−1∑
i=0

LC(pi)

LC(gi)
· aigibi

such that p0 ∈ I. Otherwise, p0 /∈ I by the definition of Gröbner basis since no
suitable gn ∈ G exists anymore.

2.4 Finite automata

Let Σ be a finite set of symbols which is called alphabet. A word over Σ is a finite
sequences w1 · · ·wn of symbols w1, . . . , wn ∈ Σ.

Finite automata were first used in [MP43] and became a fundamental tool in
theoretical computer science. They can be used to describe sets of words over
an alphabet and allow the design of linear time algorithms for searching a given
subword in words. A detailed introduction to languages and automata can be found
in [HMU06].

We will use them in Section 5 in combination with a Gröbner basis to describe
a vector space basis of a quotient algebra. In Section 6 we show how they can be
constructed and used for efficient computations.

9

2 Preliminaries 2.4 Finite automata

Before we define finite automata we introduce some more notation. In the fol-
lowing let Σ be an alphabet. With Σ? we denote the Kleene closure of Σ which is
the set of all words over Σ including the empty word ε. A set of words L ⊆ Σ? is
called language.

Remark 2.17. Consider the non-commutative polynomials C 〈X〉. Then the set of
variables X can be considered as alphabet. In the previous notation the set X? of
all monomials coincides with the Kleene closure X?, if we identify the empty word
ε with the unit 1.

A finite automaton can now be defined as a special labelled graph.

Definition 2.18 (Finite automaton). A finite automaton over an alphabet Σ is a
directed and labelled graph Γ = (V,E, `, s0, F) where

1. V denotes the set of vertices and E the set of directed edges.

2. ` : E → Σ assigns to each edge in E a symbol from Σ.

3. s0 ∈ V is the initial state.

4. F ⊆ E is a set of final states.

Note that multi-edges are allowed and the set F can be empty. The vertices are also
called states and the edges transitions.

Example 2.19. Figure 1 shows a simple finite automaton Γ over the alphabet
Σ = {a, b, c}. It has the vertices V = {1, 2, 3, 4}, the initial state s0 = 1 and the
final states F = {3, 4}. The initial state is marked with a small arrow and the final
states are circled twice. Multi-edges are grouped together and labels are separated
by commas in this case.

1 2

3

4

a, b, c

a

b

c

a, b, c

a, b, c

Figure 1: A simple finite automaton.

Let Γ be a finite automaton and e1, . . . , en ∈ E be a directed path in Γ. Then we
can assign the word w = `(e1) · · · `(en) ∈ Σ? to this path. In this way each directed
path in Γ corresponds to a word w ∈ Σ?. We say Γ that accepts a word w ∈ Σ? if
there exists a corresponding path in Γ which starts at s0 and ends in F . Denote by
L(Γ) ⊆ Σ? the language which consists of all words which are accepted by Γ. Such a
language, which can be described by a finite automaton, is called regular language.

Note that there might be multiple paths which result in the same accepted word.
We call a finite automaton non-deterministic if there exists a node with two outgoing
edges and same labels. Otherwise we call it deterministic. From this definition
follows directly that in a deterministic finite automaton each accepted word has as
a unique associated path.

10

3 Models by Jung-Weber 3.1 The ©⊥-operator

Example 2.20. Consider again the finite automaton Γ from Figure 1. The accepting
language L(Γ) consists of all words w ∈ Σ? which contain ab or ac as a subword. In
addition, Γ is non-deterministic because node 1 has two outgoing edges with label
a.

The next two propositions can be used to transform a given automaton and
are useful when constructing new automata frome existing ones. See for example
[HMU06] for proofs of these results. The second proposition is usually proven using
the so called powerset construction, which can be found in Section 2.3.5 of [HMU06].

Proposition 2.21 (Complement). Let Γ be a deterministic finite automaton over
the alphabet Σ. Then there exists a deterministic finite automaton Γ with accepting
language

L(Γ) = Σ? \ L(Γ).

The automaton Γ is called the complement of Γ.

Proposition 2.22 (Powerset construction). Let Γ be a (possibly non-deterministic)
finite automaton. Then there exists a deterministic finite automaton det(Γ) with

L(det(Γ)) = L(Γ).

This last proposition might be surprising since it shows that non-deterministic
finite automata are not more powerfull than deterministic ones. It is especially
useful since it might be easier to find a non-deterministic finite automaton for a
given regular language. This can be seen in Section 6.1, where we first construct a
non-deterministic finite automaton which then gets transformed into a deterministic
one.

3 Models by Jung-Weber

In this section we recall some definitions from [JW20], which will be used in the
following sections. In addition, we summarize the main steps in the construction of
the inverse system and the existence of the inverse limit as compact matrix quantum
group. At the end, we consider a concrete matrix R in the case n = 4 and state the
open question which we attempt to answer in this thesis.

3.1 The ©⊥ -operator

We begin with the definition of the ©⊥-operator similar to the one [Wor87].

Definition 3.1. Let A and B be two C∗-algebras. Then ©⊥ : Mn(A) ×Mn(B) →
Mn(A⊗B) is defined by

(M ©⊥ N)ij =
n∑
k=1

Mik ⊗Nkj (1 ≤ i, j ≤ n)

for all M ∈Mn(A), N ∈Mn(B).

In this context an important property is that ©⊥ preserves magic unitaries.

11

3 Models by Jung-Weber 3.2 Inverse system

Lemma 3.2. Let A and B be two C∗-algebras, M ∈ Mn(A) and N ∈ Mn(B) two
magic unitaries. Then M ©⊥ N ∈Mn(A⊗B) is a magic unitary.

Proof. Recall the tensor product A ⊗ B from Definition 2.6. Using the linearity of
⊗ and ∗ it follows that

(M ©⊥ N)∗ij =

(
n∑
k=1

Mik ⊗Nkj

)∗
=

n∑
k=1

M∗
ik ⊗N∗kj =

n∑
k=1

Mik ⊗Nkj = (M ©⊥ N)ij.

Hence, all entries are self-adjoint. Using Lemma 2.11 we obtain

MikMil =

{
M2

ik = Mik, l = k

0, l 6= k
, NkjNlj =

{
N2
kj = Nkj, l = k

0, l 6= k

for 1 ≤ i, j, l, k ≤ n. This implies

(M ©⊥ N)2ij =

(
n∑
k=1

Mik ⊗Nkj

)
·

(
n∑
l=1

Mil ⊗Nlj

)

=
n∑
k=1

n∑
l=1

(MikMil)⊗ (NkjNlj) =
n∑
k=1

Mik ⊗Nkj = (M ©⊥ N)ij

such that all entries of M ©⊥ N are projections. Now consider the sum of the entries
in a column. Then

n∑
i=1

(M ©⊥ N)ij =
n∑
i=1

n∑
k=1

Mik ⊗Nkj =
n∑
k=1

(
n∑
i=1

Mik

)
⊗Nkj

=
n∑
k=1

1M ⊗Nkj = 1M ⊗

(
n∑
k=1

Nkj

)
= 1M ⊗ 1N .

Similar we obtain for a row

n∑
j=1

(M ©⊥ N)ij = 1M ⊗ 1N .

Hence, M ©⊥ N is a magic unitary.

3.2 Inverse system

Consider an initial pair (B1, M1) of a C∗-algebra B1 and a magic unitary M1 ∈
Mn(B1) such that B1 is generated by the entries of M1. Now one can define the
matrices Mk := (M1)

©⊥k and Bk ⊆ B⊗k1 as the C∗-algebras which are generated by
the entries of Mk respectively. Since each Mk is a magic unitary, there exists a
∗-homomorphism ϕk : C(S+

n)→ Bk by the universal property of C(S+
n).

In Definition 3.5 of the article [JW20] Jung-Weber constructed general initial
pairs (B1,M1). These pairs allow ∗-homomorphisms πk+1,k : Bk+1 → Bk, mapping
generators to generators, such that the following diagram commutes:

12

3 Models by Jung-Weber 3.2 Inverse system

C(S+
n)

B1 . . . Bk Bk+1 . . .

ϕ1
. . . ϕk

ϕk+1

. . .

π2,1 πk,k−1 πk+1,k πk+2,k+1

Note that the initial pairs (B1,M1) are only required for constructing the map-
pings πk+1,k. See Definition 3.5 in [JW20] for more details on the general construction
of such initial pairs.

Next we give a short sketch of how the mappings πk+1,k are constructed. The
main idea is to use the corresponding initial pair (B1,M1) to first construct a ∗-
homomorphism φ : B1 → C(Sn) mapping generators to generators. Here C(Sn) is
the universal unital C∗-algebra obtained by adding commutativity relations to the
generators of C(S+

n). Since the identity matrix id ∈Mn(C) is a magic unitary with
commuting entries, we can use the universal property to obtain a ∗-homomorphism
ν ′ : C(Sn) → C mapping generators of C(Sn) to entries of id. Define ν : B1 →
C by ν ′ ◦ φ then the restriction of (idB1)

⊗n ⊗ ν to Bk gives a ∗-homomorphism
πk+1,k : Bk+1 → Bk. For more details on how φ is constructed from an initial pair
(B1,M1) see Lemma 3.6 in [JW20].

Consider again the previous sequence of pairs (Bk,Mk) and the diagram

B1 . . . Bk Bk+1 . . .
π2,1 πk,k−1 πk+1,k πk+2,k+1

We call such a sequence an inverse system. More information on general inverse
systems and inverse limits in the context of category theory can for example be
found in [Mac71]. For inverse limits of C∗-algebras we refer to [Phi88]. In our case,
a limit of this inverse system is the minimal pair (B∞,M∞) such that the following
diagram commutes:

B∞

B1 . . . Bk Bk+1 . . .

φ1
. . . φk

φk+1
. . .

π2,1 πk,k−1 πk+1,k πk+2,k+1

Here φk : B∞ → Bk are again ∗-homomorphisms mapping generators to generators.
Minimality means that for every other pair (B,M) which allows a similar diagram

B

B1 . . . Bk Bk+1 . . .

ψ1
. . . ψk

ψk+1
. . .

π2,1 πk,k−1 πk+1,k πk+2,k+1

13

3 Models by Jung-Weber 3.3 Limit object

there exists a ψ : B → B∞ such that each φk factors through ψ. In other words, the
diagram

B

B∞

Bk Bk+1

ψ

ψk ψk+1

φk φk+1

πk+1,k

commutes for every k ∈ N.

3.3 Limit object

In Lemma 4.1 in [JW20], Jung-Weber proved the existence of the limit object
(B∞,M∞) if

sup
k∈N
‖(Mk)ij‖ <∞

for all entries 1 ≤ i, j ≤ n. Hence, (B∞,M∞) exists in our case since the en-
tries of magic unitaries are projections with ‖(Mk)ij‖ ≤ 1. Furthermore, M∞ is a
magic unitary because there exists an arrow ψ : C(S+

n)→ B∞ by the minimality of
(B∞,M∞).

To prove that (B∞,M∞) is a compact matrix quantum group the only thing
remaining to show is the existence of a ∗-homomorphism ∆: B∞ → B∞ ⊗B∞ with

∆(Mij) =
n∑
k=1

Mik ⊗Mkj.

In the following we summarize the main ideas of this proof. The full proof and more
details can be found in Section 4.2 of [JW20].

The first step is to show that the norms on B∞ and B∞ ⊗B∞ are given by

‖·‖B∞ = lim
n→∞

‖φn(·)‖Bn
,

‖·‖B∞⊗B∞ = lim
n→∞

‖(φn ⊗ φn)(·)‖Bn⊗Bn
.

Let p be a polynomial in the entries of a matrix, then we denote by p(M) the element
which is obtained by substituting the entries of M into p. The next step is to verify
that

φ2n(p(M∞)) = (φn ⊗ φn)(p(M∞ ©⊥M∞))

holds for all polynomials p as an equation in B⊗2n1 = B⊗n1 ⊗B⊗n1 . Then it follows

‖p(M∞)‖B∞ = lim
n→∞

‖φn(p(M∞))‖Bn

= lim
n→∞

‖φ2n(p(M∞))‖B2n

= lim
n→∞

‖(φn ⊗ φn)(p(M∞ ©⊥M∞))‖Bn⊗Bn

= ‖p(M∞ ©⊥M∞)‖B∞⊗B∞

14

3 Models by Jung-Weber 3.4 A concrete example

for all polynomials p. Now define ∆ for all polynomials in M∞ by

∆(Mij) =
n∑
k=1

Mik ⊗Mkj

and note that ∆(p(M)) = p(M∞ ©⊥M∞) by definition. The previous equality shows
that ∆ is an isometry on polynomials, which is in particular bounded. Since these
polynomials are dense in B∞, we can extend ∆ to a ∗-homomorphism ∆: B∞ →
B∞ ⊗B∞ by continuity.

