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Introduction

In this thesis we will study compact quantum groups, quantum graphs, quantum
automorphism groups and quantum isomorphisms. These are generalisations of
compact groups, graphs and their automorphisms and isomorphisms.
Compact quantum groups can be seen as a non-commutative analog of compact
groups. For a compact group G, we can look at the unital C˚-algebra of con-
tinuous functions CpGq. Using the multiplication of G we can now define a map
∆ : CpGq Ñ CpGq b CpGq, called comultiplication, which fulfils certain proper-
ties. A compact quantum group is now by definition a unital C˚-algebra A together
with such a comultiplication. Using that a unital C˚-algebra is commutative if and
only if it is isomorphic to CpXq for some compact space X, we can show that the
C˚-algebra A is commutative if and only if it is isomorphic to CpGq for some com-
pact group G. This illustrates the term "non-commutative analog".
Similarly, quantum graphs are non-commutative analogs of graphs. To every graph
with n vertices we can associate the set pCn, ψn, Aq, where ψnpxq “ 1

n

řn
i“1 xi and A

is the adjacency matrix. A quantum graph is now a finite-dimensional, not neces-
sarily commutative C˚-algebra OpXq together with a faithful state ψX and a linear
map AX : OpXq Ñ OpXq, which has to fulfil certain properties. Here we can also
show that the C˚-algebra is commutative if and only if we are in the classical situ-
ation, i.e. the set is pCn, ψn, Aq. Hence the class of classical graphs is just the set
of quantum graphs with commutative C˚-algebra.
Furthermore, we will consider quantum automorphism groups of quantum sets and
quantum graphs. For a classical graph this is the quantum analog of the space of
graph automorphisms. We will also look at the linking algebra of two quantum
graphs. This is an object with which we can define a quantum isomorphism notion
for two quantum graphs. The main theorem of this thesis then states that if we
have a quantum graph whose quantum automorphism group is "equivalent" (we
will explain this notion of equivalence in more detail) to another compact quantum
group, then there exists another quantum graph with this compact quantum group
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as quantum automorphism group which is quantum isomorphic to our first quantum
graph. This is a result from [BCE`20] (Theorem 4.11).

The main source of this thesis is [BCE`20]. Its structure is as follows. In the first
chapter we review some basics of the theory of C˚-algebras (based on [WLV21]) such
as the Gelfand-Naimark-Theorem and the construction of universal C˚-algebras.
There we also introduce the notion of compact quantum groups and Hopf algebras.
In the second chapter we define quantum graphs, look at some examples and clar-
ify where the definition comes from. We then introduce quantum automorphism
groups of classical graphs, quantum sets and quantum graphs and take a closer look
at some examples of them. In Chapter 3 we first define the notion of a bigalois
extension and then introduce quantum isomorphisms and the linking algebra of two
quantum graphs. We also clarify the connection between bigalois extensions and
quantum isomorphisms of quantum graphs. In the fourth chapter we discuss the
representation theory of compact quantum groups (following [NT13]), define the
notion of monoidal equivalence and look at some examples of monoidally equiva-
lent compact quantum groups. In Chapter 5, we define the linking algebra also for
compact quantum groups (based on [BEHY22] and [BRV05]) and prove the main
theorem of this thesis (Theorem 5.4). At the end, we take a closer look at the
linking algebra of two explicit compact quantum groups.
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Chapter 1

Preliminaries

1.1 Notations

First of all, we want to fix some notations. We denote the identity map with id

and the characteristic function with χ. The symbol b denotes the tensor pro-
duct of Hilbert spaces, the algebraic tensor product of (˚-)algebras and the minimal
tensor product of C˚-algebras. Moreover, we identify 1 b x with x where 1 P C.
If X, Y, Z are vector spaces and T : X b Y Ñ X b Y is a linear map, then e.g.
T13 : X b Z b Y Ñ X b Z b Y is the linear map which acts as T on X and Y and
as the identity on Z.
To distinguish between the involution and the adjoint we denote the adjoint of a lin-
ear operator A with A:. For a vector space B, the symbol B˚ denotes the dual space
of B. Furthermore, our inner product is linear in the first variable. If ξ P H is an el-
ement of a Hilbert space, we denote with ξ‹ the linear map ξ‹ : H Ñ C, h ÞÑ xh, ξy.

If we have two Hilbert spaces H1 and H2 with orthonormal bases tejuj and tfiui

respectively, then we denote with bij P BpH1, H2q the map with bijpekq “ δkjfi. The
symbol BpH1, H2q denotes the set of bounded linear maps from H1 to H2. More-
over, if we talk about Cn we denote with ei the vector with peiqj “ δij and if we talk
about MnpCq we denote with eij the matrix with peijqkl “ δikδjl if it is not defined
otherwise.

1.2 C˚-Algebras

Now, we want to recall some basics about ˚-algebras and C˚-algebras. We will re-
view the definition of these algebras, some important theorems and the construction
of universal ˚- and C˚-algebras. The source for this section is [WLV21].
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Definition 1.1. Let A be a C-algebra. We call an antilinear map ¨˚ : A Ñ A

an involution if px˚q˚ “ x and pxyq˚ “ y˚x˚ for all x, y P A. A ˚-algebra is
an algebra equipped with an involution. A C˚-algebra is a normed and complete
˚-algebra where the norm is submultiplicative, i.e. }xy} ď }x}}y}, and it satisfies
the C˚-identity, i.e. }x˚x} “ }x}2.

We call a ˚-algebra unital if it contains a unit with respect to the multiplication.
For two unital ˚-algebras A and B, a linear and multiplicative map φ : A Ñ B is
called a ˚-homomorphism if φpx˚q “ φpxq˚ and unital if φp1q “ 1.

For better understanding, let us look at a few examples of C˚-algebras.

Example 1.2. iq LetX be a compact Hausdorff space. Then CpXq with the infinity
norm } ¨}8, pointwise addition and multiplication and involution defined by f˚ :“ f

is a unital C˚-algebra. Indeed, pCpXq, } ¨ }8q is complete and

}fg}8 ď }f}8}g}8, f “ f, fg “ fg “ gf, }ff}8 “ }|f |
2
}8 “ }f}

2
8

is true for all f, g P CpXq.

iiq For n P N, the space MnpCq with the operator norm is a unital C˚-algebra, where
we have the usual matrix multiplication and the involution is defined as A˚ :“ A

T ,
i.e. pA˚qij :“ Aji.

iiiq Let H be a Hilbert space. Then BpHq with the operator norm and composition
as multiplication is a unital C˚-algebra with involution T ˚ :“ T :. In fact, even
any C˚-algebra is isomorphic to a norm closed ˚-subalgebra of B(H), for some H.
Observe that BpHq is just MnpCq if H is finite-dimensional.

One of the fundamental theorems of C˚-algebras is the Gelfand-Naimark-Theorem.
It states that a C˚-algebra is commutative if and only if it is isomorphic to the
space of continuous functions on some compact space. We will need this theorem for
showing that the quantum objects we will introduce are non-commutative analogs
of the classical objects. A proof of this theorem is given in [[WLV21], Theorem 3.23].

Theorem 1.3 (Gelfand-Naimark, 1943). Let A be a unital C˚-algebra. Then

A is commutative ðñ DX compact: A – CpXq.

The space X is then given by

SpecpAq “ tφ : A Ñ C | φ is a homomorphism with φ ‰ 0u.
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Another important theorem is Wedderburn’s Theorem, which says that every finite-
dimensional C˚-algebra is isomorphic to the direct sum of some matrix spaces. This
is proven in [[WLV21], Proposition 8.5].

Theorem 1.4 (Wedderburn’s Theorem). Let A be a finite-dimensional C˚-algebra.
Then there exist m P N and N1, . . . , Nm P N such that

A –

m
à

i“1

MNi
pCq.

Remark 1.5. Actually, Wedderburn’s Theorem (or the Artin-Wedderburn Theorem)
is known in the more general setting of semisimple rings. A corollary of this theo-
rem is that any finite-dimensional C-algebra is isomorphic to ‘m

i“1MNi
pCq for some

m,N1, . . . , Nm P N, so here we doesn’t even need the C˚-structure.

Next, we want to recall the construction of universal ˚- and C˚-algebras since we
need this to define the quantum automorphism groups and linking algebras later.
We first define universal ˚-algebras.

Definition 1.6. Let E “ txi | i P Iu be a set of elements where I is some index
set. We denote with P pEq the ˚-algebra whose elements are polynomials

řN
k“1 αkyk

with N P N, αk P C and yk P txϵ1i1 ¨ ¨ ¨ xϵmim | i1, . . . , im P I, ϵ1, . . . , ϵm P t1, ˚uu. The
multiplication is defined as

pxϵ1i1 ¨ ¨ ¨ xϵmim q ¨ pxϵ̃1j1 ¨ ¨ ¨ xϵ̃njnq :“ xϵ1i1 ¨ ¨ ¨ xϵmimx
ϵ̃1
j1

¨ ¨ ¨ xϵ̃njn

and the involution via
pαxϵ1i1 ¨ ¨ ¨ xϵmim q

˚ :“ αxϵmim ¨ ¨ ¨ xϵ1i1

where α P C and ϵk :“

$

&

%

1, if ϵk “ ˚

˚, if ϵk “ 1.

Let R Ď P pEq be a set of polynomials and JpRq be the two-sided ˚-ideal generated
by R. Then the universal ˚-algebra with generators E and relations R is defined as

OpE | Rq :“ P pEqäJpRq.

An important property of universal ˚-algebras is the so called universal property:
If we have a ˚-algebra A with elements tzi | i P Iu which satisfy the relations R (i.e.
all polynomials in R are zero, when we replace each xi by zi), then there is a unique
˚-homomorphism φ : OpE | Rq Ñ A with φpxiq “ zi.

In order to define universal C˚-algebras, we need the notion of a C˚-seminorm.
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Definition 1.7. Let A be a ˚-algebra. A C˚-seminorm on A is a map p : A Ñ r0,8q

such that for all x, y P A and λ P C we have

i) ppλxq “ |λ|ppxq and ppx ` yq ď ppxq ` ppyq

ii) ppxyq ď ppxqppyq

iii) ppx˚xq “ ppxq2.

Hence the only thing missing for a C˚-norm is the positive definiteness.
With this definition we can now also define universal C˚-algebras.

Definition 1.8. Let E be a set of generators and R Ď P pEq be relations. We put

}x} :“ suptppxq | p is a C˚-seminorm on OpE | Rqu

for x P OpE | Rq. If }x} ă 8 for all x P OpE | Rq, then } ¨ } is a C˚-seminorm and
one can check that tx P OpE | Rq | }x} “ 0u is a two-sided ˚-ideal. If }x} ă 8 for
all x P OpE | Rq, we can define the universal C˚-algebra as

C˚
pE | Rq :“ OpE | Rqätx P OpE | Rq | }x} “ 0u

}¨}

.

For better understanding, since this construction is not very illustrative, let us look
at some example of universal C˚-algebras.

Example 1.9. iq The universal C˚-algebra with one generator E “ txu and the
relation R “ txx˚x ´ xu exists. We write C˚px | xx˚x “ xq for this C˚-algebra.
Indeed, we get for every C˚-seminorm p and x P OpE | Rq

ppxq
2

“ ppx˚xq “ ppx˚xx˚xq “ ppx˚xq
2

“ ppxq
4

and therefore ppxq P t0, 1u, which implies

}x} “ suptppxq | p is a C˚-seminorm on OpE | Rqu ă 8.

iiq Let N ě 2. Then the universal C˚-algebra

C˚
peij, i, j “ 1, . . . , N | e˚

ij “ eji, eijekl “ δjkeil for all i, j, k, lq

is isomorphic to MnpCq.

iiiq The universal C˚-algebra

C˚
peij, i, j P N | e˚

ij “ eji, eijekl “ δjkeil for all i, j, k, lq

is isomorphic to KpHq, the algebra of compact operators on a separable Hilbert
space H.
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For a proof of iiq see [[WLV21], Proposition 6.11] and for iiiq see [[WLV21], Propo-
sition 6.13].
We can think of a universal C˚-algebra as a subset of the corresponding universal
˚-algebra by identifying an equivalence class with some representative of the class.
This is even a dense subset, as the following lemma shows.

Lemma 1.10. Let E be a set of generators and R Ď P pEq be relations. Then
C˚pE | Rq is a dense subset of OpE | Rq.

Proof. Let x P OpE | Rq and for n P N let rxns be the equivalence class of x in
OpE | Rq{tx P OpE | Rq | }x} “ 0u. Then }xn ´ x} “ 0 for all n P N and therefore
xn Ñ x pn Ñ 8q. Hence OpE | Rq{tx P OpE | Rq | }x} “ 0u is dense in OpE | Rq.
Since OpE | Rq{tx P OpE | Rq | }x} “ 0u Ď C˚pE | Rq, we get that C˚pE | Rq is
also dense in OpE | Rq.

Remark 1.11. Note that it is possible to have C˚pE | Rq Ĺ OpE | Rq. For example,
look at the universal algebras generated by E “ tuij | 1 ď i, j ď nu and

R “ tuij ´ u˚
ij,

n
ÿ

k“1

uik ´ 1,
n

ÿ

k“1

ukj ´ 1, uijuik ´ δjkuij, ujiuki ´ δjkuji | 1 ď i, j ď nu.

Then

C˚
pE | Rq “ C˚

puij | uij “ u˚
ij “ u2ij,

n
ÿ

k“1

uik “

n
ÿ

k“1

ukj “ 1q

since by [[Sch20], Remark 1.1.9] the relations uij “ u˚
ij “ u2ij,

ř

k uik “
ř

k ukj “ 1

already imply uijuik “ δjkuij and ujiuki “ δjkuji in a C˚-algebra. In a ˚-algebra
this is not true, hence in the universal ˚-algebra we still need all relations from R.

