TECHNISCHE
UNIVERSITAT
DARMSTADT

Faculty of Mathematics

Master thesis

Quantum Graphs and Bigalois Extensions

Michelle Gobel

September 7, 2022

1. Supervisor: Prof. Dr. Pascal Schweitzer
2. Supervisor: Prof. Dr. Moritz Weber



Contents

(1.2 C*-Algebras| . . . . . . . . . . ...
(1.3 Compact Quantum Groups|. . . . . . . . . . .. ... ... .. ...

2 Quantum Graphs and Quantum Automorphism Groups|
2.1  Quantum Graphs| . . . . . .. ..o oo
[2.2  Quantum Automorphism Groups of Quantum Graphs[. . . . . . . .
[3 Linking Algebras of Quantum Graphs|
[3.1 Bigalois Extensions| . . . . . . . ... ... Lo
[3.2  Quantum Isomorphisms of Quantum Graphs| . . . . . . . ... ...
[4  Representation Theory|
[4.1 Representations of CQGs|. . . . . . . ... . ... ... ...
4.2 Monoidal Equivalencel. . . . . . . ... 000000
[ Linking Algebras of CQGs|
(Bibliography|
Index]
I'hesis Statement!

© ot ot Ot

14
14
24

35
35
38

43
43
47

49

59

61

63



Introduction

In this thesis we will study compact quantum groups, quantum graphs, quantum
automorphism groups and quantum isomorphisms. These are generalisations of
compact groups, graphs and their automorphisms and isomorphisms.

Compact quantum groups can be seen as a non-commutative analog of compact
groups. For a compact group G, we can look at the unital C*-algebra of con-
tinuous functions C'(G). Using the multiplication of G we can now define a map
A C(G) - C(G)® C(G), called comultiplication, which fulfils certain proper-
ties. A compact quantum group is now by definition a unital C*-algebra A together
with such a comultiplication. Using that a unital C'*-algebra is commutative if and
only if it is isomorphic to C'(X) for some compact space X, we can show that the
C*-algebra A is commutative if and only if it is isomorphic to C(G) for some com-
pact group G. This illustrates the term "non-commutative analog".

Similarly, quantum graphs are non-commutative analogs of graphs. To every graph

with n vertices we can associate the set (C", 1), A), where ¢,(z) = L 3" | 2, and A

n

is the adjacency matrix. A quantum graph is now a finite-dimensional, not neces-
sarily commutative C*-algebra O(X) together with a faithful state ¢)x and a linear
map Ax : O(X) — O(X), which has to fulfil certain properties. Here we can also
show that the C*-algebra is commutative if and only if we are in the classical situ-
ation, i.e. the set is (C", ¢,, A). Hence the class of classical graphs is just the set
of quantum graphs with commutative C*-algebra.

Furthermore, we will consider quantum automorphism groups of quantum sets and
quantum graphs. For a classical graph this is the quantum analog of the space of
graph automorphisms. We will also look at the linking algebra of two quantum
graphs. This is an object with which we can define a quantum isomorphism notion
for two quantum graphs. The main theorem of this thesis then states that if we
have a quantum graph whose quantum automorphism group is "equivalent" (we

will explain this notion of equivalence in more detail) to another compact quantum

group, then there exists another quantum graph with this compact quantum group



as quantum automorphism group which is quantum isomorphic to our first quantum
graph. This is a result from [BCE20| (Theorem 4.11).

The main source of this thesis is [BCET20|. Its structure is as follows. In the first
chapter we review some basics of the theory of C*-algebras (based on [WLV21]) such
as the Gelfand-Naimark-Theorem and the construction of universal C*-algebras.
There we also introduce the notion of compact quantum groups and Hopf algebras.
In the second chapter we define quantum graphs, look at some examples and clar-
ify where the definition comes from. We then introduce quantum automorphism
groups of classical graphs, quantum sets and quantum graphs and take a closer look
at some examples of them. In Chapter 3 we first define the notion of a bigalois
extension and then introduce quantum isomorphisms and the linking algebra of two
quantum graphs. We also clarify the connection between bigalois extensions and
quantum isomorphisms of quantum graphs. In the fourth chapter we discuss the
representation theory of compact quantum groups (following [NT13]), define the
notion of monoidal equivalence and look at some examples of monoidally equiva-
lent compact quantum groups. In Chapter 5, we define the linking algebra also for
compact quantum groups (based on [BEHY22| and [BRV05]) and prove the main
theorem of this thesis (Theorem [5.4). At the end, we take a closer look at the

linking algebra of two explicit compact quantum groups.
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Chapter 1

Preliminaries

1.1 Notations

First of all, we want to fix some notations. We denote the identity map with id
and the characteristic function with xy. The symbol ® denotes the tensor pro-
duct of Hilbert spaces, the algebraic tensor product of (*-)algebras and the minimal
tensor product of C*-algebras. Moreover, we identify 1 ® = with x where 1 € C.
If X,Y,Z are vector spaces and T: X ®Y — X ®Y is a linear map, then e.g.
Ti3: X®ZR®RY - X®ZRXY is the linear map which acts as 7" on X and Y and
as the identity on Z.