Hence, (B∞,M∞) is indeed a compact matrix quantum group. Furthermore, it
turns out that we have (B∞,M∞) = S+

n . This was shown by Chirvasitu and Józiak
and can be found in the appendix of [JW20].

However, it remained unclear if such inverse systems will become stationary at
some point or if one obtains infinitely many different pairs (Bk,Mk). In particular,
the following question [JW20, Q. 4.9] was asked for a sequence of pairs (Bk,Mk)
constructed from an initial pair (B1,M1).

Question 3.3. Are there polynomials pk in the generators uij ∈ C(S+
n) such that

ϕk(pk) = 0 for ϕk : C(S+
n)→ Bk, but ϕk+1(pk) 6= 0?

It was expected that such polynomials exist such that all (Bk,Mk) would be
distinct. However, we consider a concrete sequence of pairs (Bk,Mk) in this thesis
and show that for k = 3 no polynomial from Question 3.3 up to degree 50 exists.

3.4 A concrete example

In the following we consider the case n = 4 and a specific initial pair (B1,M1) which
our main result is based on.

Example 3.4. Let

Apq := C∗(1, p, q | 1, p, q are projections, 1p = p1 = p, 1q = q1 = 1)

be the universal unital C∗-algebra with is generated by two projections p and q (see
Example 2.3). Consider the matrix

R :=

p 0 1− p 0

1− p 0 p 0
0 q 0 1− q
0 1− q 0 q

 ∈M4(Apq)

and set M1 := R. Then one obtains a sequence of pairs (Bk,Mk) where Mk is given
by R©⊥k ∈ Mn(A⊗kpq) and Bk ⊆ A⊗kpq is the C∗-algebra which is generated by the
entries of Mk.

It is then possible to construct ∗-homomorphisms πk+1,k : Bk+1 → Bk such that
one obtains an inverse system with inverse limit (B∞,M∞) as described in the
previous sections. In this case the following concrete question [JW20, Q. 4.10] was
asked.

Question 3.5. Are there polynomials (pk)k∈N such that pk(Mk) = 0 and pk(Mk+1) 6=
0?

15

4 A concrete magic unitary

Such polynomials would answer Question 3.3 for the case n = 4 and show that
no ϕk is injective. Consider the following matrices M2 := R©⊥2 and M3 := R©⊥3 with

R©⊥2 =

p⊗ p (1− p)⊗ q p⊗ (1− p) (1− p)⊗ (1− q)

(1− p)⊗ p p⊗ q (1− p)⊗ (1− p) p⊗ (1− q)
q⊗ (1− p) (1− q)⊗ (1− q) q⊗ p (1− q)⊗ q

(1− q)⊗ (1− p) q⊗ (1− q) (1− q)⊗ p q⊗ q

,

R©⊥3 =

p⊗ p⊗ p p⊗ (1− p)⊗ q p⊗ p⊗ (1− p) p⊗ (1− p)⊗ (1− q)
+(1− p)⊗ q ⊗ (1− p) +(1− p)⊗ (1− q)⊗ (1− q) +(1− p)⊗ q ⊗ p +(1− p)⊗ (1− q)⊗ q

(1− p)⊗ p⊗ p (1− p)⊗ (1− p)⊗ q (1− p)⊗ p⊗ (1− p) (1− p)⊗ (1− p)⊗ (1− q)
+p⊗ q ⊗ (1− p) +p⊗ (1− q)⊗ (1− q) +p⊗ q ⊗ p +p⊗ (1− q)⊗ q

q ⊗ (1− p)⊗ p q ⊗ p⊗ q q ⊗ (1− p)⊗ (1− p) q ⊗ p⊗ (1− q)
+(1− q)⊗ (1− q)⊗ (1− p) +(1− q)⊗ q ⊗ (1− q) +(1− q)⊗ (1− q)⊗ p +(1− q)⊗ q ⊗ q

(1− q)⊗ (1− p)⊗ p (1− q)⊗ p⊗ q (1− q)⊗ (1− p)⊗ (1− p) (1− q)⊗ p⊗ (1− q)
+q ⊗ (1− q)⊗ (1− p) +q ⊗ q ⊗ (1− q) +q ⊗ (1− q)⊗ p +q ⊗ q ⊗ q

.

For these matrices Jung-Weber constructed the polynomials p1 = u12 and p2 =
u12u24. These polynomials satisfy

p1(M1) = 0, p1(M2) 6= 0,

p2(M2) = 0, p2(M3) 6= 0

and answer the case k = 1, 2 in Question 3.5.
Our main result in Section 4 then partially answers the existence of such poly-

nomials in the case k = 3. It implies that for each non-zero polynomial p with
deg p ≤ 50 holds that if p(M3) = 0 then p(M4) = 0. This gives evidence that non
such vanishing polynomial from Question 3.5 exists. See Remark 4.11 for a more
detailed discussion of our main result.

4 A concrete magic unitary

In this section we present our main result. We consider a concrete C∗-algebra
B3 and a magic unitary M3 := R©⊥3 ∈ M4(B3) from the previous section. Let
ϕ3 : C(S+

n)→ B3 be the ∗-homomorphism which maps generators to generators and
let p be a polynomial in the generators of C(S+

4) with deg p ≤ 50. We show that
p 6= 0 implies ϕ3(p) 6= 0.

This gives evidence that no non-zero polynomial p with ϕ3(p) 6= 0 exists. As
a consequence, the mapping ϕ3 might be injective. In this case, (B3,M3) is a
concrete model for the quantum permutation group S+

4 in the sense that C(S+
4) is

∗-isomorphic to B3. For a further discussion of this result we refer to Remark 4.11
and Remark 4.12.

The main idea is to show that each non-zero polynomial p ∈ C 〈X4〉 up to degree
50, which vanishes in M3, lies in the ideal I4 ⊆ C 〈X4〉 generated by magic unitary
relations. Hence, it also vanishes in the generators of C(S+

4). Here, C 〈X4〉 denotes

16

4 A concrete magic unitary4.1 The magic unitary ideal and separating polynomials

algebra of non-commutative polynomials in the entries X = {x11, x12, . . . , x44} of a
general 4× 4-matrix.

Furthermore, consider the subspace Vm ⊆ Pm of polynomials up to degree m
which vanish in M3. We show that codimVm ≤

(
2m+3

3

)
as a subspace of all polyno-

mials up to degree m. Equality would imply that the previous result holds for an
arbitrary degree.

4.1 The magic unitary ideal and separating polynomials

Before we come to our main theorem, we start with some definitions and introduce
the setting in which we prove our main results. The idea is to go from a C∗-algebra to
the algebra of non-commutative polynomials. It is then possible to add relations to
this algebra and answer the questions about vanishing polynomials in this context.

Definition 4.1. Let Xn = {x11, x12, . . . , xnn}. Then C 〈Xn〉 is the algebra of non-
commutative polynomials in the entries of a general n × n-matrix (xij)

n
i,j=1. Let A

be a C∗-algebra and M ∈ Mn(A). Denote by ϕM : C 〈Xn〉 → A the replacement
homomorphism which maps xij to Mij. Furthermore, define p(M) := ϕM(p) for all
p ∈ C 〈Xn〉 which replaces each xij in the polynomial p with Mij.

Remark 4.2. We are interested in polynomials in the entries of magic unitaries.
Since the entries of a magic unitary are self-adjoint, it is sufficient to consider only
the variables xij and ignore x∗ij in the definition of Xn.

In the following let A be a C∗-algebra and M ∈Mn(A) a magic unitary. Recall
that by the definition of a magic unitary each Mij is a projection and the rows and
columns sum up to one. Let I ⊆ C 〈Xn〉 be the ideal which is generated by the
corresponding polynomials

x2ij − xij,
n∑
k=1

xik − 1,
n∑
k=1

xkj − 1 (1 ≤ i, j ≤ n).

Then it follows directly that p(M) = 0 for all p ∈ I. However, Lemma 2.11 shows
that a magic unitary satisfies further relations which do not follow algebraically from
the previous ones. This leads to the following definition.

Definition 4.3 (Magic unitary ideal). Let In ⊆ C 〈Xn〉 be the ideal which is gen-
erated by the following polynomials

x2ij − xij,
n∑
k=1

xik − 1,
n∑
k=1

xkj − 1 (1 ≤ i, j ≤ n),

xij · xik, xji · xki (1 ≤ i, j, k ≤ n, j 6= k).

We call In the magic unitary ideal.

Remark 4.4. For a magic unitary M follows from the definition that p(M) = 0 for
all p ∈ In.

Now we can introduce separating polynomials which play an important role in
this thesis.

17

4 A concrete magic unitary 4.2 Main result

Definition 4.5. Let A be a C∗-algebra and M ∈ Mn(A) be a magic unitary. A
non-zero polynomial p ∈ C 〈Xn〉 is called separating if ϕM(p) = 0 but p /∈ In.

To prove our main result, we are interested in the existence of separating poly-
nomials for a given magic unitary. Hence, we consider again the replacement ho-
momorphism ϕM . Since In ⊆ kerϕM , we can write the replacement homomorphism
as

ϕM = ψ ◦ π.
Here π : C 〈Xn〉 → C 〈Xn〉 /In is the canonical projection and ψ : C 〈Xn〉 /In → A is
uniquely determined such that the following diagram commutes:

C 〈Xn〉 A

C 〈Xn〉 /In

π

ϕM

ψ

Consequently, all residue classes of polynomials, which vanish in M and do not
lie in the magic unitary ideal, are contained in kerψ\{0}. In other words, kerψ\{0}
contains all separating polynomials of the matrix M .

Now consider polynomials p ∈ C 〈Xn〉 with degree deg p bounded by m ∈ N.
Then we can define the following mapping.

Definition 4.6. Let A be a C∗-algebra and M ∈ Mn(A) be a magic unitary such
that the replacement homomorphism ϕM : C 〈Xn〉 → A can be factored as ϕM =
ψ ◦ π. Furthermore, define

Pm := {p ∈ C 〈Xn〉 | deg p ≤ m} ⊆ C 〈Xn〉

as the vector space of all polynomials up to degree m. Then the mapping

ψm := ψ|π(Pm)

is given by the restriction of ψ to the subspace π(Pm) ⊆ C 〈Xn〉 /In.

Assume there exists a separating polynomial p with deg p ≤ m. In other words,
p ∈ Pm with ϕM(p) = 0 but p /∈ In. Then a corresponding residue class [p] 6= 0
can be found in kerψm \ {0}. Hence, all separating polynomials up to degree m are
contained in kerψm \ {0}.

4.2 Main result

In the following we consider n = 4 and the quantum permutation group S+
4 =

(C(S+
4), u). Note that u = (uij) ∈ M4(C(S+

4)) is the magic unitary which contains
the generators of C(S+

4).
Recall the ©⊥-product from Definition 3.1 and the matrix R from Example 3.4

which is defined as

R :=

p 0 1− p 0

1− p 0 p 0
0 q 0 1− q
0 1− q 0 q

 ∈M4(Apq).

Here Apq denotes the universal C∗-algebra which is generated by the two projections
p and q (see Example 2.3).