1.3 Compact Quantum Groups

Next we introduce the notion of compact quantum groups. These object can be
defined in different ways. We will use the definition of Woronowicz [[Wor98], Defi-
nition 1.1]. He was also the one who first introduced the notion of compact quantum
groups in 1987. With this definition one can easily see how it links to classical com-
pact groups. In this section, we will also introduce Hopf algebras. These are objects
that are strongly related to compact quantum groups.
The main source for this section is [BCE`20].

Definition 1.12. A compact quantum group (CQG) is a pair pA,∆q where A is
a unital C˚-algebra and ∆ : A Ñ A b A is a unital ˚-homomorphism with the
following properties
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1) p∆ b idq∆ “ pid b ∆q∆ pcoassociativityq

2) pA b 1q∆pAq and p1 b Aq∆pAq are linearly dense in A b A.

pcancellation propertyq

The map ∆ is called comultiplication.

The first questions that might come to mind after reading this definition is: Where
does this definition come from? Why does it make sense? The following remark
shows that the C˚-algebra A of a CQG is commutative if and only if A – CpGq

for a compact group G, i.e. a topological group which is compact and a Hausdorff
space. Thereby, we need 1q for the associativity of the multiplication and 2q for
the cancellation property of the group and vice versa. Therefore the names of the
properties 1q and 2q make indeed sense.

The following remark is similar to [[Web17], Remark 2.5] and [[Gro20], Proposition
2.1.2].

Remark 1.13. iq Let G be a compact group and let CpGq be the continuous functions
on G. We define

∆G : CpGq Ñ CpGq b CpGq

by
∆Gpfqpg, hq :“ fpghq,

where we used CpGq bCpGq – CpGˆGq with pf1 b f2qpg, hq “ f1pgqf2phq [Bla06],
Theorem II.9.4.4]. Then pCpGq,∆Gq is a compact quantum group. Indeed, CpGq

is a unital C˚-algebra and ∆G is a unital ˚-homomorphism. Moreover, the coasso-
ciativity follows from the associativity of G: For f P CpGq let ∆Gpfq “ f1 b f2, i.e.
f1pgqf2phq “ fpghq, then

p∆G b idqp∆Gpfqqpg, h, kq “ p∆Gpf1q b f2qpg, h, kq “ f1pghqf2pkq

“ fpghkq “ f1pgqf2phkq “ pf1 b ∆Gpf2qqpg, h, kq

“ pid b ∆Gqp∆Gpfqqpg, h, kq.

The case ∆Gpfq “
ř

i,j fi b fj follows analogously.
Furthermore, the space pCpGq b 1q∆GpCpGqq is spanned by functions of the form
pg, hq ÞÑ f1pgqf2pghq with f1, f2 P CpGq. Therefore it is a unital ˚-subalgebra. Using
the cancellation property of G (i.e. gt “ gs and tg “ sg both imply t “ s), one can
show that this set separates the points, hence we get with the Stone-Weierstrass
Theorem that it is dense in CpGq b CpGq. Similarly one can show the density of
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the set p1 b CpGqq∆GpCpGqq.

iiq If pA,∆q is a CQG with some commutative C˚-algebra A, then the Gelfand-
Naimark Theorem (Theorem 1.3) tells us that A – CpGq with G “ SpecpAq, which
is a compact space. Moreover, the comultiplication ∆ : A Ñ AbA induces a group
law m : G ˆ G Ñ G by

m : SpecpAq ˆ SpecpAq Ñ SpecpAq, pφ1, φ2q ÞÑ pφ1, φ2q ˝ ∆,

which is associative since the coassociativity holds. Here we used

SpecpA b Aq – SpecpCpGq b CpGqq – SpecpCpG ˆ Gqq

– G ˆ G “ SpecpAq ˆ SpecpAq

with pφ1, φ2qpa b bq “ φ1paqφ2pbq.

Therefore G is a compact semi-group. From the linear density of pCpGqb1q∆pCpGqq

and p1 bCpGqq∆pCpGqq now follows that G has the cancellation property and this
implies together with the compactness of G that G is indeed a group. Moreover,
one can check ∆ “ ∆G (where ∆G is defined as in iq).

Hence we get for every compact quantum group pA,∆q:

A is commutative ðñ pA,∆q “ pCpGq,∆Gq for some compact group G.

So we see that CQGs generalise compact groups as a non-commutative analog.

At this point we want to introduce two CQGs which we will need later when talking
about quantum automorphism groups.

Definition 1.14. iq [Wan98] The quantum permutation group S`
n is the CQG

pOpS`
n q,∆q defined by

OpS`
n q “ C˚

puij | uij “ u˚
ij “ u2ij,

n
ÿ

k“1

uik “

n
ÿ

k“1

ukj “ 1q and ∆puijq “

n
ÿ

k“1

uik b ukj,

where 1 ď i, j ď n.

iiq [Gro21a] The projective version PO`
n of the orthogonal quantum group is the

compact quantum group pOpPO`
n q,∆q where OpPO`

n q is the universal C˚-algebra
generated by elements vijkl for 1 ď l, k, i, j ď n with

vij
˚

kl “ vjilk
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n
ÿ

k,l“1

vjilkv
rs
kl “ δirδjs “

n
ÿ

k,l“1

vklij v
lk
sr

n
ÿ

q“1

vijkqv
rs
ql “ δjrv

is
kl

and

∆pvijklq “

n
ÿ

r,s“1

vrskl b vijrs.

Here we will also introduce an isomorphism notion for CQG, as we need it in a
later theorem, by using the notion of a quantum subgroup. Moreover, we want to
state the definition of Hopf algebras. These algebras are important for working with
CQGs since we can associate to every CQG a corresponding Hopf algebra.

Definition 1.15. Let G1, G2 be two CQGs. Then G1 is a quantum subgroup of G2,
written G1 Ď G2, if there exists a surjective ˚-homomorphism

σ : OpG2q Ñ OpG1q with pσ b σq∆2 “ ∆1σ,

where ∆i are the corresponding comultiplications.
If G1 Ď G2 and G2 Ď G1, we write G1 – G2 and call G1 and G2 isomorphic.

Definition 1.16. A Hopf algebra is a quadruple pA,∆, S, ϵq where A is a unital
algebra with multiplication map m : A b A Ñ A and

∆ : A Ñ A b A pcomultiplicationq,

S : A Ñ Aop pantipodeq,

ϵ : A Ñ C pcounitq

are unital algebra homomorphisms satisfying

1) pid b ∆q∆ “ p∆ b idq∆

2) mpid b Sq∆ “ ϵp¨q1 “ mpS b idq∆

3) pϵ b idq∆ “ pid b ϵq∆ “ id.

A Hopf ˚-algebra is a Hopf algebra where A is a ˚-algebra and ∆ and ϵ are
˚-homomorphisms.
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Remark 1.17. iq With Aop we denote the algebra A with the opposite multiplication,
i.e. a ¨Aop b “ b ¨A a. Therefore we have in the above definition Spabq “ SpbqSpaq for
all a, b P A.

iiq To every CQG G “ pA,∆q we can associate a Hopf ˚-algebra which is dense in A.
We will write OpGq for both, the corresponding Hopf ˚-algebra and the correspond-
ing C˚-algebra A. This abuse of notation will simplify the writing. We will later
look at the theorem which states the existence of the corresponding Hopf ˚-algebra
since we need the notion of representations for this. This will be Theorem 4.3.

At the end of this section, let as look at an easy example of a Hopf ˚-algebra.

Example 1.18. The CQG from Remark 1.13 iq is also a Hopf ˚-algebra together
with

S : CpGq Ñ CpGq
op, Sfptq :“ fpt´1

q

and
ϵ : CpGq Ñ C, ϵpfq :“ fpeq,

where e P G is the neutral element.



Chapter 2

Quantum Graphs and Quantum
Automorphism Groups

Now we also want to introduce quantum graphs and quantum automorphism groups.
Quantum graphs are quantum analogs of graphs and quantum automorphism groups
of graphs are quantum analogs of graph automorphisms, i.e. we can show that the
commutative analog is a classical graph respectively the space of graph automor-
phisms.
The main source for this chapter is again [BCE`20].

2.1 Quantum Graphs

As Matsuda already described in [Mat21], quantum graphs were first introduced by
Duan, Severini and Winter in [DSW13]. They were called non-commutative graphs.
Since every reflexive undirected classical graph is only a reflexive symmetric rela-
tion, Weaver formulated quantum graphs as reflexive symmetric quantum relations
on a von Neumann algebra in [Wea21]. Quantum relations were introduced by Ku-
perberg and Weaver in [KW12]. In [BCE`20] quantum graphs were then formulated
(similarly to the definition in [MRV18]) as finite quantum sets with an adjacency
matrix. That is the definition we will use.

In this section we start with the definition of a quantum set and a δ-form since
we need this to introduce the notion of quantum graphs. We will look at some
examples of quantum sets and quantum graphs and show that a quantum graph is
indeed the non-commutative analog of a graph.

14
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Definition 2.1. A (finite, measured) quantum set is a pair X “ pOpXq, ψXq, where
OpXq is a finite-dimensional C˚-algebra and ψX : OpXq Ñ C is a faithful state, i.e.
a linear unital functional with ψXpx˚xq ě 0 and ψXpx˚xq “ 0 only if x “ 0. With
|X| we denote the dimension of OpXq.

Remark 2.2. iq By Wedderburn’s Theorem (Theorem 1.4) there exist m P N and
N1, . . . , Nm P N such that OpXq –

Àm
i“1MNi

pCq. This implies in particular that
OpXq is unital.

iiq By defining xa, by :“ ψXpb˚aq, we get a scalar product on OpXq since ψX is
faithful, i.e. ψpx˚xq “ 0 implies x “ 0. Then pOpXq, x¨, ¨yq is a Hilbert space
because

ψXpx˚xq ď }x˚x} “ }x}
2,

so OpXq is also complete with respect to the norm induced by the scalar product. To
distinguish between the Hilbert and C˚-structures on OpXq, we denote the Hilbert
space with L2pXq. Note that

xab, cy “ ψpc˚abq “ ψppa˚cq˚bq “ xb, a˚cy

is true for all a, b, c P L2pXq.

WithmX : OpXqbOpXq Ñ OpXq we denote the multiplication, i.e. mXpa b bq “ ab.

Since mX P BpL2pXq b L2pXq, L2pXqq, we can form the adjoint m:

X .

iiiq Let ηX : C Ñ OpXq be the unit map, i.e. ηXpαq “ α1. Then the adjoint of ηX
is ψX since

xb, ηXpαqy “ xb, α1y “ ψXpα1bq “ ψXpbqα “ xψXpbq, αyC.

Definition 2.3. Let δ ą 0. We call a state ψX : OpXq Ñ C a δ-form if

mXm
:

X “ δ2id.

It should be remarked here that the formula in this definition is really a statement
about ψX although it is not clear at first sight. This is the case since the adjoint of
mX is formed with respect to the scalar product xa, by “ ψXpb˚aq.
Since the above definition is not very illustrative, let us look at a few examples of
quantum sets where the corresponding state is a δ-form.
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Example 2.4. iq Let rns :“ t1, . . . , nu and Cprnsq be the C˚-algebra of (continuous)
functions on rns with the pointwise multiplication m. We define

ψ : Cprnsq Ñ C, ψpfq :“
1

n

n
ÿ

i“1

fpiq.

Then pCprnsq, ψq is a quantum set. Furthermore, we have

xχtju b χtku, npχtiu b χtiuqy “ nxχtju, χtiuyxχtku, χtiuy “ nψpχtiuχtjuqψpχtiuχtkuq

“ nδijδikψpχtiuq
2

“ nδijδik
1

n2
“ δijδik

1

n
“ δjkδij

1

n

“ δjkδijψpχtiuq “ δjkψpχtiuχtjuq “ xδjkχtju, χtiuy

“ xmpχtju b χtkuq, χtiuy

and hence

m:
pfq “ m:

p

n
ÿ

i“1

fpiqχtiuq “

n
ÿ

i“1

fpiqm:
pχtiuq “ n

n
ÿ

i“1

fpiqpχtiu b χtiuq.

This implies that ψ is a
?
n-form since

mpm:
pfqq “ mpn

n
ÿ

i“1

fpiqpχtiubχtiuqq “ n
n

ÿ

i“1

fpiqmpχtiubχtiuq “ n
n

ÿ

i“1

fpiqχtiu “ nf.

Moreover, we get the well-known scalar product xf, gy “ 1
n

řn
i“1 gpiqfpiq.

iiq Since Cprnsq – Cn, we also have the quantum set pCn, ψq with
?
n-form

ψ : Cn
Ñ C, ψppxiqi“1,...,nq :“

1

n

n
ÿ

i“1

xi.

This map we will denote from now on with ψn. We have the pointwise multiplication
m and

m:
ppxiqi“1,...,nq “ n

n
ÿ

i“1

xipei b eiq.

iiiq The matrix algebra MnpCq together with the normalized trace

tr :MnpCq Ñ C, trppaijqijq :“
1

n

n
ÿ

i“1

aii

is a quantum set and tr is an n-form.
Indeed, one can check that m:paq “ n

řn
k,i,j“1 aijpeik b ekjq and hence

mpm:
paqq “ mpn

n
ÿ

k,i,j“1

aijpeik b ekjqq “ n
n

ÿ

k,i,j“1

aijeikekj

“ n
n

ÿ

k,i,j“1

aijeij “ n2
n

ÿ

i,j“1

aijeij “ n2a.
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ivq Let npiq P N and Qi P MnpiqpCq be positive and invertible matrices with
řs
i“1 trpQiq “ 1 and trpQ´1

i q “ δ2 for 1 ď i ď s. Then the C˚-algebra
Às

i“1MnpiqpCq

together with ψppx1, . . . , xsqq :“
řs
i“1 trpQixiq is a quantum set and ψ is a δ-form.