To distinguish between the involution and the adjoint we denote the adjoint of a lin-
ear operator A with AT. For a vector space B, the symbol B* denotes the dual space
of B. Furthermore, our inner product is linear in the first variable. If £ € H is an el-
ement of a Hilbert space, we denote with £* the linear map £* : H — C, h — (h,§).
If we have two Hilbert spaces H; and H, with orthonormal bases {e;}; and {fi};
respectively, then we denote with b;; € B(H;, Hs) the map with b;;(ex,) = d; f;. The
symbol B(H;, Hs) denotes the set of bounded linear maps from H; to Hs. More-
over, if we talk about C" we denote with e; the vector with (e;); = J;; and if we talk
about M,,(C) we denote with e;; the matrix with (e;;)u = 005 if it is not defined

otherwise.

1.2 (C"-Algebras

Now, we want to recall some basics about *-algebras and C*-algebras. We will re-
view the definition of these algebras, some important theorems and the construction

of universal *- and C*-algebras. The source for this section is [WLV2I].
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Definition 1.1. Let A be a C-algebra. We call an antilinear map -* : A — A
an involution if (z*)* = x and (xy)* = y*z* for all z,y € A. A *-algebra is
an algebra equipped with an involution. A C*-algebra is a normed and complete
*-algebra where the norm is submultiplicative, i.e. |zy| < |z||y|, and it satisfies
the C*-identity, i.e. |z*z| = |z|?.

We call a *-algebra unital if it contains a unit with respect to the multiplication.
For two unital *-algebras A and B, a linear and multiplicative map ¢ : A — B is

called a *-homomorphism if p(z*) = p(z)* and wunital if p(1) = 1.
For better understanding, let us look at a few examples of C'*-algebras.

Example 1.2. i) Let X be a compact Hausdorff space. Then C'(X) with the infinity
norm |- ||, pointwise addition and multiplication and involution defined by f* := f
is a unital C*-algebra. Indeed, (C'(X),| - ||s) is complete and

1790 < | Flolgloes T =, Fg = TG =GF, [FFleo = [1£2]00 = I£1%

is true for all f, g e C(X).

i1) For n € N, the space M,,(C) with the operator norm is a unital C*-algebra, where
we have the usual matrix multiplication and the involution is defined as A* := ﬁT,

i.e. (A*)” = A_ﬂ

iii) Let H be a Hilbert space. Then B(H) with the operator norm and composition
as multiplication is a unital C*-algebra with involution 7% := T%. In fact, even

any C*-algebra is isomorphic to a norm closed *-subalgebra of B(H), for some H.
Observe that B(H) is just M, (C) if H is finite-dimensional.

One of the fundamental theorems of C*-algebras is the Gelfand-Naimark-Theorem.
It states that a C'*-algebra is commutative if and only if it is isomorphic to the
space of continuous functions on some compact space. We will need this theorem for
showing that the quantum objects we will introduce are non-commutative analogs
of the classical objects. A proof of this theorem is given in [[WLV21], Theorem 3.23].

Theorem 1.3 (Gelfand-Naimark, 1943). Let A be a unital C*-algebra. Then
A is commutative <= 31X compact: A =~ C'(X).
The space X 1is then given by

Spec(A) = {p : A — C | ¢ is a homomorphism with ¢ # 0}.
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Another important theorem is Wedderburn’s Theorem, which says that every finite-
dimensional C*-algebra is isomorphic to the direct sum of some matrix spaces. This
is proven in [[WLV21], Proposition 8.5|.

Theorem 1.4 (Wedderburn’s Theorem). Let A be a finite-dimensional C*-algebra.
Then there exist m € N and Ny, ..., N,, € N such that

i=1

Remark 1.5. Actually, Wedderburn’s Theorem (or the Artin-Wedderburn Theorem)
is known in the more general setting of semisimple rings. A corollary of this theo-
rem is that any finite-dimensional C-algebra is isomorphic to @, My, (C) for some

m, N1,...,N,, € N, so here we doesn’t even need the C*-structure.