18

4 A concrete magic unitary 4.2 Main result

Definition 4.7 (The concrete magic unitary). Let M3 := R©⊥3 ∈M4(A
⊗3
pq) where

R©⊥3 =

p⊗ p⊗ p p⊗ (1− p)⊗ q p⊗ p⊗ (1− p) p⊗ (1− p)⊗ (1− q)
+(1− p)⊗ q ⊗ (1− p) +(1− p)⊗ (1− q)⊗ (1− q) +(1− p)⊗ q ⊗ p +(1− p)⊗ (1− q)⊗ q

(1− p)⊗ p⊗ p (1− p)⊗ (1− p)⊗ q (1− p)⊗ p⊗ (1− p) (1− p)⊗ (1− p)⊗ (1− q)
+p⊗ q ⊗ (1− p) +p⊗ (1− q)⊗ (1− q) +p⊗ q ⊗ p +p⊗ (1− q)⊗ q

q ⊗ (1− p)⊗ p q ⊗ p⊗ q q ⊗ (1− p)⊗ (1− p) q ⊗ p⊗ (1− q)
+(1− q)⊗ (1− q)⊗ (1− p) +(1− q)⊗ q ⊗ (1− q) +(1− q)⊗ (1− q)⊗ p +(1− q)⊗ q ⊗ q

(1− q)⊗ (1− p)⊗ p (1− q)⊗ p⊗ q (1− q)⊗ (1− p)⊗ (1− p) (1− q)⊗ p⊗ (1− q)
+q ⊗ (1− q)⊗ (1− p) +q ⊗ q ⊗ (1− q) +q ⊗ (1− q)⊗ p +q ⊗ q ⊗ q

and define

B3 := C∗ ((M3)ij | 1 ≤ i, j ≤ 4) ⊆ A⊗3pq

as the C∗-algebra which is generated by the entries of M3.

By Lemma 3.2 the ©⊥-product preserves magic unitaries such that M3 is a magic
unitary. The next lemma shows that each polynomial p up to degree 50, which
vanishes in M3, lies already in the magic unitary ideal I4. In other words, p vanishes
because M3 is a magic unitary rather than due to some additional relations in B3.

Theorem 4.8. Let p ∈ C 〈X4〉 with deg p ≤ 50. If p(M3) = 0 then p ∈ I4.

Remark 4.9. The previous theorem will be proven with the help of a computer in
Section 7 after some preparations in Section 5 and Section 6. Here we give a short
overview of the main steps.

In the notation of Definition 4.5 we have to show that no separating polynomial
up to degree 50 exists for M3. This can be done by showing that kerψ50 = {0}
for the mapping ψ50 from Definition 4.6. Since ψ50 is a linear transformation, we
can instead consider the transformation matrix Ψ50 of ψ50. After constructing the
matrix Ψ50 we can verify that ker Ψ50 = {0} with the help of a computer. In order
to construct the matrix Ψ50, we have to choose a basis for the domain π(P50) and a
basis for the image of ψ50. In Section 5.1 we describe a basis A⊗3 for Imψ50. The
basis B50 for the domain π(P50) is then constructed from a Gröbner basis for I4 in
Section 5.2.

In Section 6.2 we then present Algorithm 1 for constructing the transformation
matrix Ψ50. However, this algorithm requires the basis of π(P50) to be given by
a finite automaton. Therefore, the construction of such an automaton will be ex-
plained before in Section 6.1. After constructing the matrix Ψ50, we use Algorithm 2
in Section 6.3 to verify that ker Ψ50 = {0}. The final proof combining the previous
steps is then presented in Section 7.

However, with Theorem 4.8 it is now possible to prove our main result.

Corollary 4.10. Let ϕ3 : C(S+
4) → B3 the ∗-homomorphism which maps uij to

(M3)ij and let p ∈ C 〈X4〉 with deg p ≤ 50. If p(u) 6= 0 then ϕ3(p(u)) 6= 0.

Proof. We prove this statement by contraposition. Let p ∈ C 〈X4〉 with deg p ≤ 50
and ϕ3(p(u)) = 0. Since p(u) is a polynomial expression and ϕ3 a homomorphism,
we get ϕ3(p(u)) = p(M3). Hence, we obtain p(M3) = ϕ3(p(u)) = 0 and p ∈ I4
by Theorem 4.8. It follows from Remark 4.4 that p(u) = 0 because u is a magic
unitary.

19

4 A concrete magic unitary 4.3 Dimension result

Remark 4.11. Corollary 4.10 shows that no polynomial p ∈ C 〈X4〉 with deg ≤ 50
and p(u) 6= 0 but ϕ3(p(u)) = 0 exists. Based on this corollary, we believe that no
such polynomial p with deg p > 50 exists. Since Jung-Weber found polynomials
with degree 1 and 2 for k ≤ 2, it seems unlikely that the case k = 3 would require
a polynomial with degree larger than 50. This would be a negative answer for
Question 3.5 because it would imply the following. If p(R©⊥3) = ϕ3(p(u)) = 0 then
p(u) = 0 such that p(R©⊥4) = ϕ4(p(u)) = 0.

Remark 4.12. To additionally prove that ϕ3 is injective, one would have to show
that no such polynomial p with p(u) 6= 0 but ϕ3(p(u)) = 0 exists. Further, one has
to show that ϕ3 is isometric on polynomials. In this case ϕ3 would be isometric
on C(S+

4) and injective since polynomials are dense in C(S+
4). Note that being

isometric is necessary since C(S+
4) is a C∗-algebra. If ϕ3 is indeed injective then

(B3,M3) is a concrete model for the quantum permutation group S+
4 in the sense

that C(S+
4) is ∗-isomorphic to B3.

Remark 4.13. The maximum degree m = 50 could be increased if one provides
more memory and more computation time. In Section 6.4 we analyse the complexity
of the algorithm used to prove Theorem 4.8 and show that the memory and time
required are asymptotically proportional to m6. This is still polynomial but grows
fast such that checking m = 50 required approximately 904 GB of memory. The
actual running time and memory usage can be found in Appendix B. However, m =
50 gives already strong evidence that no separating polynomial (see Definition 4.5)
for M3 exists.

Remark 4.14. A ∗-algebra A is said to be residually finite dimensional if there
exists an injective ∗-homomorphism

π : A→
∏
i∈I

Mni
(C)

into a product of matrix algebras. In [BCF20], Brannan, Chirvasitu and Freslon
showed that the ∗-algebra A corresponding to S+

n is residually finite dimensional.
Hence, for each ∗-polynomial p 6= 0 in the generators of C(S+

n) there exists a ∗-
homomorphism πi : A → Mni

(C) such that πi(p) 6= 0. Here πi is obtained by
projecting onto the i-th component of π for some i ∈ I depending on p. Compare
this to our result from Corollary 4.10, where the algebra B3 is not a matrix algebra
but might satisfy ϕ(p) 6= 0 for all ∗-polynomials p 6= 0. Hence, being residually finite
dimensional gives further evidence that quiet simple representations of quantum
permutation groups S+

n exist.

4.3 Dimension result

Furthermore, we obtain the following combinatorial results about the dimension of
the subspace π(Pm).

Lemma 4.15. Let Pm ⊆ C 〈X4〉 be the vector space of polynomials up to degree m
and π : C 〈X4〉 → C 〈X4〉 /I4 the canonical projection. Then dim π(Pm) =

(
2m+3

3

)
.

Remark 4.16. The previous lemma will be proven with the help of a computer in
Section 7 after some preparation in Section 5 and Section 6. Here we give a short
overview of the main steps.

20

5 Polynomial and quotient bases

In Section 5.2 we construct a basis Bm for π(Pm) from a Gröbner basis for I4.
This basis Bm can alternatively be described by a finite automaton Γ. In Section 5.3
we show how dim π(Pm) = |Bm| can be computed by counting paths in the finite
automaton Γ. The construction of Γ is then presented in Section 6.1 and the proof
is completed in Section 7.

The previous lemma allows us now to prove the following theorem, which can
be seen as a step towards showing that Corollary 4.10 holds for an arbitrary degree.
This would then imply that Theorem 4.8 holds for an arbitrary degree.

Theorem 4.17. Let Vm := {p ∈ Pm | p(M3) = 0} ⊆ Pm be the vector space of
polynomials up to degree m which vanish in M3. Then codimVm ≤

(
2m+3

3

)
for all

m ∈ N. Furthermore, equality implies that Corollary 4.10 holds for an arbitrary
degree.

Proof. Consider the canonical projection π : C 〈X4〉 → C 〈X4〉 /I4. Then we obtain

dimPm = dim ker π|Pm + dim Imπ|Pm .

Since ker π|Pm = I4 ∩ Pm, we obtain further

dimPm = dim(I4 ∩ Pm) + dim π(Pm).

Because there exist only finitely many monomials up to degree m, it holds that
dimPm <∞. From Lemma 4.15 follows

codim(I4 ∩ Pm) = dimPm − dim(I4 ∩ Pm) = dim π(Pm) =

(
2m+ 3

3

)
.

Since I4 ∩ Pm ⊆ Vm, we get

codimVm ≤ codim(I4 ∩ Pm) =

(
2m+ 3

3

)
.

Equality would imply that I4 ∩ Pm = Vm. In particular, it would follow that p ∈ I4
for each p ∈ C 〈X4〉 with p(M3) = 0.

5 Polynomial and quotient bases

In this section we present some general results which will be used in Section 6
and Section 7 to prove our main theorems. In particular, we present a basis for
polynomials in tensor products of 1, p and q as subspace of A⊗npq . This basis can
then be used to represent Imψm of the mapping ψm from Definition 4.6.

Furthermore, we show how Gröbner bases can be used to construct a basis for
C 〈X〉 /I and how finite automata can be used to compute the dimension of π(Pm) ⊆
C 〈X〉 /I in the notation of Section 4.1. Then these results get applied to the magic
unitary I4 in Section 6 and Section 7 in order to prove our main results.

21

5 Polynomial and quotient bases 5.1 Polynomial basis

5.1 Polynomial basis

We begin with the universal unital C∗-algebra Apq which is generated by the two
projections p and q. The next lemma shows that alternating products of p’s and q’s
are linearly independent.

Lemma 5.1. The set A := {1, p, q, pq, qp, pqp, . . .} ⊆ Apq is linearly independent.

Proof. Let v ∈ A, then we denote by |v| the number of factors of v. Assume A is
not linearly independent, then there exist v0, . . . , vn ∈ A and α1, . . . , αn ∈ C such
that

v0 =
n∑
i=1

αivi.

Without loss of generality we can assume |v0| is maximal of |v0| , . . . , |vn|. Then we
can substitute v0 into all w ∈ A with |w| > |v0|. Denote by 〈A〉 the linear span of
A then

〈A〉 = 〈{v ∈ A | |v| ≤ |v0|}〉

such that A0 := 〈A〉 ⊆ Apq is a finite dimensional subspace. We show that the unit
ball B := {v ∈ A0 | ‖v‖ ≤ 1} is not sequencially-compact which is a contradiction.

Since ‖p‖ = ‖q‖ = 1 and the norm is submultiplicative, we get ‖v‖ ≤ 1 for all
v ∈ A. Consider the following matrices

P :=

(
1 0

0 0

)
, Qθ :=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

These matrices satisfy P 2 = P ∗ = P , Q∗θ = Qθ and

Q2
θ =

(
cos4 θ + cos2 θ sin2 θ cos3 θ sin θ + cos θ sin3 θ

cos3 θ sin θ + cos θ sin3 θ cos2 θ sin2 θ + sin4 θ

)
= Qθ

by using cos2 θ + sin2 θ = 1. According to the universal property of Apq (Proposi-
tion 2.4) there exists a ∗-homomorphism ϕθ : Apq →M2(C) with p 7→ P and q 7→ Qθ.
Since

QθP =

(
cos2 θ 0

cos θ sin θ 0

)
,

we obtain that cos2 θ is an eigenvalue of QθP . Further, we obtain that cos2 θ ∈ σ(qp)
by the existence of ϕθ. By ranging θ between 0 and π

2
it follows that [0, 1] ⊆ σ(qp).

The spectral mapping theorem then implies

σ((qp)n) = {λn | λ ∈ σ(qp)} ⊇ {λn | λ ∈ [0, 1]} = [0, 1].

Consider the sequence (p(qp)n)n∈N ⊆ B. It holds that p(qp)n is self-adjoint because
p and q are self-adjoint. Since σ(xy)∪{0} = σ(yx)∪{0} for all x, y ∈ Apq, it follows
that

σ
(
p(qp)n − p(qp)2n

)
∪ {0} = σ

(
p
[
(qp)n − (qp)2n

])
∪ {0}

= σ
([

(qp)n − (qp)2n
]
p
)
∪ {0}

= σ
(
(qp)n − (qp)2n

)
∪ {0}.

22

5 Polynomial and quotient bases 5.2 Quotient basis

This implies∥∥p(qp)n − p(qp)2n∥∥ = r
(
p(qp)n − p(qp)2n

)
= r

(
(qp)n − (qp)2n

)
because p(qp)n− p(qp)2n is self-adjoint. With the spectral mapping theorem follows
further∥∥p(qp)n − p(qp)2n∥∥ = sup

λ∈σ((qp)n)

∣∣λ− λ2∣∣ ≥ sup
λ∈[0,1]

∣∣λ− λ2∣∣ ≥ 1

2
−
(

1

2

)2

=
1

4
.