In fact, one can show that every quantum set is of this form.

Now we can finally define quantum graphs. For this we first recall the definition of a
classical (finite) graph without multiple edges. A classical graph X without multiple
edges consists of a finite vertex set V pXq and edge set EpXq Ď V pXq ˆ V pXq.
A graph is called reflexive if pv, vq P EpXq for all v P V pXq and undirected if
pv, wq P EpXq ùñ pw, vq P EpXq for all w, v P V pXq. W.l.o.g we can always assume
V pXq “ t1, . . . , nu for some n P N. The adjacency matrix A “ paijqij P MnpCq is
defined by

aij :“

$

&

%

1, if pi, jq P EpXq

0, if pi, jq R EpXq.

Note that a matrix is an adjacency matrix for some undirected, reflexive graphs
without multiple edges if and only if a2ij “ aij, aij “ aji and aii “ 1 for i, j “ 1, . . . , n.

The following definition is taken from [BEVW20] since its a bit more general than
the definition of a quantum graph given in [BCE`20].

Definition 2.5. Let X be a quantum set with a δ-form ψX . A self-adjoint linear
map AX : L2pXq Ñ L2pXq is called a quantum adjacency matrix if

mXpAX b AXqm:

X “ δ2AX . (1)

In the following we only want to look at undirected and reflexive quantum graphs.
Therefore we require two additional conditions:

pid b η:

XmXqpid b AX b idqpm:

XηX b idq “ AX (2)

mXpAX b idqm:

X “ δ2id (3)

Then p1q guarantees that the quantum graph does not have multiple edges,
p2q states that it is undirected and p3q that it is reflexive. See also Proposition 2.7.
We call X “ pOpXq, ψX , AXq a quantum graph.

It is not clear yet whether a quantum adjacency matrix really needs to be self-
adjoint, so there are also definitions of quantum graphs where this is not required.
Since we mostly refer to [BCE`20] and it is required there, it is included in our
definition.
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Convention 2.6. From now on we always consider classical undirected, reflexive
graphs without multiple edges.

Definition 2.5 looks quite complicated and not very intuitive. In order to understand
the definition better, we now prove similarly to Remark 1.13 that a quantum graph
is a classical graph if and only if the corresponding C˚-algebra is commutative.
This also clarifies why the equations p1q, p2q and p3q guarantee the corresponding
properties.

Proposition 2.7. iq If X is a classical graph with n vertices and adjacency matrix
AX “ paijqij, then AX is a quantum adjacency matrix and for the conditions p1q, p2q

and p3q in Definition 2.5 we have

p1q ðñ a2ij “ aij, p2q ðñ aij “ aji and p3q ðñ aii “ 1,

where the equalities have to be true for all i, j P t1, . . . , nu.

iiq Let pOpXq, ψX , AXq be a quantum graph where OpXq is a commutative C˚-algebra.
Then X is a classical graph.

Proof. iq For a classical graph with n vertices, we always consider the quantum set
pCn, ψnq from Example 2.4 iiq. We look at the three equalities from the definition
above.
p1q

mXppAX b AXqpm:

Xpekqqq “ mXppAX b AXqpnek b ekqq “ n ¨ mXpAXek b AXekq

“ npa21k, . . . , a
2
nkq

T !
“ npa1k, . . . , ankq

T
“ nAXek

p2q

pid b η:

XmXqpid b AX b idqpm:

XηX b idqp1 b ekq

“ pid b η:

XmXqpid b AX b idqpm:

Xp

n
ÿ

i“1

eiq b ekq

“ pid b η:

XmXqpid b AX b idqpn
n

ÿ

i“1

ei b ei b ekq

“ pid b η:

XmXqpn
n

ÿ

i“1

ei b AXei b ekq

“ n
n

ÿ

i“1

ei b η:

Xpakiekq
η:

X“ψX
“ n

n
ÿ

i“1

ei b aki
1

n

“

n
ÿ

i“1

akiei “ ATXek
!

“ AXek
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p3q

mXpAX b idqm:

Xpekq “ mXpAX b idqpnek b ekq “ n ¨ mXpAXek b ekq

“ nakkek
!

“ nek

Since the above equalities have to be true for all k P t1, . . . , nu, we get

p1q ðñ a2ij “ aij, p2q ðñ aij “ aji and p3q ðñ aii “ 1.

Hence we can see that AX is a quantum adjacency matrix because AX is a symmet-
ric matrix with entries in t0, 1u and aii “ 1.

iiq Let pOpXq, ψX , AXq be a quantum graph with |X| “ n and where OpXq is a
commutative C˚-algebra. Then the Gelfand-Naimark Theorem tells us that there
exists a compact space X such that OpXq – CpXq. Since OpXq is n-dimensional we
get that the space X must have n elements, hence we can assume X “ t1, . . . , nu.
Moreover, the Riesz Representation Theorem tells us that ψX is of the form

ψXpfq “

ż

X

fdµ pf P CpXqq

for some unique Borel probability measure µ : t1, . . . , nu Ñ r0, 1s.
We then get

m:

Xpχtiuq “

$

&

%

1
µptiuq

χtiu b χtiu, if µptiuq ‰ 0

0, otherwise

because

x
1

µptiuq
χtiu b χtiu, χtju b χtkuy “

1

µptiuq

ż

X

χtiuχtjudµ

ż

X

χtiuχtkudµ

“
1

µptiuq
δijµptiuqδikµptiuq “ δijδikµptiuq

“ δik

ż

X

χtjuχtiudµ “

ż

X

χtjuχtkuχtiudµ

“ xχtiu, χtjuχtkuy

if µptiuq ‰ 0 and xχtiu, χtjuχtkuy “ δijδjkµptjuq “ 0 if µptiuq “ 0.
Since ψX is a δ-form we get δ2χtiu “ mXpm:

Xpχtiuqq for all i P t1, . . . , nu. Hence
µptiuq ‰ 0 and δ2χtiu “ 1

µptiuq
χtiu, which implies µptiuq “ 1

δ2
for all i P t1, . . . , nu.

Using

1 “ µpt1, . . . , nuq “

n
ÿ

i“1

µptiuq “
n

δ2
,
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we get δ2 “ n and µptiuq “ 1
n
. Therefore ψXpfq “ 1

n

řn
i“1 fpiq, so we get the

quantum set from Example 2.4 iiq (or actually part iq, but the two spaces are
isomorphic anyway). Now part iq implies that for AX “ paijqij we get a2ij “ aij,
aij “ aji and aii “ 1. Thus pOpXq, ψX , AXq is just a classical graph.

So here we also get the equivalence for every quantum graph X “ pOpXq, ψX , AXq:

OpXq is commutative ðñ pOpXq, ψX , AXq “ pCn, ψn, AXq with n “ |X|.

Therefore the notion of a quantum graph is also just a generalisation of a classical
graph as a non-commutative analog.
We now want to look at an example of a quantum graph with a non-commutative
C˚-algebra. This example is taken from [[Gro21b], Example 3.13].

Example 2.8. Let pM2pCq, trq be the quantum set from Example 2.4 iiiq with
n “ 2. We define

A :M2pCq Ñ M2pCq,

˜

a b

c d

¸

ÞÑ

˜

d c

b a

¸

`

˜

a b

c d

¸

.

Then pM2pCq, tr, Aq is a quantum graph.
Indeed, let f : t1, 2u Ñ t1, 2u, fp1q :“ 2, fp2q :“ 1, then Apeijq “ efpiqfpjq ` eij.
Since

xefpiqfpjq, ekly “ trpe˚
klefpiqfpjqq “ trpelkefpiqfpjqq “ δkfpiqtrpelfpjqq “

1

2
δkfpiqδlfpjq

“
1

2
δfpkqiδfplqj “ δfpkqitrpefplqjq “ trpefplqfpkqeijq “ trpe˚

fpkqfplqeijq “ xeij, efpkqfplqy,

we get

xApeijq, ekly “ xefpiqfpjq ` eij, ekly “ xefpiqfpjq, ekly ` xeij, ekly

“ xeij, efpkqfplqy ` xeij, ekly “ xeij, efpkqfplq ` ekly “ xeij, Apeklqy,

so we know that A is self-adjoint. Moreover,

mpA b Aqm:
peijq “ mp2

2
ÿ

k“1

Apeikq b Apekjqq

“ mp2
2

ÿ

k“1

pefpiqfpkq ` eikq b pefpkqfpjq ` ekjqq

“ 2
2

ÿ

k“1

efpiqfpjq ` eij “ 4pefpiqfpjq ` eijq “ 22Apeijq,
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where the second equation is true since fpkq ‰ k for k “ 1, 2. Furthermore,

pid b η:mqpidbA b idqpm:η b idqp1 b eijq

“ pid b η:mqpid b A b idqpm:
p

2
ÿ

l“1

ellq b eijq

“ pid b η:mqpid b A b idqp2
2

ÿ

k,l“1

elk b ekl b eijq

“ pid b η:mqp2
2

ÿ

k,l“1

elk b pefpkqfplq ` eklq b eijq

η:“tr
“ 2

2
ÿ

k,l“1

elk b trpefpkqfplqeij ` ekleijq

“

2
ÿ

k,l“1

elk b pδfplqiδfpkqj ` δliδkjq

“ efpiqfpjq ` eij “ Apeijq

and

mpA b idqm:
peijq “ mp2

2
ÿ

k“1

Apeikq b ekjq “ mp2
2

ÿ

k“1

pefpiqfpkq ` eikq b ekjq

“ 2
2

ÿ

k“1

eikekj “ 22eij.

Hence the three conditions from Definition 2.5 are fulfilled.

However, since with this example you do not really have a picture in mind, we want
to look at two further examples of quantum graphs which have classical analogs.
To prove that these examples are indeed quantum graph, we first need the following
lemma. The idea for this lemma is taken from [[Bra12], Remark 3.6].

Lemma 2.9. Let X “ pOpXq, ψXq be a quantum set. Then

pψX b idqm:

X “ pid b ψXqm:

X “ id

and
m:

XmX “ pmX b idqpid b m:

Xq.

Proof. We have mXpηX b idq “ mXpidbηXq “ id, so forming the adjoint and using
η:

X “ ψX yields
pψX b idqm:

X “ pid b ψXqm:

X “ id.
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Moreover,

xpmX b idqpa b b b cq, d b ey “ xab b c, d b ey “ xab, dyxc, ey

“ xb, a˚dyxc, ey “ xb b c, a˚d b ey

implies

xpmX b idqpid b m:

Xqpg b hq, d b ey “ xpmX b idqpg b m:

Xphqq, d b ey

“ xm:

Xphq, g˚d b ey

“ xh, g˚dey “ xgh, dey

“ xmXpg b hq,mXpd b eqy

“ xm:

XmXpg b hq, d b ey

and hence pmX b idqpid b m:

Xqpg b hq “ m:

XmXpg b hq for all g, h P OpXq.

Proposition 2.10. Let X “ pOpXq, ψXq be a quantum set with a δ-form ψX .
iq The set X together with AX :“ δ2ψXp¨q1 is a quantum graph, called complete
quantum graph. If X is the quantum set pCn, ψnq, then we have the complete classical
graph.
iiq The set X together with AX :“ id is a quantum graph, called trivial quantum
graph. If X is the quantum set pCn, ψnq, then we have the trivial classical graph.

Proof. iq First of all, AX is self-adjoint because AX “ δ2ψXp¨q1 “ δ2x¨, 1y1 implies

xAXpaq, by “ xδ2xa, 1y1, by “ δ2xa, 1yx1, by “ δ2xa, 1yxb, 1y “ xa, δ2xb, 1y1y “ xa,AXpbqy.

We continue by checking the equalities from Definition 2.5.
p1q The equality

mXpAX b AXqpa b bq “ δ2xa, 1yδ2xb, 1y1 “ δ4xa b b, 1 b 1y1

implies

mXpAX b AXqpm:

Xpaqq “ δ4xm:

Xpaq, 1 b 1y1 “ δ4xa, 1y1 “ δ2AXpaq.

p2q We have

pid b η:

XmXqpid b AX b idqpa b b b cq “ pid b ψXmXqpa b AXpbq b cq

“ aδ2ψXpψXpbqcq “ aδ2ψXpbqψXpcq

“ pid b ψXqpa b bqδ2ψXpcq
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and thus we get

pid b η:

XmXqpid b AX b idqpm:

XηX b idqp1 b cq

“ pid b η:

XmXqpid b AX b idqpm:

XηXp1q b cq

“ pid b ψXqppm:

XηXp1qqδ2ψXpcq
Lemma 2.9

“ 1δ2ψXpcq “ AXpcq.

3q We conclude from the equality

mXpAX b idqpa b bq “ mXpδ2ψXpaq1 b bq “ δ2ψXpaqb “ δ2pψX b idqpa b bq

that
mXpAX b idqm:

X “ δ2pψX b idqm:

X
Lemma 2.9

“ δ2id.

Hence, pOpXq, ψX , AXq is a quantum graph.
If pOpXq, ψXq “ pCn, ψnq, then

AXpekq “
?
n
2
ψnpekq1 “ n

1

n
1 “ 1 “

n
ÿ

i“1

ei

for all 1 ď k ď n. This implies pAXqij “ 1 for all 1 ď i, j ď n, hence pCn, ψn, AXq

is the complete classical graph.

iiq Of course, the identity map is self-adjoint. We check again the three conditions
from Definition 2.5 to show that X with AX “ id is a quantum graph.
p1q

mXpAX b AXqm:

X “ mXpid b idqm:

X “ mXm
:

X “ δ2id “ δ2AX

p2q We have

pid b η:

XmXqpid b AX b idq “ pid b η:

XmXqpid b id b idq

“ id b ψXmX “ pid b ψXqpid b mXq

and therefore

pid b η:

XmXqpid b AX b idqpm:

XηX b idqp1 b aq

“ pid b η:

XmXqpid b AX b idqpm:

XηXp1q b aq

“ pid b ψXqpid b mXqpm:

XηXp1q b aq

“ pid b ψXqpid b mXqpm:

X b idqp1 b aq

“ pid b ψXqppmX b idqpid b m:

Xqq
:
p1 b aq

Lemma 2.9
“ pid b ψXqpm:

XmXq
:
p1 b aq
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“ pid b ψXqpm:

XmXqp1 b aq

“ pid b ψXqpm:

Xpaqq
Lemma 2.9

“ a “ AXpaq.

p3q

mXpAX b idqm:

X “ mXpid b idqm:

X “ mXm
:

X “ δ2id.

If pOpXq, ψXq “ pCn, ψnq, then AXpekq “ ek for all 1 ď k ď n. Hence pAXqij “ δij

and therefore pCn, ψn, AXq is the trivial classical graph.

2.2 Quantum Automorphism Groups of Quantum

Graphs

Next we want to introduce quantum automorphism groups of quantum sets and
quantum graphs. For this we first look at classical automorphism groups and quan-
tum automorphism groups of classical graphs to motivate the definition of quantum
automorphism groups of quantum graphs. We show again that the quantum objects
are the non-commutative analogs of the classical ones. At the end of this section we
look at a more concrete example of a quantum automorphism group of some quan-
tum graph and prove that the CQGs S`

n and PO`
n are quantum automorphism

groups of some quantum sets.
The following two definitions, the next proposition and its proof are taken from
[Sch20].

Definition 2.11. Let X be a classical graph (see Convention 2.6). A graph auto-
morphism is a bijection σ : V pXq Ñ V pXq such that

pi, jq P EpXq ðñ pσpiq, σpjqq P EpXq.

The set of all graph automorphisms of X together with the composition forms a
group which we denote with Aut(X).

Remark 2.12. Every σ P Aut(X) we can view as a matrix

σ P Mnpt0, 1uq where σij “ δσpiqj

and n is the number of vertices of X. Then pi, jq P EpXq ðñ pσpiq, σpjqq P EpXq

is equivalent to AXσ “ σAX . Moreover, we have for all 1 ď i, j ď n the equalities
σ˚
ij “ σij “ σ2

ij and
řn
k“1 σik “

řn
k“1 σkj “ 1 since σ is bijective. Hence σ is a

permutation matrix (i.e. a matrix in Mnpt0, 1uq with exactly one non-zero entry in
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every row and column) which commutes with AX .
Conversely, if we have a permutation matrix pσijqij which commutes with AX . Then

σ : t1, . . . , nu Ñ t1, . . . , nu, σpiq :“ j if σij “ 1

is a graph automorphism. Therefore we can identify Aut(X) with all permutation
matrices that commute with AX .

This motivates the following definition.

Definition 2.13. Let X be a classical graph with n vertices and adjacency matrix
AX . We define CpGXq as the universal C˚-algebra with generators tuijui,j“1,...,n

and relations u˚
ij “ uij “ u2ij,

řn
k“1 uik “

řn
k“1 ukj “ 1 for all i, j “ 1, . . . , n and

uAX “ AXu (with u “ puijqij).
One can show that GX “ pCpGXq,∆q with ∆puijq “

řn
k“1 uik b ukj is a CQG

[[Sch20], Lemma 2.1.2]. We call GX the quantum automorphism group of X.

Now we want to show that the quantum automorphism group is just the non-
commutative analog of the classical graph automorphism group. So we show that
if we add the relations uijukl “ ukluij to the universal C˚-algebra CpGXq we get
C(Aut(X)), the continuous functions on Aut(X).

Proposition 2.14. Let X be a classical graph and

A :“ C˚
puij | u˚

ij “ uij “ u2ij,
ÿ

k

uik “
ÿ

k

ukj “ 1, uAX “ AXu, uijukl “ ukluijq,

then A – CpAutpXqq.

Proof. First note that A is also a CQG with ∆ from Definition 2.13. This can be
shown similarly to [[Sch20], Lemma 2.1.2]. Because A is commutative we get again
A – CpSpecpAqq by Gelfand-Naimark. From Remark 1.13 iiq we know that

m : SpecpAq ˆ SpecpAq Ñ SpecpAq, pφ1, φ2q ÞÑ pφ1, φ2q ˝ ∆

turns SpecpAq into a compact group.
Let σ P AutpXq. Then we get by Remark 2.12 and since σij P t0, 1u (so the elements
commute) that the matrix elements σij satisfy the relations from the universal
C˚-algebra A. Hence there exists a unique ˚-homomorphism φσ : A Ñ C with
φσpuijq “ σij. Moreover,

φσp1q “ φσp
ÿ

k

uikq “
ÿ

k

σik “ 1.
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This implies φσ ‰ 0 and therefore φσ P SpecpAq. Thus we can define the map

Φ : AutpXq Ñ SpecpAq, σ ÞÑ φσ.

This map is obviously injective since φσ “ φσ̃ implies σij “ φσpuijq “ φσ̃puijq “ σ̃ij

for all i, j. For φ P SpecpAq we define σij :“ φpuijq. Then pσijqij is a permu-
tation matrix which commutes with AX since the elements uij satisfy the corre-
sponding relations and φ is a unital ˚-homomorphism. Hence σ P Aut(X) and
φσpuijq “ σij “ φpuijq, so φσ “ φ. Therefore, Φ is also surjective.
Now it is left to show that Φ is also a group homomorphism. This follows from

Φpσ ˝ σ̃qpuijq “ pσ ˝ σ̃qij “
ÿ

k

σikσ̃kj “
ÿ

k

φσpuikqφσ̃pukjq “
ÿ

k

pφσ, φσ̃qpuik b ukjq

“ pφσ, φσ̃qp∆puijqq “ mpφσ, φσ̃qpuijq.

Moreover, the map Φ is continuous since Aut(X) is finite and therefore
SpecpAq “ tφσ | σ P AutpXqu is also finite. Hence SpecpAq – AutpXq as compact
groups. This also implies CpSpecpAqq – CpAutpXqq as compact groups via the
group isomorphism

CpSpecpAqq Ñ CpAutXqq, g ÞÑ g ˝ Φ.

Finally, A – CpAutpXqq.

Remark 2.15. In the following chapters we will define some certain universal
˚-algebras and denote them with the letter O. All this universal ˚-algebras can
also be defined as universal C˚-algebras. Since they are all generated by the el-
ements of a unitary matrix, one can check that they exist. We will not list the
definition for the universal C˚-algebras again, but simply denote the corresponding
universal C˚-algebra with the letter C. Observe, that Lemma 1.10 implies that the
universal C˚-algebra is always dense in the universal ˚-algebra.
In [BCE`20] only the universal ˚-algebras are considered, but we also look at the
universal C˚-algebras to see the connection of the quantum automorphism groups
of quantum graphs and classical graphs.

So now we also want to define quantum automorphism groups of quantum sets and
quantum graphs. To motivate the definition we first note the following fact:
If X is a classical graph and uij the generating elements from CpGXq, then puijqij

is a unitary matrix and the map

ρX : Cn
Ñ Cn

b CpGXq, ρXpeiq :“
n

ÿ

j“1

ej b uji
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is a unital ˚-homomorphism satisfying

ρXpAX ¨q “ pAX b idqρX .

This leads us to the following definition.

Definition 2.16. iq Let X “ pOpXq, ψXq be a quantum set with n “ |X| and fix
an orthonormal basis teiu

n
i“1 for L2pXq.

We define CpAut`
pXqq as the universal C˚-algebra generated by the coefficients uij

of a unitary matrix u “ puijqij P MnpCpAut`
pXqqq that satisfies the relations which

make the map

ρX : OpXq Ñ OpXq b CpAut`
pXqq, ρXpeiq :“

n
ÿ

j“1

ej b uji

a unital ˚-homomorphism.

iiq Let X “ pOpXq, ψX , AXq be a quantum graph with n “ |X| and fix an orthonor-
mal basis teiu

n
i“1 for L2pXq.

We define OpGXq to be the universal ˚-algebra generated by the entries of a unitary
matrix u “ puijq

n
i,j“1 P MnpOpGXqq that fulfils the relations which make the map

ρX : OpXq Ñ OpXq b OpGXq, ρXpeiq :“
n

ÿ

j“1

ej b uji

a unital ˚-homomorphism satisfying the AX-covariance condition, i.e.

ρXpAX ¨q “ pAX b idqρX .

The notation OpGXq implies that this ˚-algebra comes from a CQG GX . We will
later see that this is the case for both ˚-algebras, so they are associated to some
CQGs Aut`

pXq and GX . We call Aut`
pXq and GX the quantum automorphism

group of X and u the fundamental representation of the respective CQG.

For better understanding of the definition, let us see what the properties of ρX mean
for the fundamental representation u.

Lemma 2.17. Let X be a quantum graph with |X| “ n. If we view u as a linear
map

u : L2
pXq b OpGXq Ñ L2

pXq b OpGXq, upξ b aq :“
n

ÿ

i,j“1

bijpξq b uija.

Then
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i) up¨ b 1q “ ρX and upξ b aq “ upξ b 1qp1 b aq for all ξ P L2pXq, a P OpGXq,

ii) u is unital,

iii) upξ˚ b 1q “ upξ b 1q˚ for all ξ P L2pXq,

iv) upξ1 b 1qupξ2 b 1q “ upξ1ξ2 b 1q for all ξ1, ξ2 P L2pXq,

v) upAX b idq “ pAX b idqu.

Viewing u and AX as matrices, the last point is equivalent to
n

ÿ

j“1

ej b puAXqjk “

n
ÿ

j“1

ej b pAXuqjk. p1 ď k ď nq

Proof. iq We have

upek b 1q “

n
ÿ

i,j“1

bijpekq b uij “

n
ÿ

i,j“1

δjkei b uij “

n
ÿ

i“1

ei b uik “ ρXpekq,

hence up¨ b 1q “ ρX . Moreover,

upξ b aq “

n
ÿ

i,j“1

bijpξq b uija “ p

n
ÿ

i,j“1

bijpξq b uijqp1 b aq “ upξ b 1qp1 b aq

for all ξ P L2pXq and a P OpGXq.
Using that ρX is a unital ˚-homomorphism we get the corresponding properties of
u as a linear map.

ii) up1 b 1q “ ρXp1q “ 1 b 1

iii) upξ˚ b 1q “ ρXpξ˚q “ ρXpξq˚ “ upξ b 1q˚

iv) upξ1 b 1qupξ2 b 1q “ ρXpξ1qρXpξ2q “ ρXpξ1ξ2q “ upξ1ξ2 b 1q

v) upAXξ b aq “ upAXξ b 1qp1 b aq “ ρXpAXξqp1 b aq “ pAX b idqρXpξqp1 b aq

“ pAX b idqupξ b 1qp1 b aq “ pAX b idqupξ b aq.

If we view AX as a matrix paijqij P MnpCq, then the equality vq implies
n

ÿ

j“1

ej b puAXqjk “

n
ÿ

j“1

ej b

n
ÿ

i“1

ujiaik “

n
ÿ

i“1

aik

n
ÿ

j“1

ej b uji “

n
ÿ

i“1

aikupei b 1q

“ up

n
ÿ

i“1

aikei b 1q “ upAXek b 1q
vq
“ pAX b idqupek b 1q

“

n
ÿ

i“1

AXei b uik “

n
ÿ

i,j“1

ajiej b uik “

n
ÿ

j“1

ej b

n
ÿ

i“1

ajiuik

“

n
ÿ

j“1

ej b pAXuqjk.
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and since

upAXek b 1qp1 b aq “ upAXek b aq

and pAX b idqupek b 1qp1 b aq “ pAX b idqupek b aq

we get the equivalence.

Remark 2.18. In some sources the generating matrix of the quantum automorphism
group does not have to be a unitary, but ρX has to satisfy the ψX-invariance con-
dition pψX b idqρX “ ψXp¨q1. These two statements are equivalent. We just show
one direction of this equivalence since the other is way more complicated to show.
If u is a unitary, i.e.

řn
k“1 u

˚
kiukj “

řn
k“1 uiku

˚
jk “ δij, then

pψX b idqpρXpe˚
i ekqq “ pψX b idqpρXpeiq

˚ρpekqq

“ pψX b idqp

n
ÿ

j“1

e˚
j b u˚

jiqp

n
ÿ

l“1

el b ulkqq

“

n
ÿ

j,l“1

ψXpe˚
j elq b u˚

jiulk

“

n
ÿ

j,l“1

δjl b u˚
jiulk “

n
ÿ

j“1

u˚
jiujk

“ δik “ ψXpe˚
i ekq1

and this implies pψX b idqρX “ ψXp¨q1 since with 1 “
řn
i“1 αiei we get

pψX b idqpρXpekqq “ pψX b idqpρXp1˚ekqq “ pψX b idqpρXp

n
ÿ

i“1

αie
˚
i ekqq

“

n
ÿ

i“1

αipψX b idqpρXpe˚
i ekqq “

n
ÿ

i“1

αiψXpe˚
i ekq1

“ ψXp

n
ÿ

i“1

αie
˚
i ekq1 “ ψXpekq1.

To obtain the CQGs Aut`
pXq and GX from the ˚-algebras CpAut`

pXqq and OpGXq

we need (among other requirements) that these ˚-algebras are Hopf ˚-algebras. This
result is proved in the following proposition.