Hence, (p(qp)n)n∈N cannot contain any Cauchy subsequence and consequently no
convergent subsequence. This shows B is not sequencially-compact.

The next two lemmas show that a similar result holds for tensor products of Apq
and that A can be used to construct a basis for polynomials in tensor products of
1, p and q.

Lemma 5.2. The set A⊗n := {v1 ⊗ · · · ⊗ vn | v1, . . . , vn ∈ A} ⊆ A⊗npq is linearly
independent.

Proof. Follows from Lemma 5.1 and since ⊗ is constructed from the vector space
tensor product (Definition 2.6).

Lemma 5.3. Denote by A0 ⊆ A⊗npq the algebra of polynomials in A⊗n. Then A0 =
〈A⊗n〉. In particular, A⊗n is a basis of A0.

Proof. The inclusion 〈A⊗n〉 ⊆ A0 follows from the definition of A0. On the other
hand, A⊗n is closed under multiplication since repeated p’s and q’s cancel:

(. . . p) · (p . . .) = . . . p . . . , (. . . p) · (q . . .) = . . . pq . . . ,

(. . . q) · (p . . .) = . . . qp . . . , (. . . q) · (q . . .) = . . . q . . .

Hence, A0 ⊆ 〈A⊗n〉. Furthermore, A⊗n is a basis because A0 = 〈A⊗n〉 and A⊗n is
linearly independent by Lemma 5.2

This basis can then be applied to the replacement homomorphism ϕM3 of our
concrete magic unitary M3.

Lemma 5.4. Let ϕM3 : C 〈X4〉 → A⊗3pq be the replacement homomorphism of the
concrete magic unitary M3. Then ImϕM3 ⊆ 〈A⊗3〉.

Proof. Since the entries of M3 are polynomials in tensor products of 1, p and q, we
obtain that ImϕM3 consists also of polynomials in tensor products of 1, p and q.
Hence, ImϕM3 ⊆ 〈A⊗3〉 by Lemma 5.3.

5.2 Quotient basis

Consider an ideal I ⊆ C 〈X〉 for some arbitrary finite set X and recall the concept
of Gröbner bases from Section 2.3. Let G ⊆ I be a Gröbner basis for I. In the
following we describe how one can obtain a basis for the quotient C 〈X〉 /I from G.

This result gets applied later to the magic unitary ideal I4 in order to obtain a
basis for C 〈X4〉 /I4. Such a basis allows us to construct the transformation matrix
of ψm from Definition 4.6. This matrix plays an important role in proving our main
result.

Now consider again the general case. The following lemma is not new but we
give an own proof of it.

23

5 Polynomial and quotient bases 5.2 Quotient basis

Lemma 5.5. Let I ⊆ C 〈X〉 be an ideal and G a Gröbner basis for I. Then the
residue classes of

B := X? \ {aLT(g)b | g ∈ G, a, b ∈ X?}

are a basis of the quotient C 〈X〉 /I. In particular, the residue classes of B are
pairwise distinct.

Proof. We show separately that B is linearly independent and spanning. Denote by
[p] ∈ C 〈X〉 /I the residue class of p ∈ C 〈X〉.

Independence: Assume {[x] | x ∈ B} is not linearly independent, then there
exist x1, . . . , xn ∈ B and α1, . . . , αn ∈ C \ {0} such that

n∑
i=1

αi [xi] = 0.

Without loss of generality assume x1 < . . . < xn and define p :=
∑n

i=1 αixi. Then
LT(p) = xn and [p] = 0 since [·] is linear. But this means p ∈ I and by definition of
G there exist g ∈ G, a, b ∈ X? such that

xn = LT(p) = aLT(g)b.

This contradicts xn ∈ B by definition. Hence, the residue classes are linear indepen-
dent and in particular pairwise disjoint.

Spanning set: Let S := 〈{[x] | x ∈ B}〉 be the spanning set. It is sufficient
to show [x] ∈ S for all monomials x ∈ X?. Assume there exists x ∈ X? such
that [x] /∈ S. Since X? is well-ordered, let x0 be the minimal monomial with this
property. From the definition of B and since x0 /∈ B, it follows that x0 has the
form x0 = aLT(g)b for some g ∈ G, a, b ∈ X?. Define p := agb then p ∈ I and by
Lemma 2.13 we obtain

LT(p) = LT(agb) = aLT(g)b = x0.

Hence, p can be written as

p = α0x0 +
n∑
i=1

αixi

for some α0, . . . , αn ∈ C \ {0} and x1, . . . , xn ∈ X?. Since LT(p) = x0 we have
xi ≤ x0 for 1 ≤ i ≤ n. Because x0 is minimal with [x0] /∈ S, we obtain [xi] ∈ S for
1 ≤ i ≤ n. Since p ∈ I, it follows that [p] = 0 and

[x0] = − 1

α0

n∑
i=1

αi [xi] ∈ S.

This contradicts our assumption such that S contains the residue classes of all
monomials and S = C 〈X〉 /I.

Remark 5.6. The set B from the previous proposition can alternatively be described
as

B = {x ∈ X? | x contains no leading term from G}.

24

5 Polynomial and quotient bases 5.3 Dimension

Remark 5.7. Let Pm ⊆ C 〈X〉 be the subspace of polynomials up to degree m and
π : C 〈X〉 → C 〈X〉 /I the canonical projection. Since xi < x0 for 1 ≤ i ≤ n in the
proof of the spanning property in Lemma 5.5, we obtain that the residue classes of

Bm := {x ∈ B | deg x ≤ m}

are a basis for π(Pm).

Remark 5.8. Recall finite automata from Section 2.4. In the following we use
X as an alphabet and we identify monomials with words over X as described in
Remark 2.17. If we consider again the description of B in Remark 5.6, one can
recognize that B is a regular language over the alphabet X. This means there exists
a deterministic finite automaton Γ such that B = L(Γ). Hence, there is a bijection
between elements w ∈ B and accepting paths in Γ. In particular, there exists a
bijection between elements in Bm and accepting paths up to length m. We give an
explicit construction of such a finite automaton in Lemma 6.7 in Section 6.1. The
first one who used graphs to describe bases of quotient algebras was Ufnarovskĭı in
[Ufn91]. With this approach it is possible to efficiently enumerate all basis elements
and count them in order to obtain a formula for the dimension.

5.3 Dimension

As in the previous section let I ⊆ C 〈X〉 be an ideal and G ⊆ I a Gröbner basis for
I. Furthermore, let Γ be a deterministic finite automaton with accepting language
L(Γ) = B as mentioned in Remark 5.8 and constructed in Lemma 6.7. Here

B = {x ∈ X? | x contains no leading term from G}

is the basis for C 〈X〉 /I from Remark 5.6. In this section we show how to compute
|Bm| where

Bm = {x ∈ B | deg x ≤ m}.
This corresponds to computing dim π(Pm) in the notation of Remark 5.7 from the
previous section. In particular, this can be used to prove Lemma 4.15 by applying
the results from this section to the magic unitary ideal I4. We refer to Section 7 for
the corresponding proof.

According to Remark 5.8 accepting paths in Γ correspond to words in B. In
particular, accepting paths up to length m correspond to words in Bm. Hence, to
compute |Bm| we have to count all accepting paths in Γ up to length m. For this
task, we first introduce adjacency matrices.

Definition 5.9 (Adjacency matrix). Let Γ be a finite automaton with n states
s1, . . . , sn. Then M ∈Mn(R) with

Mij = |{e ∈ E | e goes from si to sj}| (1 ≤ i, j ≤ n)

is the adjacency matrix of Γ.

The next proposition shows that the adjacency matrix M can be used to count
paths in Γ.

Proposition 5.10. Let Γ be a finite automaton with states s1, . . . , sn and adjacency
matrix M . Then the number of paths from si to sj of length m is given by (Mm)ij.

25

5 Polynomial and quotient bases 5.3 Dimension

Proof. Denote by Ni,j,m the number of paths from state si to state sj with length m.
We want to show that Ni,j,m = (Mm)ij. We prove this statement by induction on m.
The case m = 1 follows directly from Definition 5.9 since paths of length 1 are given
by edges. Now consider m > 1 and two states si and sj. Paths from si to sj of length
m can be decomposed into a path of length m− 1 from si to an intermediate state
sk and an edge from sk to sj. Hence, we obtain all paths of length m by summing
over all intermediate states sk and combining the number Ni,k,m−1 of paths to sk
with the number Nk,j,1 of outgoing edges to sj. Since (Mm−1)ij = Ni,k,m−1 holds by
induction, we get

Ni,j,m =
n∑
k=1

Ni,k,m−1 ·Nk,j,1 =
n∑
k=1

(Mm−1)ik ·Mkj = (Mm)ij.

Example 5.11. Consider the finite automaton from Figure 2. Then we obtain the
adjacency matrix

M =

0 1 0
1 0 2
1 0 1

 and M4 =

3 2 4
6 3 8
4 2 5

 .

For example there are (M4)21 = 6 paths from state 2 to state 1 by using Proposi-
tion 5.10. These are given by

2
c−→ 3

f−→ 3
f−→ 3

e−→ 1, 2
d−→ 3

f−→ 3
f−→ 3

e−→ 1,

2
c−→ 3

e−→ 1
a−→ 2

b−→ 1, 2
d−→ 3

e−→ 1
a−→ 2

b−→ 1,

2
b−→ 1

a−→ 2
c−→ 3

e−→ 1, 2
b−→ 1

a−→ 2
d−→ 3

e−→ 1.

1 2

3

a

b

c d
e

f

Figure 2: Finite automaton with many transitions.

Remark 5.12. Using Proposition 5.10, we obtain a formula for all accepting paths
up to length m by summing over all paths of length k ≤ m ending at a final states
sj ∈ F . Let M be the adjacency matrix of Γ and assume s1 is the initial state. Then
we obtain

|Bm| =
m∑
k=0

∑
sj∈F

(Mk)1j.

If M is for example diagonalizable or admits another simple form, one can possibly
derive an explicit expression for |Bm|.

26

6 Algorithms and time complexity 6.1 Automaton construction

6 Algorithms and time complexity

In this section we present a construction and two algorithms. At first we construct
a finite automaton from a Gröbner basis in order to describe a quotient basis as in
Remark 5.8. Such a finite automaton is required to construct the transformation
matrix Ψm of ψm from Definition 4.6. Further, it allows us to compute dimπ(Pm)
in order prove Lemma 4.15. We refer again to [HMU06] for an introduction to
languages and automaton theory.

Next we present two algorithms to prove Theorem 4.8 in Section 7. In particular,
Algorithm 1 constructs the transformation matrix Ψm and Algorithm 2 shows that
kerψm = {0}. This implies that no separating polynomial up to degree 50 exists for
the magic unitary M3.

At the end of this section we analyse the complexity of the last algorithm and
show that checking until degree m requires time polynomial in m. We refer to
[CLRS09] for an introduction to the design and analysis of algorithms. In particular,
we will use basic data structures, like stacks, queues and hash maps, which can be
found in Chapter 10 and Chapter 11 of [CLRS09].

6.1 Automaton construction

Let I ⊆ C 〈X〉 be an ideal for some arbitrary finite set X. In this section, we give a
general construction of a deterministic finite automaton which describes a basis for
C 〈X〉 /I as mentioned in Remark 5.8.

In particular, this construction gets applied later to the magic unitary ideal I4
in order to obtain a basis Bm for π(Pm) ⊆ C 〈X4〉 /I4 in the notation of Section 4.1.
This basis gets used in Section 6.2 to construct the transformation matrix Ψm of
the mapping ψm from Definition 4.6. Further, this finite automaton will be used
to compute dim π(Pm) as described in Section 5.3. We refer to Remark 4.9 and
Remark 4.16 for a overview of the proofs of our main results and the role of the
finite automaton in this context.

Now consider again the general case. At first, we need a Gröbner basis for the
ideal I. To compute a Gröbner basis we used the computer algebra system GAP and
the package GBNP. For further details see [GAP20] and [CK16]. The corresponding
script can be found in Listing 1 in Appendix C.