Proposition 2.19. The ˚-algebras CpAut`
pXqq and OpGXq admit a Hopf ˚-algebra

structure defined by

∆puijq :“
n

ÿ

k“1

uik b ukj, Spuijq :“ u˚
ji, ϵpuijq :“ δij p1 ď i, j ď nq.
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Proof. Both ˚-algebras are unital since u is a unitary matrix. First of all, one can
check that the defined p˚-)homomorphism exist, so e.g. the matrix p

řn
k“1 uikbukjqij

fulfills the same properties as puijqij. Moreover,

∆p1q “ ∆p

n
ÿ

j“1

uiju
˚
ijq “

n
ÿ

j“1

∆puijq∆puijq
˚

“

n
ÿ

j“1

p

n
ÿ

k“1

uik b ukjqp

n
ÿ

l“1

u˚
il b u˚

ljq

“

n
ÿ

j“1

n
ÿ

k“1

n
ÿ

l“1

uiku
˚
il b ukju

˚
lj “

n
ÿ

k“1

n
ÿ

l“1

uiku
˚
il b δkl “

n
ÿ

k“1

uiku
˚
ik b 1 “ 1 b 1

and analogously one can show that S and ϵ are unital.
We continue by checking the conditions 1q ´ 3q from Definition 1.16.
1q

pid b ∆q∆puijq “

n
ÿ

k“1

uik b ∆pukjq “

n
ÿ

k“1

n
ÿ

l“1

uik b ukl b ulj

“

n
ÿ

l“1

∆puilq b ulj “ p∆ b idq∆puijq

2q

mpid b Sqp∆puijqq “ mp

n
ÿ

k“1

uik b Spukjqq “ mp

n
ÿ

k“1

uik b u˚
jkq

“

n
ÿ

k“1

uiku
˚
jk “ δij “ ϵpuijq1

3q

pϵ b idqp∆puijqq “

n
ÿ

k“1

ϵpuikq b ukj “

n
ÿ

k“1

δik b ukj “ uij

and in the same way one can show pid b ϵq∆ “ id.

Now we want to check whether the notation CpGXq is fine, i.e. whether Definition
2.13 and 2.16 are compatible.

Proposition 2.20. If X is a classical graph, then CpGXq from Definition 2.16 is
the same as the quantum automorphism group from Definition 2.13. Moreover, we
get Aut`

pCn, ψnq “ S`
n .

Proof. If we look at a classical graph with n vertices, we consider again the quantum
set pCn, ψnq. Let pejqi “

?
nδij. Then teiui is an orthonormal basis for Cn since

xei, ejy “ ψnpe˚
j eiq “ ψnpδij

?
neiq “ δij

1

n

?
n
2

“ δij.
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Note that
řn
j“1 ej b xj “

řn
j“1 ej b yj ðñ xi “ yi for all 1 ď i ď n since the

equality of the sums implies

?
nei b xi “ pei b 1qp

n
ÿ

j“1

ej b xjq “ pei b 1qp

n
ÿ

j“1

ej b yjq “
?
nei b yi

and therefore ei b pxi ´ yiq “ 0 ðñ xi “ yi.
We have

n
ÿ

j“1

ej b uji “ ρXpeiq “ ρXpe˚
i q “ ρXpeiq

˚
“

n
ÿ

j“1

ej b u˚
ji,

which is equivalent to uji “ u˚
ji for all i, j. Moreover,

?
n

n
ÿ

j“1

ej b δikuji “
?
nδik

n
ÿ

j“1

ej b uji “
?
nδikρXpeiq “ ρXpeiekq

“ ρXpeiqρXpekq “ p

n
ÿ

j“1

ej b ujiqp

n
ÿ

l“1

el b ulkq

“

n
ÿ

j,l“1

ejel b ujiulk “
?
n

n
ÿ

j“1

ej b ujiujk,

which is equivalent to δikuji “ ujiujk for all i, j. In particular uij “ u2ij. Since u is
a unitary we have

n
ÿ

k“1

u˚
kiukj “

n
ÿ

k“1

uiku
˚
jk “ δij

and therefore we get
n

ÿ

k“1

uik “

n
ÿ

k“1

ukj “ 1.

The relations

uij “ u˚
ij “ u2ij and

n
ÿ

k“1

uik “

n
ÿ

k“1

ukj “ 1

already imply δikuji “ ujiujk in a C˚-algebra [[Sch20], Remark 1.1.9] and they imply
ρXp1q “ 1 b 1 since

ρXp1q “ ρXp
1

?
n

n
ÿ

i“1

eiq “
1

?
n

n
ÿ

i,j“1

ej b uji “
1

?
n

n
ÿ

j“1

ej b

n
ÿ

i“1

uji “ 1 b 1.

Thus we get that u satisfying the relations which make ρX a unital ˚-homomorphism
is equivalent to

uij “ u˚
ij “ u2ij and

n
ÿ

k“1

ukj “

n
ÿ

k“1

uik “ 1.
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Moreover, the AX-covariance condition is equivalent to uAX “ AXu because from
Lemma 2.17 we get

řn
j“1 ej b puAXqjk “

řn
j“1 ej b pAXuqjk for all 1 ď k ď n.

Hence we have

CpGXq “ C˚
puij | u˚

ij “ uij “ u2ij,
n

ÿ

k“1

uik “

n
ÿ

k“1

ukj “ 1, uAX “ AXuq.

Therefore both definitions coincide for classical graphs.
This proof also shows Aut`

pCn, ψnq “ S`
n since in the definition of quantum

automorphism groups of quantum graphs, the only additional condition is the
AX-covariance condition compared to the definition of the quantum automorphism
groups of quantum sets. Hence we get

CpAut`
pCn, ψnqq “ C˚

puij | u˚
ij “ uij “ u2ij,

n
ÿ

k“1

uik “

n
ÿ

k“1

ukj “ 1q “ OpS`
n q

and therefore Aut`
pCn, ψnq “ S`

n since the comultiplications are also the same.

The last point in this chapter is a more concrete example of a quantum automor-
phism group of a quantum graph. The following proposition and its proof is similar
to [[Wan98], Theorem 4.1].

Proposition 2.21. Let X “ pMnpCq, tr, Aq be the quantum set from Example 2.4 iiiq
with some quantum adjacency matrix A. Then OpGXq is the universal ˚-algebra
generated by elements vijkl with 1 ď i, j, k, l ď n which satisfy the following relations

vij
˚

kl “ vjilk (2.1)
n

ÿ

k,l“1

vjilkv
rs
kl “ δirδjs “

n
ÿ

k,l“1

vklij v
lk
sr (2.2)

n
ÿ

q“1

vijkqv
rs
ql “ δjrv

is
kl (2.3)

pvijklqklijA “ Apvijklqklij. (2.4)

Thus, we also have Aut`
pMnpCq, trq “ PO`

n .

Proof. The proof is quite similar to the one of Proposition 2.20.
Let peijqkl “

?
nδikδjl. Then teijuij is an orthonormal basis for MnpCq since

xeij, ekly “ trpe˚
kleijq “ trpelkeijq “ δki

?
ntrpeljq “ δki

?
nδlj

1

n

?
n “ δkiδlj.

One can show that
n

ÿ

k,l“1

ekl b xkl “

n
ÿ

k,l“1

ekl b ykl ðñ xij “ yij for all 1 ď i, j ď n.



2.2. QUANTUM AUTOMORPHISM GROUPS OF QUANTUM GRAPHS 33

We have ρXpeijq “
ř

k,l ekl b vijkl. Therefore we get

n
ÿ

k,l“1

ekl b vjikl “ ρXpejiq “ ρXpeijq
˚

“

n
ÿ

k,l“1

e˚
kl b vij

˚

kl “

n
ÿ

k,l“1

elk b vij
˚

kl ,

which is equivalent to p2.1q. Furthermore, pvklij qijkl has to be a unitary matrix. This
implies

δirδjs “

n
ÿ

k,l“1

pv˚
q
kl
ijv

rs
kl “

n
ÿ

k,l“1

vij
˚

kl v
rs
kl

p2.1q
“

n
ÿ

k,l“1

vjilkv
rs
kl

and

δirδjs “

n
ÿ

k,l“1

vklij pv˚
q
rs
kl “

n
ÿ

k,l“1

vklij v
kl˚

rs

p2.1q
“

n
ÿ

k,l“1

vklij v
lk
sr

which is equivalent to p2.2q. Moreover,

?
n

n
ÿ

k,l“1

ekl b δjrv
is
kl “ ρXpδjr

?
neisq “ ρXpeijersq “ ρXpeijqρXpersq

“ p

n
ÿ

k,l“1

ekl b vijklqp

n
ÿ

p,q“1

epq b vrspqq “

n
ÿ

k,l,p,q“1

eklepq b vijklv
rs
pq

“
?
n

n
ÿ

k,l,p,q“1

ekqδlp b vijklv
rs
pq “

?
n

n
ÿ

k,l,q“1

ekq b vijklv
rs
lq

“
?
n

n
ÿ

k,q“1

ekq b

n
ÿ

l“1

vijklv
rs
lq ,

and this is equivalent to p2.3q. By Proposition 2.19 we know that OpGXq is a Hopf
˚-algebra with Spvijklq “ vkl

˚

ij

p2.1q
“ vlkji . Applying S to both sides of p2.3q leads us to

δjrv
lk
si “ Spδjrv

is
klq “ Sp

n
ÿ

q“1

vijkqv
rs
ql q “

n
ÿ

q“1

vlqsrv
qk
ji . (‹)

With these relations we also get that ρX is unitary because

ρXp1q “ ρXp
1

?
n

n
ÿ

i“1

eiiq “
1

?
n

n
ÿ

k,l,i“1

ekl b viikl “
1

?
n

n
ÿ

k,l“1

ekl b

n
ÿ

i“1

viikl

p‹q
“

1
?
n

n
ÿ

k,l“1

ekl b

n
ÿ

i,j“1

vijkpv
ji
pl

p2.2q
“

1
?
n

n
ÿ

k,l“1

ekl b δkl “
1

?
n

n
ÿ

k“1

ekk b 1 “ 1 b 1.

Furthermore, the A-covariance condition is equivalent p2.4q because from Lemma
2.17 we get that it is equivalent to

ř

k,l ekl b pvAqklij “
ř

k,l ekl b pAvqklij for all
1 ď i, j ď n where v “ pvijklqklij.
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Similarly as in the proof of Proposition 2.20 this also implies that CpAut`
pMnpCq, trqq

is the universal C˚-algebra generated by elements vijkl which satisfy the relations
p2.1q-p2.3q and hence Aut`

pMnpCq, trq “ PO`
n since the comultiplications are also

the same by Proposition 2.19.



Chapter 3

Linking Algebras of Quantum
Graphs

In this chapter we want to define a quantum isomorphism notion for quantum
graphs. For this we need the definition of some linking algebra of two quantum
graphs. We also look at the definition of bigalois extensions, which is a quantum
analog of a torsor in the context of group actions, and show that this linking algebra
is a bigalois extension if it is non-zero.
The source for this chapter is again mainly [BCE`20].

3.1 Bigalois Extensions

In this section, we will introduce bigalois extensions. We show that a bigalois
extension is the quantum analog of a torsor and that every Hopf ˚-algebra itself is a
bigalois extension. First, we need the notion of a ˚-comodule algebra and a Galois
extension. Throughout this section, let pA,∆, S, ϵq be a Hopf ˚-algebra.

Definition 3.1. A left A ˚-comodule algebra is a unital ˚-algebra Z equipped with
a unital ˚-homomorphism α : Z Ñ A b Z which satisfies

1) pid b αqα “ p∆ b idqα

2) pϵ b idqα “ id.

Similarly, a right A ˚-comodule algebra is a unital ˚-algebra Z equipped with a
unital ˚-homomorphism β : Z Ñ Z b A which satisfies

1) pβ b idqβ “ pid b ∆qβ

35
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2) pid b ϵqβ “ id.

Definition 3.2. A left A ˚-comodule algebra pZ, αq is called a left A Galois exten-
sion if the linear map

κl : Z b Z Ñ A b Z, κlpx b yq “ αpxqp1 b yq

is bijective. Similarly, a right A ˚-comodule algebra pZ, βq is called a right A Galois
extension if the linear map

κr : Z b Z Ñ Z b A, κrpx b yq “ px b 1qβpyq

is bijective.

The following example illustrates what a Galois extension means in the context of
finite groups.

Example 3.3. If G is a finite group and G ñ X is an action of G on a finite space
X, then we call X a left G-torsor if the action is free and transitive, i.e. t ¨ x “ x

implies t “ e and for all x, y P X there exists a g P G with g ¨ x “ y. This is
equivalent to the fact that the map

Φ : G ˆ X Ñ X ˆ X, pg, xq ÞÑ pg ¨ x, xq

is bijective. We set OpXq “ CpXq and OpGq “ CpGq. Then OpXq is a left OpGq

˚-comodule algebra with the map

α : OpXq Ñ OpGq b OpXq – CpG ˆ Xq, αpfqpg, xq :“ fpg ¨ xq.

Moreover, X is a left G-torsor if and only if the map

κl : OpXq b OpXq Ñ OpGq b OpXq, κlpf1 b f2q :“ pf1 b f2q ˝ Φ

is bijective and that is the case if and only if OpXq is a left OpGq Galois extension
since

pf1 b f2qpΦpg, xqq “ pf1 b f2qpg ¨ x, xq “ f1pg ¨ xqf2pxq “ pαpf1qp1 b f2qqpg, xq.

Therefore we can regard a Galois extension as a quantum analogue of a torsor in
the context of group actions.

Now we finally state the definition of a bigalois extension. In short, it merges the
terms of a left and right Galois extension.
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Definition 3.4. Let A and B be Hopf ˚-algebras. A unital ˚-algebra Z is called an
A-B-bigalois extension if

1) pZ, αq is a left A Galois extension

2) pZ, βq is a right B Galois extension

3) Z is an A-B-bicomodule algebra, i.e. pid b βqα “ pα b idqβ.

In fact, every Hopf ˚-algebra is itself a bigalois extension. This result is formulated
in the following proposition. In its proof, the idea for the inverse maps of κl and κr
is taken from [[Sch04], Lemma 4.4.1], but the explicit calculation is new.