Remark 6.1. We are in the non-commutative setting which makes the computation
of a Gröbner basis challenging. It is not guaranteed that an ideal I has a finite
Gröbner basis, even if I is generated by finitely many polynomials. Hence, an
algorithm computing a non-commutative Gröbner basis might not terminate. This
is linked to the undecidability of the word problem in semigroups which is discussed
in Section 1.3 of [Mor94].

Now given a Gröbner basis G ⊆ I, according to Remark 5.6 a basis for C 〈X〉 /I
is given by the residue classes of

B = {x ∈ X? | x contains no leading term from G}.

Hence, we want to construct a deterministic finite automaton which accepts
all words x ∈ X? which do not contain any word from {LT(g) | g ∈ G} as a
subword. In the following we start with the construction of a non-deterministic finite

27

6 Algorithms and time complexity 6.1 Automaton construction

automaton which accepts all words over an alphabet which contain some subwords.
This automaton gets then transformed into a suitable automaton for B.

Proposition 6.2. Let Σ be an alphabet and S ⊆ Σ? a finite set of words. Then
there exists a finite automaton ΓS with accepting language

L(ΓS) = {w ∈ Σ? | w contains a word from S as subword}.

Proof. Define the set of vertices

V := {p ∈ Σ? | ∃s ∈ S : p is a prefix of s}.

Then V is finite and contains all prefixes of all words in S. Further, define the
initial state s0 := ε as the the empty word and the final states F := S. For each
pair v, w ∈ V add a directed edge from v to w with label α ∈ Σ if w = vα. In
addition, add for each α ∈ Σ a self-loop to s0 and to all s ∈ F . Then the resulting
graph looks like a tree where each word w = w1w2 · · ·wn ∈ S has a corresponding
path

ε
w1−→ w1

w2−→ w1w2
w3−→ . . .

wn−→ w1w2 · · ·wn.
Now consider a word w ∈ Σ? which contains a word s ∈ S as subword. Then w

has the form w = asb for some a, b ∈ Σ?. The self-loops at the initial state ε allow
to process the word a. Then the word s can be processed along the path to the final
state s. Finally, the word b can be processed using the self-loops at the final state
s. Hence, the word w gets accepted by the finite automaton ΓS.

Let w ∈ Σ? be a word which gets accepted by ΓS. Then there exists a final state,
corresponding to a word s ∈ S, where the word w ends. But then the word w has
to contain the word s as subword in order to reach the final state s.

Hence, we obtain

L(ΓS) = {w ∈ Σ? | w contains a word from S as subword}.

The last proposition is illustrated in the following example.

Example 6.3. Consider the alphabet Σ = {a, b, c} and the words S = {ac, aba, abc}.
Then Figure 3 shows the resulting finite automaton ΓS from Proposition 6.2, which
accepts all words w ∈ Σ? containing ac, aba or abc as subword. For example, the
word baca gets accepted because of the path

ε
b−→ ε

a−→ a
c−→ ac

a−→ ac.

ε a

ab

ac

aba

abc

a, b, c

a

b

c
a, b, c

a

c

a, b, c

a, b, c

Figure 3: A finite automaton recognizing subwords.

28

6 Algorithms and time complexity 6.1 Automaton construction

Using Proposition 6.2 we can now construct a deterministic finite automaton
accepting all words which do not contain any given subwords.

Lemma 6.4. Let Σ be an alphabet and S ⊆ Σ? a finite set of words. Then there
exists a deterministic finite automaton Γ with accepting language

L(Γ) = {w ∈ Σ? | w contains no word from S as subword}.

Proof. Consider the non-deterministic finite automaton ΓS from Proposition 6.2.
Using Proposition 2.22 we can transform ΓS into a deterministic finite automaton
det(ΓS) which accepts the same language. Next we complement the automaton
det(ΓS) using Proposition 2.21 to obtain the final automaton Γ := det(ΓS). Then Γ
accepts all words in Σ? which do not contain any subword from S.

Remark 6.5. Another possibility than using Proposition 2.22 to transform a non-
deterministic finite automaton into a deterministic one is to use the Brzozowski
algorithm [Brz62], which additionally minimizes the number of states. It is for
example implemented in the computer algebra system SageMath [The20] which we
used.

Note that in the worst case the Brzozowski algorithm requires exponential time
depending on the size of the input finite automaton. However, it was fast enough
in our case and the computation of the Gröbner basis was the more expensive part.
Otherwise, one could for example use the more complex Aho-Corasick algorithm
[AC75] to directly construct the deterministic automaton.

The deterministic finite automaton can then be complemented by basically swap-
ping the accepting and non-accepting states. This algorithm is also implement in
the computer algebra system SageMath.

Example 6.6. Consider again the alphabet Σ = {a, b, c} and the words S =
{ac, aba, abc}. Figure 4 shows the transformed version of the automaton in Ex-
ample 6.3. It accepts all words in Σ? which do not contain ac, aba or abc as a
subword. In addition, it is minimized such that it has only 3 states.

1

2

3

b, c
a

a

b

b

Figure 4: The transformed finite automaton.

The construction in Lemma 6.4 can now be used to construct a deterministic
finite automaton which describes a basis for C 〈X〉 /I.

29

6 Algorithms and time complexity 6.2 Algorithm 1: Matrix construction

Lemma 6.7. Let I ⊆ C 〈X〉 be an ideal and G a Gröbner basis for I. Then there
exists a finite automaton Γ over the alphabet X such that the accepting language
L(Γ) is a basis for C 〈X〉 /I. In particular, all accepted words up to length m are a
basis for π(Pm) ⊆ C 〈X〉 /I. Here Pm ⊆ C 〈X〉 is the vector space of polynomials up
to degree m and π : C 〈X〉 → C 〈X〉 /I the canonical projection.

Proof. According to Lemma 5.5 and Remark 5.6 a basis for C 〈X〉 /I is given by

B = {x ∈ X? | x contains no leading term from G}.

Define S := {LT(g) | g ∈ G} and let Γ be the deterministic finite automaton from
Lemma 6.4. Then

L(Γ) = {x ∈ X? | x contains no word from S as subword} = B.

Further, Remark 5.7 shows that

Bm := {x ∈ B | deg x ≤ m}

is a basis for π(Pm) ⊆ C 〈X〉 /I. Since deg p corresponds to the length of the word
p, we conclude that Bm consists of all accepted words up to length m.

Remark 6.8. The corresponding finite automaton for the magic unitary ideal I4 can
be found in Appendix A and will be discussed in Section 7. The code for computing
this automaton can be found in Appendix C. Listing 1 contains the GAP script
which computes a Gröbner basis for the magic unitary ideal I4. The output is then
used in Listing 2 to compute the finite automaton.

6.2 Algorithm 1: Matrix construction

Consider again the replacement homomorphism ϕM3 : C 〈X4〉 → A⊗3pq in the notation
of Section 4. It can be factored as

C 〈X4〉 A⊗3pq

C 〈X4〉 /I4

π

ϕM3

ψ

where I4 is the magic unitary ideal. As in Definition 4.6 denote by ψm the restriction
of ψ on the subspace π(Pm) ⊆ C 〈X4〉 /I4, where Pm ⊆ C 〈X4〉 is the vector space of
polynomials up to degree m.

In this section we describe how to construct the transformation matrix Ψm of the
mapping ψm. The matrix Ψm gets used in the next section to show that kerψm = {0}
in order to proof our main result in Section 7.

Using Lemma 5.4 we obtain Imψm ⊆ 〈A⊗3〉. Here

A := {1, p, q, pq, qp, pqp, . . .} ⊆ Apq

is defined as in Lemma 5.1 and

A⊗3 := {v1 ⊗ v2 ⊗ v3 | v1, v2, v3 ∈ A} ⊆ A⊗3pq .

Hence, we can choose A⊗3 as a basis for Imψm.

30

6 Algorithms and time complexity 6.2 Algorithm 1: Matrix construction

Remark 6.9. It is straightforward to implement the arithmetics in 〈A⊗3〉. One
possibility is to store an alternating product of p’s and q’s by its first factor and its
length. It is possible to directly combine such products by looking at the parity and
canceling two repeated factors if necessary. The corresponding code can be found
in Listing 3 in Appendix C.

Now let G ⊆ I4 be a Gröbner basis for I4. Then Remark 5.7 shows that the
residue classes of

Bm = {x ∈ X? | deg x ≤ m, x contains no leading term from G}

are a basis for the domain π(Pm).
In Lemma 6.7 in the previous section we describe how to construct a determin-

istic finite automaton Γ, whose accepting path corresponds to B. In particular, to
construct Bm we have to consider all accepting paths up to length m in Γ. We refer
to Section 5.2 for more information on the sets B and Bm.

Remark 6.10. Note that in the finite automaton for I4 every state is final, hence
we can consider all paths up to length m. See Appendix A for the automaton Γ
corresponding to I4.

Since we have chosen the basis Bm for the domain and A⊗3 for the image of ψm,
we can now construct the transformation matrix Ψm with respect to these bases.

Lemma 6.11. Let Γ be a deterministic finite automaton describing the basis Bm of
π(Pm) ⊆ C 〈X4〉 /I4. Then Algorithm 1 constructs the transformation matrix Ψm of
the mapping ψm with respect to the bases Bm and A⊗3.

Proof. To construct the transformation matrix we have to evaluate

ψm([x]) = ϕM3(x) =
n∏
k=1

ϕM3(xikjk) =
n∏
k=1

Mikjk

for each monomial x = xi1j1xi1j1 · · ·xinjn ∈ Bm. Each product gets then represented
with respect to the basis A⊗3 and results in a column of the transformation matrix
Ψm.

To efficiently enumerate the basis Bm, we can use the deterministic finite automa-
ton Γ. According to Lemma 6.7 and Remark 6.10 the elements of Bm correspond to
all paths up to length m in Γ. These paths can be obtained by a breadth-first search.
It is then possible to directly multiply the corresponding entries (M3)ij along a path
and obtain all ϕM3(x) for x ∈ Bm in the same step. More information on breadth-
first searchs and other graph algorithms can for example be found in Chapter 22 of
[CLRS09].

Algorithm 1 shows the pseudocode of the construction algorithm which imple-
ments a breadth-first search using a queue. We represent the state of the search by
a triple (s, p, k). Here s is a node in Γ, p ∈ 〈A⊗3〉 is the monomial evaluated along
the path and k is the length of the path. The idea is to start with (s0, 1⊗ 1⊗ 1, 0)
and to remove the next item (s, p, k) in each step from the queue. Then consider
all outgoing transitions from s to s′ with label xij and add a new item (s′, p′, k + 1)
to the queue. This new item extends the current path along this transition and
contains the corresponding polynomial p′ = p · (M3)ij.

31

6 Algorithms and time complexity 6.3 Algorithm 2: Kernel of Ψm

Remark 6.12. The main advantage of the approach using a finite automaton is
that the running time only depends on the size of the basis |Bm| and not on the
total number of monomials up to length m. In Section 6.4 we give a more detailed
analysis and show that we obtain a running time which is polynomial in m.

A more naive approach would be to generate all monomials up to degree m, check
if they lie in Bm and then evaluate them. However, this would require exponential
time in m since there are 16m of these monomials. Hence, this approach would be
infeasible even for small m.

Algorithm 1 Matrix construction
Input:

matrix M3, finite automaton Γ, maximimum degree m
Output:

matrix Ψm

1: initialize empty matrix Ψm

2: initialize queue Q with (s0, 1⊗ 1⊗ 1, 0)
3: while Q is not empty do
4: remove (s, p, k) from Q
5: insert column corresponding to p into Ψm

6: if k < m then
7: for all transition s→ s′ with label xij do
8: p′ ← p · (M3)ij
9: insert (s′, p′, k + 1) into Q

6.3 Algorithm 2: Kernel of Ψm

Next we present an efficient algorithm to show that ker Ψm = {0} where Ψm is the
matrix constructed in the last section. Since Ψm is the transformation matrix of
ψm, we then obtain kerψm = {0}. Consequently, no separating polynomials up to
degree m exist for the magic unitary M3 in this case. This result for m = 50 will
then be used to prove Theorem 4.8 which implies our main result.

Before we come to the algorithm we describe how we store the matrix Ψm as a
sparse matrix.

Definition 6.13 (Sparse matrix format). The matrix Ψm is stored as a pair (Rows ,
Columns) where Row and Columns are maps such that

1. Rows(i) = {j1, . . . , jni
} is the set of non-zero columns j1, . . . , jni

in row i,

2. Columns(j) = {i1, . . . , imj
} is the set of non-zero rows i1, . . . , imj

in column j.

This structure is chosen for efficiency reasons. The two maps might seem redun-
dant but they allow direct access to every information without searching through
the matrix. Furthermore, only non-zero entries are stored. This saves memory as it
turned out that Ψm is sparse. Algorithm 2 contains the pseudocode of our algorithm
for showing ker Ψm = {0}. It implements a special form of Gaussian elimination
and uses a stack and the previously described maps to efficiently update the matrix
and process rows. In particular, Algorithm 2 computes the following.

32

6 Algorithms and time complexity 6.4 Time complexity

Lemma 6.14. Algorithm 2 computes a lower bound on the rank of the matrix Ψm.
If the lower bound equals the number of columns of Ψm, then ψm is injective.

Proof. The main idea of the algorithm is to use a special form of Gaussian elimina-
tion and transform Ψm using elementary row operations, which preserve the rank
of Ψm. We are looking for a row i which contains only one non-zero entry in some
column j. Next we eliminate all entries in column j which occur in other rows k 6= i.
If such a row then contains only one non-zero remaining entry, we can push k to
a stack. This stack contains the rows with one remaining entry which we consider
next. Each row with one non-zero entry is linearly independent to all other rows.
Hence, the total number of such rows is a lower bound on the rank of the matrix
Ψm. Note that a row which was pushed to the stack could have been eliminated
completely before it gets processed. In this case the row can be written as a linear
combination of other rows and does not contribute to the rank of the matrix.

Assume we obtain a lower bound equal to the number of columns of Ψm. Since
the number of columns is a upper bound on the rank of a matrix, the rank of Ψm

has to equal the number of its columns. Hence dim ker Ψm = 0 and Ψm has to
be injective. Since Ψm is the transformation matrix of ψm, we obtain that ψm is
injective.

Algorithm 2 Matrix elimination
Input:

sparse nr × nc matrix Ψm = (Rows , Columns)
Output:

lower bound rank for the rank of Ψm

1: rank ← 0
2: initialize empty stack S
3: for i = 1, . . . , nr do
4: if |Rows(i)| = 1 then
5: push i to S

6: while S is not empty do
7: pop i from S
8: if |Rows(i)| = 1 then
9: {j} ← Rows(i)

10: for k ∈ Columns(j) do
11: if k 6= i then
12: delete j from Rows(k)
13: if |Rows(k)| = 1 then
14: push k to S

15: Columns(j)← {i}
16: rank ← rank + 1

6.4 Time complexity

Now we analyse the time complexity of Algorithm 1 and Algorithm 2. See again
[CLRS09] for more information on the time complexity of data structures, like hash
maps or linked-lists, and on the analysis of algorithms in general. At first we intro-
duce some notation.

33

6 Algorithms and time complexity 6.4 Time complexity

Definition 6.15. Let f, g : N→ N, then we say f ∈ O(g) if

lim sup
x→∞

f(x)

g(x)
<∞.

This means f does not grow faster than g ignoring constant factors.

When analysing algorithms we try to estimate the number of basic operations
depending on an input size n. Such operations are for example arithmetic operations,
comparisons or memory operations like reading or assigning a variable. We say an
algorithm has complexity O(f(n)) if the number of such basic operations, depending
on n, is in O(f(n)). In the following we fix the matrix dimension n = 4 and let the
maximimum degree m be our input size.

At first consider the algebra A0 := 〈A⊗3〉 from Lemma 5.3. Denote by |a| the
number of non-zero coefficients of a ∈ A0 if a is represented with respect to A⊗3.
Then we obtain the following complexity for multiplication in A0.

Lemma 6.16. Let a, b ∈ A0. Then a · b can be computed in O(|a| · |b|) with respect
to the basis A⊗3.

Proof. This can be done with naive multiplication by using the linearity of ⊗ and
combining each basis vector of a with each basis vector of b. If one represents an
alternating product of p’s and q’s for example as a pair of its first factor and its
length, one can combine two basis vectors in constant time.

Next we consider the complexity of Algorithm 1 and Algorithm 2.

Lemma 6.17. Algorithm 1 for constructing the matrix Ψm has a complexity of
O(N) where N is the number of non-zero entries in Ψm.

Proof. With Lemma 6.16 follows that

p′ ← p · (M3)ij

takes time O(|p|) since we fix M3 such that |(M3)ij| is bounded. Hence, computing
a triple (s, p, k) can be done in O(|p|). Using hash maps for our sparse matrix Ψm =
(Rows , Columns), we can insert the coefficients of p into Ψm in O(|p|) on average.
Furthermore, a queue allows all operations in O(1) if implemented for example as
linked-list. Hence, we obtain an overall complexity of O(N) for Algorithm 1 where

N :=
∑
p

|p| =
∑
x∈Bm

|ψm(x)|

is the number of non-zero entries in the matrix Ψm.

Lemma 6.18. Algorithm 2 for checking ker Ψm = {0} has a complexity of O(N)
where N is the number of non-zero entries in Ψm.

Proof. Since we store the matrix Ψm in the special form Ψm = (Rows , Columns), we
can process each non-zero entry of Ψ in O(1). This is because each access to Rows
or Columns takes time O(1) on average and a stack can be accessed and modified
in O(1) if implemented for example as linked-list. Similar, sets allow access and
modifications in O(1) on average if they are implemented hash-based. Hence, we
obtain an overall complexity of O(N) for eliminating the matrix where N is the
total number of non-zero entries in Ψm.

34

7 Proofs of the main results

Remark 6.19. Since every algorithm computing Ψm needs at least O(N) time to
compute the N non-zero entries, both algorithms are optimal in this sense.

Next we estimate the number of non-zero entries N such that we obtain an
overall complexity which only depends on m.

Lemma 6.20. The matrix Ψm has O(m6) non-zero entries.

Proof. We estimate the dimension of the matrix Ψm to obtain an upper bound on
the total number of entries in Ψm. This number is also an upper bound on the
number N of non-zero entries in Ψm.

The number of columns of Ψm is given by |Bm| = dimπ(Pm) which equals
(
2m+3

3

)
by Lemma 4.15. On the other hand, consider the set

Am := {1, p, q, . . . , (pq . . .)︸ ︷︷ ︸
m

, (qp . . .)︸ ︷︷ ︸
m

} ⊆ A.

Since monomials in Bm consists of at most m factors, we get that Im Ψm is contained
in the linear span of

A⊗3m := {v1 ⊗ v2 ⊗ v3 | v1, v2, v3 ∈ Am}.

Because |Am| = 2m+ 1, we obtain that |A⊗3m | = (2m+ 1)3. Hence

dim Im Ψm ≤
∣∣A⊗3m ∣∣ = (2m+ 1)3

such that Ψm has at most (2m+ 1)3 rows. This implies that

N ≤
(

2m+ 3

3

)
· (2m+ 1)3 =

32

3
m6 + 48m5 + . . .+ 1.

where N is the number of non-zero entries in Ψm. Consequently, Ψm has O(m6)
non-zero entries.

Lemma 6.21. Algorithm 1 and Algorithm 2 for constructing the matrix Ψm and
checking ker Ψm = {0} have a complexity of O(m6)

Proof. Lemma 6.17 and Lemma 6.18 show that Algorithm 1 and Algorithm 2 have a
complexity of O(N) where N is the number of non-zero entries in Ψm. Lemma 6.20
then shows that N ∈ O(m6).

7 Proofs of the main results

In this section we present the results from running the algorithms in the previous
section and prove Theorem 4.8 and Lemma 4.15. The corresponding listings contain-
ing the code can be found in Appendix C. In the end we discuss the generalizability
of our approach to n > 4.

We begin with Gröbner bases and the construction of the finite automaton. The
GAP script for computing a Gröbner basis for the magic unitary ideal I4 can be
found in Listing 1. Its output can be used to construct the corresponding finite
automaton using the script in Listing 2 which implements the approach described
in Section 6.1.

The resulting finite automaton and its adjacency matrix can then be found in
Appendix A. It has 17 states where state 0 is the initial state and every state is
accepting.

35

7 Proofs of the main results

Proof of the dimension formula. Using this automaton it is now possible to
prove Lemma 4.15 from Section 4.2.

Proof of Lemma 4.15. Recall that we want to show the following statement:

Let Pm ⊆ C 〈X4〉 be the vector space of polynomials up to degree m and π : C 〈X4〉 →
C 〈X4〉 /I4 the canonical projection. Then dim π(Pm) =

(
2m+3

3

)
.

According to Remark 5.7 a basis for π(Pm) is given by

Bm = {x ∈ B | deg x ≤ m}

where the set B is defined as in Lemma 5.5. In Section 6.1 we showed that the
paths up to length m in the previously computed finite automaton correspond to
monomials in Bm.

By using Proposition 5.10 and computing the Jordan normal form of the adja-
cency matrix in Listing 2, we obtain that there are (2k + 1)2 accepting paths of
length k. Hence

dim π(Pm) = |Bm| =
m∑
k=0

(2k + 1)2
(∗)
=

1

6
(2m+ 1)(2m+ 2)(2m+ 3) =

(
2m+ 3

3

)
.

Here (∗) can be proven using induction.

Remark 7.1. We were also able to compute Gröbner bases for the magic unitary
ideals I5 and I6 and obtained finite automata with 26 and 37 states respectively.
These contain O(6.86k) and O(13.93k) paths of length k. Furthermore, |Bm| grows
indeed exponentially in these cases such that it would be infeasible to construct the
matrix Ψm even for smaller m.

Proof of the main theorem. Recall the notation from Section 4 and consider
the replacement homomorphism ϕM3 : C 〈X4〉 → A⊗3pq which can be factored as

C 〈X4〉 A⊗3pq

C 〈X4〉 /I4

π

ϕM3

ψ

As in Definition 4.6 denote by ψm the restriction of ψ on the subspace π(Pm) ⊆
C 〈X4〉 /I4, where Pm ⊆ C 〈X4〉 is the vector space of polynomials up to degree m.

Both Algorithm 1 and Algorithm 2 from Section 6 are implemented in Listing 4.
They construct the transformation matrix Ψm of ψm and check that kerψm = {0}
for a given m. We ran these algorithms on a computer until m = 50 and found
that kerψm = {0} in these cases. This can be used to prove Theorem 4.8 from
Section 4.2.

Proof of Theorem 4.8. Recall the statement of the theorem:

Let p ∈ C 〈X4〉 with deg p ≤ 50. If p(M3) = 0 then p ∈ I4.

Now let p ∈ C 〈X4〉 with deg p ≤ 50 and p(M3) = 0. Then ϕM3(p) = 0 and π(p) ∈
kerψm since ϕM3 = ψ ◦ π. Using Algorithm 1 and Algorithm 2 from Section 6 we
obtain kerψm = {0} for m ≤ 50. Hence, π(p) = 0 which implies p ∈ kerπ = I4.

36

A Finite automaton

Remark 7.2. The following table contains the number of rows, columns and non-
zero entries of Ψm for some m ≤ 50. Furthermore, we include the memory usage
and runtime of our script. The complete table can be found in Appendix B.

m rows columns non-zero entries memory in MB runtime in s
0 1 1 1 64.10 0.01
1 25 10 56 64.93 0.02
2 123 35 533 71.19 0.10
3 337 84 2,329 72.56 0.32
4 715 165 7,661 77.31 0.81
5 1,325 286 2,1475 87.71 1.65

10 9,259 1,771 766,875 291.82 10.26
15 29,785 5,456 7,428,961 1,459.33 47.27
20 68,907 12,341 38,549,908 6,617.87 223.58
25 132,645 23,426 141,363,373 21,644.80 811.13
30 226,979 39,711 409,560,591 58,731.43 2404.19
40 531,427 91,881 2,226,617,868 287,786.20 15656.99
50 1,030,299 176,851 8,332,940,867 904,425.89 75200.15

Generalizability. Consider again Question 3.3 which asks for vanishing polyno-
mials in the general setting where n can be greater than 4. It turns out that our
approach does not work for n = 5, 6 and any sequence of pairs (Bk,Mk) constructed
in [JW20].