Proposition 3.5. Let pA,∆, S, ϵq be a Hopf ˚-algebra. Then A itself with the map
∆ is an A-A-bigalois extension.

Proof. We know pid b ∆q∆ “ p∆ b idq∆ and pϵ b idq∆ “ pid b ϵq∆ “ id from the
definition of Hopf algebras, hence pA,∆q is a left and right A ˚-comodule algebra
and an A-A-bicomodule algebra.
To prove that the maps κl and κr from Definition 3.2 are bijective, we use Sweedler’s
sumless notation. That is, we write ∆pbq “ bp1q bbp2q for b P A, even if ∆pbq is not an
elementary tensor. So we omit the possible summation sign. This is not a problem
because all occurring functions are linear.
The inverse maps are given by

κ´1
r pa b bq “ aSpbp1qq b bp2q and κ´1

l pa b bq “ ap1q b Spap2qqb.

We check this by using the equations 1q, 2q, 3q from Definition 1.16 which imply

1) bp1q b bp2qp1q b bp2qp2q “ bp1qp1q b bp1qp2q b bp2q

2) bp1qSpbp2qq “ ϵpbq1 “ Spbp1qqbp2q

3) ϵpbp1qqbp2q “ bp1qϵpbp2qq “ b

for all b P A. Since

κrpa b bq “ pa b 1q∆pbq “ abp1q b bp2q,

we get

κ´1
r pκrpa b bqq “ κ´1

r pabp1q b bp2qq “ abp1qSpbp2qp1qq b bp2qp2q

“ pa b 1qpbp1qSpbp2qp1qq b bp2qp2qq
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“ pa b 1qpm b idqpid b S b idqpbp1q b bp2qp1q b bp2qp2qq

1q
“ pa b 1qpm b idqpid b S b idqpbp1qp1q b bp1qp2q b bp2qq

“ pa b 1qpbp1qp1qSpbp1qp2qq b bp2qq

2q
“ pa b 1qpϵpbp1qq1 b bp2qq

“ pa b 1qp1 b ϵpbp1qqbp2qq

3q
“ pa b 1qp1 b bq “ a b b

and similarly

κrpκ
´1
r pa b bqq “ κrpaSpbp1qq b bp2qq “ aSpbp1qqbp2qp1q b bp2qp2q

1q
“ aSpbp1qp1qqbp1qp2q b bp2q

2q
“ aϵpbp1qq b bp2q

3q
“ a b b.

In the same way, one can check κ´1
l pa b bq “ ap1q b Spap2qqb.

3.2 Quantum Isomorphisms of Quantum Graphs

Now we want to introduce the linking algebra of two quantum graphs X and Y

to define an isomorphism notion of quantum graphs. We will show later that the
linking algebra is a OpGY q-OpGXq-bigalois extension if it is non-zero. But first,
we want to look at isomorphisms and quantum isomorphisms of classical graphs to
motivate our definition. This is similar to the definition of graph automorphisms
and the quantum automorphism group of a classical graph.

Definition 3.6. Let X and Y be to classical graphs. Then X and Y are isomorphic,
written X – Y , if there is a bijection σ : V pXq Ñ V pY q such that

pi, jq P EpXq ðñ pσpiq, σpjqq P EpY q.

As one can already imagine, similarly to Remark 2.12, one can show that we can
identify graph isomorphisms with all permutation matrices σ which fulfill σAX “ AY σ.

This motivates again the quantum isomorphism notion for two classical graphs.

Definition 3.7. Let X and Y be two classical graphs. Then we call X and Y

quantum isomorphic, written X –q Y , if there exists a unital C˚-algebra with
elements pij for i P V pXq and j P V pY q such that

p˚
ij “ p2ij “ pij,

ÿ

i

pij “
ÿ

j

pij “ 1 and AY p “ pAX .
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Remark 3.8. iq Clearly, X – Y implies X –q Y since the matrix elements σij of the
bijection between V pXq and V pY q satisfy the relations from Definition 3.7. The
other direction is not true in general, so there are quantum isomorphic graphs which
are not isomorphic.

iiq For two classical graphs there are also other quantum isomorphism notions with
additional requirements for the C˚-algebra, see for example Chapter 4 of [LMR20].
By Theorem 4.4 of [LMR20], some of them are even equivalent.

Next we want to define a quantum isomorphism notion for quantum graphs. For this
we need the linking algebra. In [BCE`20] this linking algebra was usually introduced
to extend the definition of the graph isomorphism game ˚-algebra ApIsopX, Y qq to
include quantum graphs. This ˚-algebra characterises whether the graph isomor-
phism game has a perfect A˚-strategy. More details can be found in Chapter 2 of
[BCE`20].

Similar to the part about quantum automorphism groups, we get that if X –q Y ,
then ppijqij is a unitary matrix and the map ρY,Xpejq :“

ř

i ei b pij is a unital
˚-homomorphism satisfying ρY,XpAX ¨q “ pAY b idqρY,X . This motivates the defini-
tion of the linking algebra.

Definition 3.9. Let X “ pOpXq, ψX , AXq and Y “ pOpY q, ψY , AY q be quantum
graphs with |X| “ n and |Y | “ m and let tejuj“1,...,n and tfiui“1,...,m be orthonormal
bases for L2pXq and L2pY q. We define the linking algebra of X and Y as the
universal ˚-algebra OpGY , GXq generated by the entries of a unitary matrix

p “ ppijqij P BpL2
pXq, L2

pY qq b OpGY , GXq

that satisfies the relations which make the map

ρY,X : OpXq Ñ OpY q b OpGY , GXq, ρY,Xpejq :“
m
ÿ

i“1

fi b pij

a unital ˚-homomorphism with

ρY,XpAX ¨q “ pAY b idqρY,X .

If OpGY , GXq ‰ 0, we call X algebraically quantum isomorphic to Y and write
X –A˚ Y .

In [BCE`20] there were also other quantum isomorphism notions introduced such
as the notion of a C˚-algebraically quantum isomorphism, written X –C˚ Y . That
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is, the linking algebra admits a non-zero C˚-representation. Moreover, the quantum
isomorphism notion X –qc Y , which is, the linking algebra admits a tracial state.
It even holds that X –A˚ Y ðñ X –C˚ Y [[BCE`20], Corollary 4.8].
Since we will only use the term algebraically quantum isomorphic in this thesis, we
will drop the term "algebraically" and just write quantum isomorphic.

Remark 3.10. iq If we have two finite-dimensional Hilbert spaces H1 and H2 and
an algebra A, then we can view an element in BpH1, H2q b A as an element in
MdimpH2qˆdimpH1qpAq by identifying the element bij b a with the matrix pδijaqij. If
u P BpH1, H2q b A, then u “

ř

i,j bij b uij for some uij P A, so we identify u with
the matrix puijqij.

iiq If X “ Y , then we get OpGY , GXq “ OpGXq and ρY,X “ ρX . This follows
directly from the definition.

iiiq If X and Y are just classical graphs, then the properties of ρY,X are in a
C˚-algebra equivalent to

p˚
ij “ p2ij “ pij,

ÿ

i

pij “
ÿ

j

pij “ 1 and AY p “ pAX .

Hence

CpGY , GXq “C˚
ppij | p˚

ij “ p2ij “ pij,
ÿ

i

pij “
ÿ

j

pij “ 1, AY p “ pAXq,

where 1 ď i ď |Y | and 1 ď j ď |X|. This can be proven similarly to Proposition
2.20. Therefore we get for classical graphs:

CpGY , GXq ‰ 0 ðñ X –q Y.

ivq If X “ pMnpCq, tr, AXq and Y “ pMmpCq, tr, AY q with some adjacency matrices
AX and AY , then one can show similar to Proposition 2.21 that OpGY , GXq is
generated by elements vijkl with 1 ď i, j ď n and 1 ď k, l ď m which satisfy
p2.1q-p2.3q from Proposition 2.21 and pvijklqklijAX “ AY pvijklqklij.

As already mentioned we now want to show that the linking algebra is a bigalois
extension if it is non-zero. This means that a quantum isomorphism between two
quantum graphs X and Y is nothing other than a OpGY q-OpGXq-bigalois extension.
Note that the other direction is not true in general, i.e.

"there exists a OpGY q-OpGXq-bigalois extension œ X –A˚ Y ".
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Theorem 3.11. Let X, Y be quantum graphs. If OpGY , GXq is non-zero, then
OpGY , GXq is a OpGY q-OpGXq-bigalois extension.

Proof. Let OpGY , GXq ‰ 0 and p, u and v be the matrices of generators of OpGY , GXq,

OpGY q and OpGXq respectively. Recall that a matrix paijqij is unitary if and only
if

ř

i a
˚
ikail “ δkl “

ř

j akja
˚
lj.

1q One can check that the matrix p
ř

k uik b pkjqij fulfills the same properties as
ppijqij. Therefore, by the universal property, we get a ˚-homomorphism

α : OpGY , GXq Ñ OpGY q b OpGY , GXq with αppijq “
ÿ

k

uik b pkj.

Then α is unital since

αp1q “ αp
ÿ

i

p˚
ijpijq “

ÿ

i

αppijq
˚αppijq “

ÿ

i

p
ÿ

k

uik b pkjq
˚
p
ÿ

l

uil b pljq

“
ÿ

i

ÿ

k

ÿ

l

u˚
ikuil b p˚

kjplj “
ÿ

k

ÿ

l

δkl b p˚
kjplj

“
ÿ

k

1 b p˚
kjpkj “ 1 b 1.

Furthermore, we have

pid b αqpαppijqq “ pid b αqp
ÿ

k

uik b pkjq “
ÿ

k

ÿ

l

uik b ukl b plj

“ p∆ b idqp
ÿ

l

uil b pljq “ p∆ b idqpαppijqq,

hence pid b αqα “ p∆ b idqα and

pϵ b idqpαppijqq “ pϵ b idqp
ÿ

k

uik b pkjq “
ÿ

k

δikpkj “ pij,

hence pϵ b idqα “ id. Therefore pOpGY , GXq, αq is a left OpGY q ˚-comodule.
We define the map

ηl : OpGY q b OpGY , GXq Ñ OpGY , GXq b OpGY , GXq

by
ηl :“ pid b mqpγ b idq

with
γ : OpGY q Ñ OpGY , GXq b OpGY , GXq, γpuijq :“

ÿ

t

pit b p˚
jt

and m is the multiplication of OpGY , GXq. Then ηl is the inverse of

κl : OpGY , GXq b OpGY , GXq Ñ OpGY q b OpGY , GXq, κlpx b yq “ αpxqp1 b yq,
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since

ηlpκlppij b pklqq “ pid b mqpγ b idqpαppijqp1 b pklqq

“ pid b mqpγ b idqp
ÿ

s

uis b psjpklq

“ pid b mqp
ÿ

s

ÿ

t

pit b p˚
st b psjpklq

“
ÿ

s

ÿ

t

pit b p˚
stpsjpkl

“
ÿ

t

pit b δtjpkl “ pij b pkl

and

κlpηlpuij b pklqq “ κlppid b mqp
ÿ

t

pit b p˚
jt b pklqq “ κlp

ÿ

t

pit b p˚
jtpklq

“
ÿ

t

αppitqp1 b p˚
jtpklq “

ÿ

t

p
ÿ

s

uis b pstqp1 b p˚
jtpklq

“
ÿ

t

ÿ

s

uis b pstp
˚
jtpkl “

ÿ

s

uis b δsjpkl “ uij b pkl.

2q Similarly, one can check that pOpGY , GXq, βq is a right OpGXq ˚-comodule with

β : OpGY , GXq Ñ OpGY , GXq b OpGXq, βppijq :“
ÿ

k

pik b vkj

and one can analogously construct an inverse of

κr : OpGY , GXq b OpGY , GXq Ñ OpGY , GXq b OpGXq, κrpx b yq “ px b 1qβpyq.

3q Moreover, OpGY , GXq is an OpGY q-OpGXq-bicomodule since

pid b βqpαppijqq “ pid b βqp
ÿ

k

uik b pkjq “
ÿ

k

ÿ

l

uik b pkl b vlj

“ pα b idqp
ÿ

l

pil b vljq “ pα b idqpβppijqq,

hence pid b βqα “ pα b idqβ.



Chapter 4

Representation Theory

In the fourth chapter we want to take a closer look at the representation theory
of CQGs. This will enable us to introduce the notion of monoidal equivalence.
As already noted we also need the notion of representations to construct the Hopf
˚-algebra which lies dense in the C˚-algebra of a CGQ. In the fifth chapter we will
then make a connection between monoidal equivalence of quantum automorphism
groups and quantum isomorphisms of quantum graphs.
The main sources for this chapter are [NT13] and [BCE`20].

4.1 Representations of CQGs

In this section, we start with the definition of a representation and then state
the theorem about the existence of the dense Hopf ˚-algebra. We will also define a
certain tensor product for representations. Moreover, we prove that the fundamental
representation of a quantum automorphism group is indeed a representation and
using this we can finally prove the existence of the quantum automorphism groups.

Definition 4.1. Let A be a ˚-algebra with a unital ˚-homomorphism ∆ : A Ñ AbA

and H a finite-dimensional Hilbert space. A (finite-dimensional) representation of
pA,∆q on H is an invertible element v P BpHq b A such that

pid b ∆qpvq “ v12v13. (see Section 1.1 for notation)

A representation of G is called unitary if v P BpHq b A is unitary.

Remark 4.2. iq Here we took the definition of representations from [NT13] instead
of [BCE`20] since in [BCE`20] a representation is an element of AbBpHq instead
of BpHq b A. The Hilbert space as the first component of the tensor product fits

43
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better in our case because in Definition 2.16 we can view the fundamental represen-
tation u as an element of BpL2pXq b OpGXqq and then get up¨ b 1q “ ρX , so here
the Hilbert space is also the first component.

iiq Let tei : 1 ď i ď nu be an orthonormal basis of H. If v P BpHq b OpGq is a
representation, we get

pid b ∆qpvq “ pid b ∆qp

n
ÿ

i,j“1

bij b vijq “

n
ÿ

i,j“1

bij b ∆pvijq.