Consider such an arbitrary sequence of pairs (Bk,Mk) and fix a k ∈ N. Then
Bk ⊆ A⊗Nk

pq for some Nk ∈ N. As in the case n = 4 we can consider the magic
unitary ideal In and factor the replacement homomorphism ϕMk

: C 〈Xn〉 → A⊗Nk
pq

as ϕMk
= ψ ◦ π. Next we restrict ψ to π(Pm) and consider the mappings ψm from

Definition 4.6. A similar argument as in Lemma 6.20 shows that dim Imψm ≤
(2m+ 1)Nk . Hence, the dimension grows only polynomial in m. On the other hand,
Remark 7.1 shows that dimπ(Pm) grows exponentially in m for n = 5 and n = 6.
Consequently, there exists a m0 such that dim Imψm0 < dim π(Pm0). In this case
kerψm0 6= {0} and ψm0 is not injective anymore.

Consider a non-zero [p] ∈ kerψm0 then p does not lie in the magic unitary
ideal In but vanishes in Bk. Hence, p is a separating polynomial for Mk such that
Theorem 4.8 no longer holds for Mk and a degree of at least m0.

The polynomial p would be a candiate to answer Question 3.3 positively, however
it is still possible that p would also vanish in C(S+

n). Consequently, we are not able
to answer Question 3.3 and both outcomes are still possible.

The previous dimension argument further shows that the case n = 4 and the
quantum permutation group S+

4 are special and that S+
4 has other properties than

S+
n for n ≥ 5. A different property is for example that S+

4 is amenable whereas S+
n

is not amenable anymore for n ≥ 5 (see [Ban98]). This gives further evidence that
somewhat simple models of S+

4 exist.

A Finite automaton

Figure 5 shows the finite automaton which was constructed from a Gröbner basis
for the magic unitary ideal I4. See again Section 6.1 for details on the construction.

37

A Finite automaton

The automaton was computed using Listing 1 and Listing 2 in Appendix C. Paths
up to length m correspond to monomials which form a basis of π(Pm) ⊆ C 〈X4〉 /I4.
The grey edges are only coloured differently for a better visualization. The finite
automaton has 17 states where state 0 is the initial state and all states are final.

0

5124

3

10

8

15

6 12713

1114

9

16

x
11x 1

2

x
13

x21
x
22

x
2
3x

3
1

x 3
2

x
3
3

x22

x
2
3x32

x
3
3

x21

x
23

x
3
1

x
3
3

x 2
1x31

x12

x13

x 3
2

x
33

x11

x
1
3x31

x 3
3

x
3
1

x11

x12

x
1
3x

13

x
1
1

x
1
1

x 1
3

x33

x13

x23

x 3
3

x31

x
33

x31

x
3
2

x
33

x
3
3

Figure 5: Finite automaton for the magic unitary ideal I4.

The following matrix is the adjacency matrix of the finite automaton in Figure 5.
The rows and columns of this matrix correspond to the states 0, . . . , 16. Note that
zeros are represented by dots.

38

B Program output

· 1 1 1 1 1 1 1 1 1 · · · · · · ·
· · · · · 1 1 · 1 1 · · · · · · ·
· · · · 1 · 1 1 · 1 · · · · · · ·
· · · · · · · · · · 1 1 · · · · ·
· · 1 1 · · · · 1 1 · · · · · · ·
· 1 · 1 · · · 1 · 1 · · · · · · ·
· · · · · · · · · · · 1 1 · · · ·
· · · · · · · · · · · · · 1 1 · ·
· · · · · · · · · · · · · · 1 1 ·
· · · · · · · · · · · · · · · · 1
· · · 1 · · · · · 1 · · · · · · ·
· · · · · · · · · · · · · · 1 · ·
· · · · · · 1 · · 1 · · · · · · ·
· · · · · · · 1 · 1 · · · · · · ·
· · · · · · · · · · · 1 · · · · ·
· · · · · · · · 1 1 · · · · · · ·
· · · · · · · · · 1 · · · · · · ·

B Program output

Table 1 shows the output of the main script in Listing 4 up to m = 50. It contains
information on the matrix Ψ50, on the runtime and memory usage of the program.
Note that the memory usage and runtime were measured after all paths up to length
k were processed and triples for paths of length k + 1 were already stored in the
queue. The last row was recorded after the whole matrix Ψ50 was constructed.
The complete runtime was 83292.65s ≈ 23h where Algorithm 1 took 75200.15s and
Algorithm 2 took 8092.49s.

m rows columns non-zero entries memory in MB runtime in s
0 1 1 1 64.10 0.01
1 25 10 56 64.93 0.02
2 123 35 533 71.19 0.10
3 337 84 2,329 72.56 0.32
4 715 165 7,661 77.31 0.81
5 1,325 286 2,1475 87.71 1.65
6 2,195 455 5,2188 101.01 2.77
7 3,369 680 11,5576 124.14 4.17
8 4,899 969 230,836 158.97 5.76
9 6,853 1,330 435,710 207.65 7.71

10 9,259 1,771 766,875 291.82 10.26
11 12,161 2,300 130,1782 377.08 13.73
12 15,611 2,925 2,102,394 567.04 18.50
13 19,677 3,654 3,309,355 751.73 25.14
14 24,387 4,495 5,001,791 1,114.01 34.46
15 29,785 5,456 7,428,961 1,459.33 47.27
16 35,923 6,545 10,690,275 2,117.95 65.10
17 42,869 7,770 15,183,027 2,728.92 88.88
18 50,651 9,139 20,994,111 3,814.02 124.38
19 59,313 10,660 28,764,159 4,832.58 167.88
20 68,907 12,341 38,549,908 6,617.87 223.58
21 79,501 14,190 51,306,330 8,156.81 293.74
22 91,123 16,215 66,978904 11,075.49 388.22

39

C Code

23 103,817 18,424 86,984702 13,512.27 504.34
24 117,635 20,825 111,100,537 17,452.11 638.06
25 132,645 23,426 141,363,373 21,644.80 811.13
26 148,875 26,235 177,214,474 26,158.60 1014.31
27 166,369 29,260 221,537,068 31,445.63 1263.80
28 185,179 32,509 273,349,116 41,159.18 1582.60
29 205,373 35,990 336,588,947 48,915.85 1959.78
30 226,979 39,711 409,560,591 58,731.43 2404.19
31 250,041 43,680 497,647,792 70,061.36 2949.53
32 274,611 47,905 598,230,517 83,046.25 3593.48
33 300,757 52,394 718,460,728 98,681.49 4377.11
34 328,507 57,155 854,404,297 116,366.46 5284.42
35 357,905 62,196 1,015,513,951 138,693.17 6423.08
36 389,003 67,525 1,196,211,892 163,767.06 7718.23
37 421,869 73,150 1,408,706,390 193,272.38 9273.69
38 456,531 79,079 1,645,147,738 227,551.41 11162.03
39 493,033 85,320 1,921,306,990 264,278.20 13321.08
40 531,427 91,881 2,226,617,868 287,786.20 15656.99
41 571,781 98,770 2,580,967,612 338,526.96 19012.22
42 614,123 105,995 2,970,195,853 393,371.16 22895.79
43 658,497 113,564 3,419,412,752 457,684.81 27845.98
44 704,955 121,485 3,910,194,852 492,858.52 32279.49
45 753,565 129,766 4,473,713,835 577,502.78 39637.46
46 804,355 138,415 5,086,153,397 636,655.29 46904.09
47 857,369 147,440 5,786,063,119 685,628.80 54060.19
48 912,659 156,849 6,543,289,250 739,143.00 62507.53
49 970,293 166,650 7,404,918,969 796,545.04 71628.69
50 1,030,299 176,851 8,332,940,867 904,425.89 75200.15

Table 1: Output of Listing 4 up to m = 50.

C Code

The following section contains the code which was used to obtain our results. List-
ing 1 is used to compute a Gröbner basis for a magic unitary ideal In. We ran it with
GAP 4.11.0 [GAP20] and it requires the package GBNP 1.0.3 [CK16]. The output of
Listing 1 is then used in Listing 2 to construct a finite automaton corresponding to
a basis for C 〈Xn〉 /In. This script was executed with Python 3.8.5 and requires the
computer algebra system SageMath 9.1 [The20]. It outputs the finite automaton, its
adjacency matrix and a formula for the number of paths. This formula is obtained
by SageMath as described in Section 5.3 by computing the Jordan normal form of
the adjacency matrix.

Listing 3 then contains the arithmetics in A⊗3pq whereas Listing 4 contains the
main program which implements Algorithm 1 and Algorithm 2 from Section 6. It
was run with PyPy 7.0.0 for a speedup but it is compatible with Python 2.7.13 and
Python 3.8.5. The maximum degree m is passed as first command-line argument.

40

C Code

1 LoadPackage("GBNP");

2

3 N := 4; # size of the magic unitary

4

5 A := FreeAssociativeAlgebraWithOne(Rationals, N * N, "R");

6 Generators := GeneratorsOfAlgebra(A);

7 A_One := Generators[1]; # unit in A

8

9 # construct a matrix M containing the generators

10 M := [];

11 for i in [1..N] do

12 Row := [];

13 for j in [1..N] do

14 Add(Row, Generators[N * (i - 1) + j + 1]);

15 od;

16 Add(M, Row);

17 od;

18

19 # define the magic unitary relations

20 Relations := [];

21

22 for i in [1..N] do

23 # sum of elements in the same column

24 Rel := -A_One;

25 for j in [1..N] do

26 Rel := Rel + M[i][j];

27 od;

28 AddSet(Relations, GP2NP(Rel));

29 # sum of elements in the same row

30 Rel := -A_One;

31 for j in [1..N] do

32 Rel := Rel + M[j][i];

33 od;

34 AddSet(Relations, GP2NP(Rel));

35 od;

36

37 for i1 in [1..N] do for j1 in [1..N] do

38 for i2 in [1..N] do for j2 in [1..N] do

39 if i1 = i2 and j1 = j2 then

40 # square of an element

41 Rel := M[i1][j1] * M[i1][j1] - M[i1][j1];

42 AddSet(Relations, GP2NP(Rel));

43 elif i1 = i2 or j1 = j2 then

44 # product in the same row / column

45 Rel := M[i1][j1] * M[i2][j2];

46 AddSet(Relations, GP2NP(Rel));

47 fi;

48 od; od;

49 od; od;

50

51 # compute and display the Groebner basis

52 GB := SGrobner(Relations);

53 Display(GB);

Listing 1: code/quotient.g

41

C Code

1 import ast

2 import sage.all as sage

3

4 # read the output of 'quotient.g' from the file 'groebner_basis.txt'

5 with open("groebner_basis.txt") as file:

6 data = file.read()

7

8 basis = ast.literal_eval(data)

9

10 n = 4 # size of the magic unitary

11 variables = range(1, n * n + 1)

12 leading_terms = [tuple(monomials[0]) for monomials, _ in basis]

13

14 # construction of the non-deterministic finite automaton

15 initial_state = tuple()

16 transitions = []

17

18 # add self-loops to the initial state

19 for variable in variables:

20 transitions.append((initial_state, initial_state, variable))

21

22 for word in leading_terms:

23 # add a path corresponding to the leading term

24 for i in range(len(word)):

25 transitions.append((word[:i], word[:i+1], word[:i+1][-1]))

26

27 # add self-loops to the final state

28 for variable in variables:

29 transitions.append((word, word, variable))

30

31 automaton = sage.Automaton(

32 transitions,

33 initial_states=[initial_state],

34 final_states=leading_terms,

35 input_alphabet=variables

36)

37

38 # transform the automaton

39 automaton = automaton.minimization().complement()

40

41 # remove the 'dead state'

42 for state in automaton.states():

43 is_dead_end = all(trans.to_state == state for trans in state.transitions)

44 if not state.is_final and is_dead_end:

45 break

46

47 automaton.delete_state(state)

48

49 # print the final automaton, adjacency matrix and number of paths

50 automaton = automaton.relabeled()

51 M = automaton.adjacency_matrix(entry=lambda x: 1)

52

53 print(automaton)

54 print(M)

55 print(automaton.number_of_words())

Listing 2: code/automaton.py

42

C Code

1 def proj_mult(x, y):

2 """

3 Multiplies 'x' and 'y' as alternating products of p's and q's.

4 Such products are represented as pairs (start, length).

5 """

6 start1, length1 = x

7 start2, length2 = y

8

9 # nothing to check if a factor is '1'

10 if start1 == START_ONE:

11 return y

12 if start2 == START_ONE:

13 return x

14

15 # combine the products and possibly remove a factor

16 if start1 == START_P:

17 if ((start2 == START_P and length1 % 2 == 0) or

18 (start2 == START_Q and length1 % 2 == 1)):

19 return (START_P, length1 + length2)

20 else:

21 return (START_P, length1 + length2 - 1)

22

23 if start1 == START_Q:

24 if ((start2 == START_Q and length1 % 2 == 0) or

25 (start2 == START_P and length1 % 2 == 1)):

26 return (START_Q, length1 + length2)

27 else:

28 return (START_Q, length1 + length2 - 1)

29

30

31 def tensor_mult(x, y):

32 """

33 Multiplies 'x' and 'y' as tensor product of alternating p's and q's.

34 Such a tensor products are represented as triple (alt1, alt2, alt3).

35 """

36 return (

37 proj_mult(x[0], y[0]), proj_mult(x[1], y[1]), proj_mult(x[2], y[2]),

38)

39

40 def mult(x, y):

41 """

42 Multiplies 'x' and 'y' as linear combinations of tensor products.

43 Such linear combinations are represented as dictionary

44 {tensor1: coeff1, tensor2: coeff2, ...} storing only non-zero coefficients.