Since v12v13 “
řn
i,j,k“1 bij b vik b vkj, we have that v is a representation if and only

if

∆pvijq “

n
ÿ

k“1

vik b vkj.

iiiq There is always the trivial representation on C given by 1 P OpGq – BpCq b OpGq,

since ∆p1q “ 1 b 1.

Now we can look at how the associated Hopf ˚-algebra OpGq corresponding to a
CQG G is constructed, as we already announced in Remark 1.17 iiq. The ˚-algebra
consists of the matrix coefficients of all finite-dimensional unitary representations
of G. This is formulated in the following theorem.

Theorem 4.3 ([Web17], Theorem 4.10). Let G “ pA,∆q be a CQG and A0 be the
subspace of A which is spanned by the matrix coefficients of all finite-dimensional
unitary representations of G. Then

• A0 Ď A is a dense ˚-algebra,

• A0 is a Hopf ˚-algebra with comultiplication ∆|A0 .

Now we also want to introduce the notion of intertwiners. These are special linear
maps between the Hilbert spaces of two representations. For the rest of this section
let G be a CQG.

Definition 4.4. Let u P BpHqbOpGq and v P BpKqbOpGq be two representations.
We call a linear map T : H Ñ K an intertwiner or morphism between u and v if

vpT b idq “ pT b idqu.

We denote the space of all morphisms between u and v with Morpu, vq. Two rep-
resentation u and v are called equivalent if there exists an invertible element in
Morpu, vq, so we get v “ pT b idqupT´1 b idq for some linear map T . Moreover, we
call u irreducible if Morpu, uq “ Cid.
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For two representations u and v we can also define a certain tensor product which
we will denote with u j v and introduce in the next proposition. For n P N0 we
denote with ujn the element u j ¨ ¨ ¨ j u, i.e. n ´ 1 times the tensor product of u
with itself if n P N and uj0 “ 1.

Proposition 4.5. Let u P BpHq b OpGq and v P BpKq b OpGq be two representa-
tions.
iq We define the tensor product of u and v as u j v :“ u13v23.

Then u j v P BpH b Kq b OpGq is a representation and u j 1 is equivalent to u.
iiq If u and v are unitary, then T P Morpu, vq ðñ T : P Morpv, uq.

Proof. iq Note that

BpHq b BpKq – MdimpHqpCq b MdimpKqpCq – MdimpHqdimpKqpCq – BpH b Kq.

Since
u13v23 “

ÿ

k,i,j,l

bij b bkl b uijvkl

we have u j v P BpHq b BpKq b OpGq – BpH b Kq b OpGq. Moreover, the
corresponding matrix of ujv is the Kronecker product of the corresponding matrices
of u and v (see [Gro20]). Using

∆puijvklq “ ∆puijq∆pvklq “ p
ÿ

p

uip b upjqp
ÿ

q

vkq b vqlq “
ÿ

p,q

uipvkq b upjvql

and pu j vqdimpKqpi´1q`k,dimpKqpj´1q`l “ uijvkl, we get that u j v is a representation.
Furthermore, we have u j 1 “

ř

i,j bij b b11 b uij “
ř

i,j bij b id b uij “ u13. Using
H – H b C we get that id : H Ñ H is an element of Morpu, u j 1q since

u13pξ b 1 b aq “
ÿ

i,j

bijpξq b 1 b uija “
ÿ

i,j

bijpξq b uija “ upξ b aq.

Therefore u j 1 is equivalent to u.
iiq Let T P Morpu, vq, then T : : K Ñ H and

upT :
b idqv˚

“ pvpT b idquq
:

“ pT b idq
:

“ T :
b id,

since u˚ “ u:. Therefore upT : b idq “ pT : b idqv, hence T : P Morpv, uq.

The next example shows that the fundamental representation of a quantum auto-
morphism group of a quantum graph or quantum set X is indeed a representation
and that mX , ηX and AX are intertwiners.
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Example 4.6. iq The fundamental representation u of a quantum automorphism
group of a quantum graph or quantum set X is a representation of pOpGXq,∆q

respectively pCpAut`
pXqq,∆q on L2pXq. For the quantum graph this is true since

u is an element of MnpOpGXqq – L2pXq b OpGXq, as a unitary it is invertible and
the equality ∆puijq “

ř

k uik b ukj is true by Proposition 2.19. The reasoning for
the quantum set is the same.

iiq Let X be a quantum graph and u the fundamental representation of GX . Then
we have mX P Morpu j u, uq, ηX P Morp1, uq and AX P Morpu, uq. Indeed, let teiui

be an orthonormal basis of L2pXq. We have mX : L2pXq b L2pXq Ñ L2pXq and

upmX b idqpei b ek b aq “ upeiek b aq “ ρXpeiekqp1 b aq

“ ρXpeiqρXpekqp1 b aq “ p
ÿ

j

ej b ujiqp
ÿ

l

el b ulkqp1 b aq

“
ÿ

j,l

ejel b ujiulka “ pmX b idqp
ÿ

j,l

ej b el b ujiulkaq

“ pmX b idqpu13p
ÿ

l

ei b el b ulkaq “ pmX b idqpu13pu23pei b ek b aqqq

“ pmX b idqpu j uqpei b ek b aqqq,

ηX : C Ñ L2pXq (BpCq – C) and

upηX b idqpα b aq “ upα1 b aq “ ρXpα1qp1 b aq

“ αρXp1qp1 b aq “ α1 b a “ pηX b idq1pα b aq,

AX : L2pXq Ñ L2pXq and

upAX b idq “ pAX b idqu

by Lemma 2.17 vq.

Finally, we state the theorem which proves the existence of the quantum automor-
phism group of a quantum graph or a quantum set.

Theorem 4.7 ([NT13], Theorem 1.6.6). Let pA,∆q be a Hopf ˚-algebra such that A
is generated by the matrix coefficients of finite-dimensional unitary representations
of pA,∆q, then pA,∆q “ pOpGq,∆q for some CQG G.

Remark 4.8. The above theorem shows that the notation in Definition 2.16 makes
sense and that the CQGs Aut`

pXq and GX really exists since CpAut`
pXqq and

OpGXq are both Hopf ˚-algebras by Proposition 2.19 and generated by their funda-
mental representation which is indeed a representation by Example 4.6 iq.
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At the end of this section we state another theorem which we will need when working
with monoidal equivalence in the next sections.

Theorem 4.9 ([NT13], Theorem 1.3.7). Every finite-dimensional representation of
G is equivalent to a direct sum of irreducible representations.

4.2 Monoidal Equivalence

In this section we introduce the notion of monoidal equivalence of two CGQs and
look at some examples of monoidal equivalent CQGs. In the next chapter we will
show that if a quantum automorphism group of a graph X is monoidally equivalent
to another CQG, then there exists a corresponding quantum graph to this CQG
which is quantum isomorphic to X.

For a CGQ G, let ReppGq be the representation category, i.e. the category whose
objects are equivalence classes of representations of G and whose morphisms are
given by the intertwiner spaces Morpu, vq. With IrrpGq we denote the set of equiva-
lence classes of irreducible objects in ReppGq. Note that from now on we also denote
the equivalence class of some representation u P BpHq b OpGq with u P ReppGq.

Definition 4.10. Let G1 and G2 be two CQGs. We say that G1 and G2 are
monoidally equivalent and write G1 „mon G2 if there exists a bijection

φ : IrrpG1q Ñ IrrpG2q

with φp1G1q “ 1G2 (where 1Gi
is the trivial representation of Gi) and for all

ui P IrrpG1q and vj P IrrpG2q pi “ 1, . . . , n, j “ 1, . . . ,mq there are linear iso-
morphisms

φ : Morpu1 j . . . un, v1 j . . . vmq Ñ Morpφpu1q j . . . φpunq, φpv1q j . . . φpvmqq

with φpidq “ id and for all intertwiners S, T we have:

• φpS ˝ T q “ φpSq ˝ φpT q (if S ˝ T is well-defined)

• φpS:q “ φpSq:

• φpS b T q “ φpSq b φpT q.

Remark 4.11. By Theorem 4.9 we can extend φ to a functor φ : ReppG1q Ñ ReppG2q

since every u P ReppG1q is equivalent to a direct sum ‘iui with ui P IrrpG1q, so we
can define φpuq :“ ‘iφpuiq. This functor is in particular essentially surjective which
means that every object in ReppG2q is of the form φpuq for some u P ReppG1q.
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If we have two quantum sets with δ-forms, then it is quite easy to see whether their
quantum automorphism groups are monoidally equivalent. This is exactly the case
if the two δ are the same. This statement is formulated in the following theorem.
With this we can easily follow that the two CQGs S`

n2 and PO`
n from Definition

1.14 are monoidally equivalent.

Theorem 4.12 ([DRVV10], Theorem 4.7). Let pBi, ψiq be quantum sets where ψi is
a δi-form (i “ 1, 2q. Then the CQGs Aut`

pB1, ψ1q and Aut`
pB2, ψ2q are monoidally

equivalent if and only if δ1 “ δ2.

Corollary 4.13. The CQGs S`

n2 and PO`
n are monoidally equivalent.

Proof. From Example 2.4 iiq and iiiq we know that ψn2 : Cn2
Ñ C and tr :MnpCq Ñ C

are both n-forms. Therefore we get with Theorem 4.12

Aut`
pCn2

, ψn2q „
mon Aut`

pMnpCq, trq

and then the Propositions 2.20 and 2.21 imply S`

n2 „mon PO`
n .

Using this theorem we get another interesting monoidal equivalence.

Example 4.14. The group SOp3q is defined as all orthogonal matrices in R3ˆ3

with determinant 1. By [Ban99] we know that SOp3q is the quantum automorphism
group of pM2pCq, trq. This implies SOp3q „mon S

`
4 since tr and ψ4 are both 2-forms.



Chapter 5

Linking Algebras of CQGs

In this chapter we also want to define a linking algebra for two monoidally equiv-
alent CQGs, which do not necessarily have to be quantum automorphisms groups
of some quantum graphs. With the help of this new linking algebra we can finally
prove the theorem which we already mentioned at the beginning of Section 4.2.
It connects the monoidal equivalence of quantum automorphism groups with the
quantum isomorphism of the corresponding quantum graphs. In the end we will
also have a closer look at the linking algebra of S`

n2 and PO`
n .

The main sources of this chapter are [BEHY22] and [BCE`20].

The existence of the linking algebra in the following definition is proved in [[BRV05],
Theorem 3.9 and Proposition 3.13].

Definition 5.1. Let G1 and G2 be two monoidally equivalent CQGs and
φ : ReppG1q Ñ ReppG2q be the map from Remark 4.11. Then there exists a unique
unital ˚-algebra ÔpG1, G2q which is spanned by the matrix coefficients of unitary
elements Xx P BpHx, Hφpxqq b ÔpG1, G2q where x P IrrpG1q. We call ÔpG1, G2q the
linking algebra of G1 and G2.

Remark 5.2. iq Since φ is defined on ReppG1q, we also have unitary elements
Xx P BpHx, Hφpxqq b ÔpG1, G2q for all x P ReppG1q. Moreover, we know from the
proof of [[BRV05], Theorem 3.9] that

pφpSq b idqXy
13X

z
23 “ Xx

pS b idq

for all S P Morpy j z, xq,

pφpT q b idqXx
“ Xy

13X
z
23pT b idq

49
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for all T P Morpx, y j zq and that X1 is the unit element of ÔpG1, G2q. Therefore
we also get

pφpT q b idqXx
“ Xy

pT b idq

for all T P Morpx, yq and

pXy
q

˚
13pφpT q b idq “ Xz

23pT b idq

for all T P Morp1, y j zq because pXyq˚
13X

y
13 “ id since Xy is a unitary element.

These equalities will be useful in the proof of the next theorem.

iiq It is not mentioned in [BEHY22], but similar to Theorem 3.11 one can show that
ÔpG1, G2q is a OpG1q-OpG2q-bigalois extension if it is non-zero.

iiiq If we have a quantum set pOpXq, ψXq, then pξ‹bidqpm:

XηXqp1q “ ξ˚ (see Section
1.1 for notation). The idea that this equality holds is taken from [Rij07].
Indeed,

xpξ‹
b idqpm:

XηXqp1q, yy “ xpm:

XηXqp1q, pξ‹
b idq

:
pyqy

“ xpm:

Xηqp1q, ξ b yy “ x1, ξyy “ xξ˚, yy,

where the second equation is true since

xξ b y, x b zy “ xξ, xyxy, zy “ xy, xx, ξyzy “ xy, pξ‹
b idqpx b zqy.

If two quantum graphs are quantum isomorphic, then their quantum automorphism
groups are monoidally equivalent (see [BCE`20] Section 4.2). The converse is not
true in general. However, we get another theorem connecting monoidal equivalence
with quantum isomorphism, which we can now finally prove. It states that if a CQG
is monoidally equivalent to a quantum automorphism group of some quantum graph
X, then there exists a quantum graph Y with X –A˚ Y such that the CQG is its
quantum automorphism group. For the proof of this we first need the following
lemma.

Lemma 5.3. Let H be a finite-dimensional Hilbert space and also a unital ˚-algebra,
where the equality xa˚b, cy “ xb, acy holds for all a, b, c P H. Then H is a C˚-algebra.

Proof. We define the map Φ : H Ñ BpHq, a ÞÑ ϕa with ϕaphq “ ah. Then Φ is well
defined because H is finite-dimensional, thus all linear maps are bounded and hence
ϕa P BpHq. Moreover, Φ is injective since ϕa “ ϕb implies a “ ϕap1q “ ϕbp1q “ b.

Therefore, H – ΦpHq. The space ΦpHq is norm-closed since it is isomorphic to H
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and hence finite-dimensional. Furthermore, it is a ˚-subalgebra of BpHq because
ϕ:
a “ ϕa˚ since xa˚h1, h2y “ xh1, ah2y. This implies that ΦpHq is a C˚-algebra,

hence H is a C˚-algebra.

The proof of the following theorem is based on the given proof in [BCE`20] (The-
orem 4.11) and the proof of Theorem 3.6.5 in [Rij07].

Theorem 5.4. Let X “ pOpXq, ψX , AXq be a quantum graph and GX its quantum
automorphism group. Let G be another compact quantum group that is monoidally
equivalent to GX . Then there exists a quantum graph Y “ pOpY q, ψY , AY q such
that G – GY and X is quantum isomorphic to Y , i.e. X –A˚ Y.

Proof. 1. Construction of Y :
Let φ : ReppGXq Ñ ReppGq be the map from Remark 4.11 and u be the fundamental
representation of GX . We define v :“ φpuq. Then v P BpHqbOpGq for some Hilbert
space H. We set L2pY q :“ H and dY :“ dimpHq. Additionally we define

mY :“ φpmXq P Morpv j v, vq, ηY :“ φpηXq P Morp1, vq,

ψY :“ η:

Y P Morpv, 1q and AY :“ φpAXq P Morpv, vq.

Then mY is associative since

mY pid b mY q “ φpmXpid b mXqq “ φpmXpmX b idqq “ mY pmY b idq

and ηY is a unit map because

mY pid b ηY q “ φpmXpid b ηXqq “ φpidq “ id “ φpmXpηX b idqq “ mY pηY b idq.

We define the map ¨# : L2pY q Ñ L2pY q by

ξ ÞÑ ξ# :“ pξ‹
b idqpm:

Y ηY qp1q.

Then

xξ#, yy “ xpξ‹
b idqpm:

Y ηY qp1q, yy “ xpm:

Y ηY qp1q, pξ‹
b idq

:yy

Remark 5.1iiiq
“ xpm:

Y ηY qp1q, ξ b yy “ x1,mY pξ b yqy “ x1, ξyy

and therefore also

xξ# b x, y b zy “ xξ#, yyxx, zy “ x1, ξyyxx, zy “ x1,mY pξ b yqyxx, zy

“ xm:

Y p1q, ξ b yyxx, zy “ xm:

Y p1q b x, ξ b y b zy
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for all ξ, x, y, z P L2pY q. Together with

m:

YmY “ φpm:

XmXq
Lemma 2.9

“ φppmX b idqpid b m:

Xqq “ pmY b idqpid b m:

Y q

this implies

xξ#x, 1y “ xmY pξ# b xq, 1y “ xξ# b x,m:

Y p1qy

“ xm:

Y p1q b x, ξ b m:

Y p1qy

“ xpm:

Y b idqp1 b xq, pid b m:

Y qpξ b 1qy

“ x1 b x, pmY b idqpid b m:

Y qpξ b 1qy

“ x1 b x,m:

YmY pξ b 1qy

“ xmY p1 b xq,mY pξ b 1qy “ xx, ξy.

This shows that the scalar product of L2pY q is induced by ψY since

ψY pξ#xq “ η:

Y pξ#xq “ η:

Y pξ#xq1 “ xη:

Y pξ#xq, 1y “ xξ#x, 1y “ xx, ξy.

With this knowledge we now get that # is an involution because the equalities

xpαξq
#, yy “ x1, αξyy “ xαξ#, yy,

xpξ#q
#, yy “ x1, ξ#yy “ xξ, yy,

xpξ1ξ2q
#, yy “ x1, ξ1ξ2yy “ xξ#1 , ξ2yy “ xξ#2 ξ

#
1 , yy

imply pαξq# “ αξ#, pξ#q# “ ξ and pξ1ξ2q
# “ ξ#2 ξ

#
1 .

Therefore L2pY q is a unital ˚-algebra with multiplication mY , unit map ηY and
involution #. In fact, L2pY q is even a C˚-algebra because it fulfils the requirements
of Lemma 5.3. We denote this C˚-algebra with OpY q.
We also get that ψY is a faithful state since ψY p1q “ x1, 1y “ }1}2 “ 1 and
ψY pξ#ξq “ xξ, ξy “ }ξ}, hence ψY pξ#ξq ě 0 and ψY pξ#ξq “ 0 only if ξ “ 0. In
addition, ψY : L2pY q Ñ C is a δ-form since

mYm
:

Y “ φpmXm
:

Xq “ φpδ2idq “ δ2id.

Moreover, AY : L2pY q Ñ L2pY q is a quantum adjacency matrix because

A:

Y “ φpAXq
:

“ φpA:

Xq “ φpAXq “ AY ,

so AY is self-adjoint and p1q-p3q from Definition 2.5 are true:

(1) mY pAY b AY qm:

Y “ φpmXpAX b AXqm:

Xq “ φpδ2AXq “ δ2AY
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(2) pid b η:

YmY qpid b AY b idqpm:

Y ηY b idq

“ φppid b η:

XmXqpid b AX b idqpm:

XηX b idqq “ φpAXq “ AY

(3) mY pAY b idqm:

Y “ φpmXpAX b idqm:

Xq “ φpδ2idq “ δ2id.

Therefore pOpY q, ψY , AY q is a quantum graph.

2. GY – G:
Let GY be the quantum automorphism group of Y with fundamental representation
w P MdY pOpGY qq. We have that OpGq is generated by the entries of φpuq “ v

because φ is essentially surjective and OpGXq is generated by the entries of u.
Therefore, we get with Proposition 3.4.15 from [Gro20] that it is enough to show

Morpwjm, wjn
q “ Morpvjm, vjn

q

for all m,n P N0 to prove that GY – G. The monoidal equivalence implies
Morpvjm, vjnq “ φpMorpujm, ujnqq for all n,m P N0. Moreover, by some categori-
cal reasoning, the space

Ť

n,mPN Morpujm, ujnq is generated by the maps tid,mX , ηX , AXu

and therefore the space
Ť

n,mPN Morpvjm, vjnq is generated by the images

tφpidq, φpmXq, φpηXq, φpAXqu “ tid,mY , ηY , AY u.

But the set
Ť

n,mPN Morpwjm, wjnq is also generated by the maps tid,mY , ηY , AY u.

Therefore we have

ď

n,mPN

Morpvjm, vjn
q “

ď

n,mPN

Morpwjm, wjn
q

and hence Morpvjm, vjnq “ Morpwjm, wjnq for all m,n P N0.

3. X –A˚ Y :
Since we now get the monoidal equivalence of GX and GY , Remark 5.2 iq implies
that there exists an element Xu P BpL2pXq, L2pY qq b ÔpGX , GY q which satisfies

(i) ηY b id “ φpηXq b id “ XupηX b idq

(ii) pmY b idqXu
13X

u
23 “ pφpmXq b idqXu

13X
u
23 “ XupmX b idq

(iii) pXuq˚
13pm:

Y ηY b idq “ pXuq˚
13pφpm:

XηXq b idq “ Xu
23pm

:

XηX b idq

(iv) pAY b idqXu “ pφpAXq b idqXu “ XupAX b idq.
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The map ρ : OpXq Ñ OpY q b ÔpGX , GY q, ρpeiq “
ř

j fj b Xu
ji is then a unital

˚-homomorphism with ρpAX ¨q “ pAY b idqρ.

Indeed, we have

ρp1q “ Xu
p1 b 1q “ Xu

ppηX b idqp1 b 1qq
piq
“ pηY b idqp1 b 1q “ 1 b 1,

ρpeiekq “ Xu
peiek b 1q “ Xu

ppmX b idqpei b ek b 1qq

piiq
“ pmY b idqpXu

13X
u
23pei b ek b 1qq “ pmY b idqpXu

13pei b
ÿ

j

fj b Xu
jkqq

“ pmY b idqp
ÿ

j,l

fl b fj b Xu
liX

u
jkqq “

ÿ

j,l

flfj b Xu
liX

u
jk

“ p
ÿ

l

fl b Xu
liqp

ÿ

j

fj b Xu
jkq “ ρpeiqρpekq,

ρpe˚
i q “ Xu

pe˚
i b 1q

Remark 5.2iiiq
“ Xu

ppe‹
i b idqpm:

XηXqp1q b 1q

“ pe‹
i b id b idqXu

23ppm:

XηXqp1q b 1q

“ pe‹
i b id b idqXu

23ppm:

XηX b idqp1 b 1qq

piiiq
“ pe‹

i b id b idqXu˚

13 pm:

Y ηY b idqp1 b 1qq

“ pe‹
i b id b idqXu˚

13 ppm:

Y ηY qp1q b 1q

“ pe‹
i b id b idqp

ÿ

j,k

pbkj b idqpm:

Y ηY qp1q b pXu˚

qkjq

“ pe‹
i b id b idqp

ÿ

j,k

pf ‹
j ek b idqpm:

Y ηY qp1q b pXu
jkq

˚
q

“
ÿ

j,k

pf ‹
j δik b idqpm:

Y ηY qp1q b pXu
jkq

˚

“
ÿ

j

pf ‹
j b idqpm:

Y ηY qp1q b pXu
jiq

˚
“

ÿ

j

f#
j b pXu

jiq
˚

“ ρpeiq
˚,

ρpAXeiq “ Xu
pAXei b 1q “ Xu

pAX b idqpei b 1q
pivq
“ pAY b idqXu

pei b 1q

“ pAY b idqρpeiq.

By the universal property of OpGY , GXq we know that there is a ˚-homomorphism
ψ : OpGY , GXq Ñ ÔpGX , GY q with ψppijq “ Xu

ij (where pij generates OpGY , GXq).
Therefore, OpGY , GXq ‰ 0, so X –A˚ Y (see Definition 3.9).

Now we want to have a closer look at the linking algebra of the CQGs S`

n2 and PO`
n .

For this we first state the following remark, which makes it easier to calculate the
linking algebra explicitly.



55

Remark 5.5. Let Aut`
pB1, ψ1q and Aut`

pB2, ψ2q be two monoidally equivalent
quantum automorphism groups. Then their linking algebra is given by the uni-
versal ˚-algebra generated by the coefficients of a unital ˚-homomorphism

ρ : B1 Ñ B2 b ÔpAut`
pB1, ψ1q,Aut`

pB2, ψ2qq

with
pψ2 b idqρ “ ψ1p¨q1.

The coefficients of ρ are defined as the set tpw b idqρpxq : x P B1, w P B˚
2 u.

For example, if A,B and C are vector spaces where A and B are finite-dimensional,
then the coefficients of the map A Ñ B b C with a ÞÑ

ř

i,j bijpaq b cij is the set
span(tcijuijq. Indeed, let tajuj and tbiui be a basis of A and B respectively. Then
the maps tb˚

i ui form a basis of B˚ where b˚
i pbkq “ δik. Hence, every coefficient is a

linear combination of elements of the form

pb˚
k b idqp

ÿ

i,j

bijpaq b cijq “
ÿ

i,j

b˚
kpαjbiqcij “

ÿ

i,j

δkiαjcij “
ÿ

j

αjckj,

where we assumed a “
ř

j αjaj. Therefore

tpw b idqρpxq : x P A,w P B˚
u “ spanptcijuijq.

By Corollary 4.13 we know that the CQGs S`

n2 and PO`
n are monoidally equivalent,

hence we can look at their linking algebra using the above remark. This proposition
is a new result.

Proposition 5.6. The linking algebra of S`

n2 and PO`
n is the universal ˚-algebra

generated by elements pijk where 1 ď i, j ď n and 1 ď k ď n2 with

n2
ÿ

k“1

pijk “ δij (5.1)

p˚
ijk “ pjik (5.2)

n
ÿ

r“1

pirkprjl “ δklpijk (5.3)

n
ÿ

i“1

piik “
1

n
. (5.4)

Proof. By Remark 5.5 the ˚-algebra ÔpS`

n2 , PO
`
n q is generated by the coefficients

of a unital ˚-homomorphism

ρ : Cn2

Ñ MnpCq b ÔpS`

n2 , PO
`
n q
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with
ptr b idqρ “ ψn2p¨q1.

We can write ρpekq “
ř

i,j eij b pijk for some elements pijk P ÔpS`

n2 , PO
`
n q. The

proof is now similar to the proof of Proposition 2.21.
Since ρ has to be unital we get

ÿ

i,j

eij b
ÿ

k

pijk “
ÿ

i,j,k

eij b pijk “ ρp
ÿ

k

ekq “ ρp1q
!

“ 1 b 1 “
ÿ

i,j

eij b δij

which is equivalent to p5.1q. Moreover, ρ has to be involutive. This implies
ÿ

i,j

eji b p˚
ijk “ ρpekq

˚ !
“ ρpe˚

kq “ ρpekq “
ÿ

i,j

eji b pjik

and this is equivalent to p5.2q. Furthermore, we need ρ to be multiplicative. Hence
ÿ

i,j

eij b
ÿ

r

pirkprjl “
ÿ

i,j,r

eij b pirkprjl “
ÿ

i,j,r,s

δsreij b piskprjl

“
ÿ

i,j,r,s

eiserj b piskprjl “ p
ÿ

i,s

eis b piskqp
ÿ

r,j

erj b prjlq

“ ρpekqρpelq
!

“ ρpekelq “ δlkρpekq “
ÿ

i,j

eij b δlkpijk

which is equivalent p5.3q. Finally, the equality ptr b idqρ “ ψn2p¨q1 is equivalent to
p5.4q since

1 “ n2ψn2pekq1
!

“ n2
ptr b idqρpekq “ n2

ÿ

i,j

trpeijqpijk “ n2
ÿ

i,j

δij
1

n
pijk “ n

ÿ

i

piik.
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