45 """

46 result = {}

47 for tensor1, coeff1 in x.items():

48 for tensor2, coeff2 in y.items():

49 new_tensor = tensor_mult(tensor1, tensor2)

50 new_coeff = result.get(new_tensor, 0) + coeff1 * coeff2

51 if new_coeff != 0:

52 result[new_tensor] = new_coeff

53 elif new_tensor in result:

54 del result[new_tensor]

55 return result

56

57 START_ONE, START_P, START_Q = 0, 1, 2

58

43

C Code

59 I = (START_ONE, 0) # the unit '1'

60 P = (START_P, 1) # a single 'p'

61 Q = (START_Q, 1) # a single 'q'

62

63 # the matrix M_3 := R^{\operp 3}

64 M = [

65 [

66 {(P, P, P): 1,

67 (I, Q, I): 1, (I, Q, P): -1, (P, Q, I): -1, (P, Q, P): 1},

68 {(P, I, Q): 2, (P, P, Q): -1,

69 (I, I, I): 1, (I, I, Q): -1, (I, Q, I): -1, (I, Q, Q): 1,

70 (P, I, I): -1, (P, Q, I): 1, (P, Q, Q): -1},

71 {(P, P, I): 1, (P, P, P): -1, (I, Q, P): 1, (P, Q, P): -1},

72 {(P, I, I): 1, (P, I, Q): -2, (P, P, I): -1, (P, P, Q): 1,

73 (I, I, Q): 1, (I, Q, Q): -1, (P, Q, Q): 1}

74],

75 [

76 {(I, P, P): 1, (P, P, P): -1, (P, Q, I): 1, (P, Q, P): -1},

77 {(I, I, Q): 1, (I, P, Q): -1, (P, I, Q): -2, (P, P, Q): 1,

78 (P, I, I): 1, (P, Q, I): -1, (P, Q, Q): 1},

79 {(I, P, I): 1, (I, P, P): -1, (P, P, I): -1, (P, P, P): 1,

80 (P, Q, P): 1},

81 {(I, I, I): 1, (I, I, Q): -1, (I, P, I): -1, (I, P, Q): 1,

82 (P, I, I): -1, (P, I, Q): 2, (P, P, I): 1, (P, P, Q): -1,

83 (P, Q, Q): -1}

84],

85 [

86 {(Q, P, P): -1,

87 (I, I, I): 1, (I, I, P): -1, (I, Q, I): -1, (I, Q, P): 1,

88 (Q, I, I): -1, (Q, I, P): 2, (Q, Q, I): 1, (Q, Q, P): -1},

89 {(Q, P, Q): 1,

90 (I, Q, I): 1, (I, Q, Q): -1, (Q, Q, I): -1, (Q, Q, Q): 1},

91 {(Q, I, I): 1, (Q, I, P): -2, (Q, P, I): -1, (Q, P, P): 1,

92 (I, I, P): 1, (I, Q, P): -1, (Q, Q, P): 1},

93 {(Q, P, I): 1, (Q, P, Q): -1,

94 (I, Q, Q): 1, (Q, Q, Q): -1}

95],

96 [

97 {(I, I, P): 1, (I, P, P): -1, (Q, I, P): -2, (Q, P, P): 1,

98 (Q, I, I): 1, (Q, Q, I): -1, (Q, Q, P): 1,},

99 {(I, P, Q): 1, (Q, P, Q): -1, (Q, Q, I): 1, (Q, Q, Q): -1},

100 {(I, I, I): 1, (I, I, P): -1, (I, P, I): -1, (I, P, P): 1,

101 (Q, I, I): -1, (Q, I, P): 2, (Q, P, I): 1, (Q, P, P): -1,

102 (Q, Q, P): -1},

103 {(I, P, I): 1, (I, P, Q): -1, (Q, P, I): -1, (Q, P, Q): 1,

104 (Q, Q, Q): 1}

105]

106]

Listing 3: code/algebra.py

1 try:

2 import queue

3 except ImportError:

4 import Queue as queue

5 import resource

6 import sys

7

44

C Code

8 from algebra import I, mult, M

9

10 # description of the finite automaton generating the quotient basis of I_4

11 # it has the form {state: [(next_state, evaluated_label), ...], ...}

12 transitions = {

13 0: [(1, M[0][0]), (2, M[0][1]), (3, M[0][2]), (4, M[1][0]), (5, M[1][1]),

14 (6, M[1][2]), (7, M[2][0]), (8, M[2][1]), (9, M[2][2])],

15

16 1: [(9, M[2][2]), (8, M[2][1]), (6, M[1][2]), (5, M[1][1])],

17 2: [(4, M[1][0]), (6, M[1][2]), (7, M[2][0]), (9, M[2][2])],

18 4: [(2, M[0][1]), (3, M[0][2]), (8, M[2][1]), (9, M[2][2])],

19 5: [(1, M[0][0]), (3, M[0][2]), (7, M[2][0]), (9, M[2][2])],

20

21 8: [(15, M[0][0]), (14, M[0][2])],

22 7: [(13, M[0][1]), (14, M[0][2])],

23 6: [(12, M[0][0]), (11, M[2][0])],

24 3: [(10, M[1][0]), (11, M[2][0])],

25

26 15: [(8, M[2][1]), (9, M[2][2])],

27 12: [(6, M[1][2]), (9, M[2][2])],

28 13: [(7, M[2][0]), (9, M[2][2])],

29 10: [(3, M[0][2]), (9, M[2][2])],

30

31 14: [(11, M[2][0])],

32 11: [(14, M[0][2])],

33

34 9: [(16, M[0][0])],

35 16: [(9, M[2][2])],

36 }

37

38 def log(msg):

39 """

40 Prints the current matrix size and resource usage. Uses the global

41 variables 'rows', 'columns' and 'non_zero_entries'.

42 """

43 res = resource.getrusage(resource.RUSAGE_SELF)

44 form = "{} - rows: {} - columns: {} - entries: {} - memory: {} - time: {}"

45 print(form.format(

46 msg, len(rows), len(columns), non_zero_entries,

47 res.ru_maxrss, res.ru_utime

48))

49

50 max_degree = int(sys.argv[1]) # maximum degree 'm' to check

51 last_degree = 0 # used for logging

52

53 # sparse matrix \Psi_m

54 rows = {} # maps a row index to non-zero column indices

55 columns = {} # maps a column index to non-zero row indices

56 row_id = {} # maps a tensor to a row index

57 non_zero_entries = 0 # used for logging

58

59 # Algorithm 1: breadth-first search

60 queue = queue.Queue()

61 queue.put((0, {(I, I, I): 1}, 0))

62

63 while not queue.empty():

64 state, monomial, degree = queue.get()

65

45

C Code

66 # log intermediate results when starting to process the next degree

67 if degree > last_degree:

68 log("degree %d" % last_degree)

69 last_degree = degree

70

71 column = len(columns) # current column index

72 columns[column] = set()

73

74 for tensor, coeff in monomial.items():

75 # add a new row if the tensor has not be seen before

76 if tensor not in row_id:

77 row_id[tensor] = len(rows)

78 rows[len(rows)] = set()

79

80 row = row_id[tensor] # current row index

81

82 # insert (row, column) into the sparse matrix

83 columns[column].add(row)

84 rows[row].add(column)

85 non_zero_entries += 1

86

87 if degree < max_degree:

88 for next_state, label in transitions[state]:

89 queue.put((next_state, mult(monomial, label), degree + 1))

90

91 log("degree %d" % max_degree)

92

93

94 # Algorithm 2: matrix elimination

95 stack = []

96 rank = 0 # lower bound on the rank of \Psi_m

97

98 for i in rows:

99 if len(rows[i]) == 1:

100 stack.append(i)

101

102 while stack:

103 i = stack.pop()

104

105 # row already completely eliminated

106 if len(rows[i]) == 0:

107 continue

108

109 j, = rows[i]

110

111 for k in columns[j]:

112 if k != i:

113 rows[k].remove(j)

114 if len(rows[k]) == 1:

115 stack.append(k)

116

117 columns[j] = {i}

118 rank += 1

119

120 log("finished")

121

122 # print result

123 print("The rank is at least %d of %d." % (rank, len(columns)))

46

C References

124 if rank == len(columns):

125 print("No such polynomial up to degree %d exists." % max_degree)

126 else:

127 print("Such a polynomial might exist.")

Listing 4: code/main.py

References

[AC75] A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18:333–340, June 1975.

[Ban98] T. Banica. Symmetries of a generic coaction. Mathematische Annalen, 314,
December 1998.

[Ban05] T. Banica. Quantum automorphism groups of homogeneous graphs. Jour-
nal of Functional Analysis, 224:243–280, July 2005.

[BB07] T. Banica and J. Bichon. Quantum groups acting on 4 points. Journal für
die Reine und Angewandte Mathematik, 2009, April 2007.

[BCF20] M. Brannan, A. Chirvasitu, and A. Freslon. Topological generation and
matrix models for quantum reflection groups. Advances in Mathematics,
363:106982, March 2020.

[Bic99] J. Bichon. Quantum automorphism groups of finite graphs. Proceedings of
the American Mathematical Society, 131, March 1999.

[Bla06] B. Blackadar. Operator algebras. Theory of C*-algebras and von Neumann
algebras, volume 122. Springer, January 2006.

[BN06] T. Banica and R. Nicoara. Quantum groups and hadamard matrices. arXiv:
Operator Algebras, November 2006.

[BO08] N. P. Brown and N. Ozawa. C*-algebras and Finite-dimensional Approxi-
mations. Graduate studies in mathematics. American Mathematical Soci-
ety, 2008.

[Brz62] J. Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. Mathematical Theory of Automata, 12, January 1962.

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. dis-
sertation, University of Innsbruck, 1965.

[CK16] A. Cohen and J. Knopper. GBNP, computing gröbner bases of non-
commutative polynomials, Version 1.0.3. https://www.gap-system.org/

Packages/gbnp.html, March 2016.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 2009.

47

https://www.gap-system.org/Packages/gbnp.html
https://www.gap-system.org/Packages/gbnp.html

C References

[Con94] A. Connes. Noncommutative geometry. Academic Press, January 1994.

[GAP20] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.11.0, 2020. https://www.gap-system.org.

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Long-
man Publishing Co., Inc., 2006.

[JW20] S. Jung and M. Weber. Models of quantum permutations. Journal of
Functional Analysis, 279:108516, February 2020.

[Mac71] Saunders MacLane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer New York, 1971.

[Mor94] T. Mora. An introduction to commutative and noncommutative gröbner
bases. Theoretical Computer Science, 134:131–173, November 1994.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
December 1943.

[Mur90] G. J. Murphy. C*-Algebras and Operator Theory. Elsevier Science, 1990.

[Phi88] N. C. Phillips. Inverse limits of c * -algebras. Journal of Operator Theory,
19, January 1988.

[The20] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.1), 2020. https://www.sagemath.org.

[Ufn91] V. Ufnarovskĭı. On the use of graphs for computing a basis, growth and
hilbert series of associative algebras. Mathematics of The Ussr-sbornik,
68:417–428, February 1991.

[Wan98] S. Wang. Quantum symmetry groups of finite spaces. Communications in
Mathematical Physics, 195, July 1998.

[Wor87] S. Woronowicz. Compact matrix pseudogroups. Communications in Math-
ematical Physics, 111:613–665, January 1987.

48

https://www.gap-system.org
https://www.sagemath.org