Next, we want to recall the construction of universal *- and C*-algebras since we
need this to define the quantum automorphism groups and linking algebras later.

We first define universal *-algebras.

Definition 1.6. Let £ = {z; | i € I} be a set of elements where [ is some index
set. We denote with P(E) the *-algebra whose elements are polynomials Zi\;l LYk
with N e N, a € C and y;, € {xj --- 2" | i1,...,im € L, €1,..., 6, € {1,+}}. The

multiplication is defined as

(‘rel .o x€m) . (xgl . xéh) = x?l oo ‘/Lﬂe""xgl . I‘E;L

i1 im jl e jn 11 im jl ) jn
and the involution via
€1 em\¥ . — Em G
((m’il xim) = ar; Liy
o 1, if € = *
where oo € C and ¢, :=
*, if €L = 1.

Let R < P(E) be a set of polynomials and J(R) be the two-sided *-ideal generated

by R. Then the universal *-algebra with generators E and relations R is defined as

An important property of universal *-algebras is the so called universal property:
If we have a *-algebra A with elements {z; | ¢ € I} which satisfy the relations R (i.e.
all polynomials in R are zero, when we replace each x; by z;), then there is a unique

*-homomorphism ¢ : O(E | R) — A with ¢(z;) = .

In order to define universal C*-algebras, we need the notion of a C*-seminorm.
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Definition 1.7. Let A be a *-algebra. A C*-seminorm on Aisamapp: A — [0, 0)
such that for all z,y € A and A € C we have

i) p(Az) = [Alp(z) and p(z +y) < p(x) + p(y)

ii) p(ry) < p(x)p(y)

iii) p(z*z) = p(x)*.

Hence the only thing missing for a C*-norm is the positive definiteness.

With this definition we can now also define universal C*-algebras.

Definition 1.8. Let E be a set of generators and R < P(FE) be relations. We put
|z| := sup{p(x) | p is a C*-seminorm on O(E | R)}

forx e O(E | R). If |z|| < oo for all z € O(F | R), then | - || is a C*-seminorm and
one can check that {xr € O(E | R) | ||z|| = 0} is a two-sided *-ideal. If |z| < oo for

all z € O(E | R), we can define the universal C*-algebra as

B R :=F10 0 com | Ry el =0} -

For better understanding, since this construction is not very illustrative, let us look

at some example of universal C*-algebras.

Example 1.9. i) The universal C*-algebra with one generator F = {x} and the
relation R = {zx*z — x} exists. We write C*(z | za*x = z) for this C*-algebra.
Indeed, we get for every C*-seminorm p and z € O(E | R)

2 4

p(x)* = p(z*z) = p(z*za*z) = p(z*z)* = p(z)
and therefore p(x) € {0, 1}, which implies

|z|| = sup{p(z) | p is a C*-seminorm on O(F | R)} < .
i1) Let N = 2. Then the universal C*-algebra

C’*(eij,i,j = 1, ce ,N | 6;} = eji,eijekl = jkeil fOI‘ all i,j, k?,l)

is isomorphic to M, (C).

i13) The universal C*-algebra
C*(eij,i,5 € N | € = eji, eijep = djpeq for all 4,5, k, 1)

is isomorphic to IC(H), the algebra of compact operators on a separable Hilbert

space H.
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For a proof of ii) see [[WLV21], Proposition 6.11] and for #ii) see [[WLV21], Propo-
sition 6.13].

We can think of a universal C*-algebra as a subset of the corresponding universal
*~algebra by identifying an equivalence class with some representative of the class.

This is even a dense subset, as the following lemma shows.

Lemma 1.10. Let E be a set of generators and R < P(E) be relations. Then
C*(E | R) is a dense subset of O(E | R).

Proof. Let x € O(F | R) and for n € N let [z,] be the equivalence class of x in
O(E | R){r e O(E | R) | |z| = 0}. Then |z, — x| = 0 for all n € N and therefore
x, — x (n — ). Hence O(E | R)/{r € O(E | R) | ||z|| = 0} is dense in O(F | R).
Since O(E | R)/{x € O(E | R) | ||z|| = 0} € C*(E | R), we get that C*(F | R) is
also dense in O(F | R). O

Remark 1.11. Note that it is possible to have C*(E | R) € O(E | R). For example,

look at the universal algebras generated by E = {u;; | 1 <i,j < n} and
n n
R = {u;; — U:}, Z ui — 1, Z Uy — 1, wigtiy, — i, Wy — Ojpugi | 1 <4, j < n}.
k=1 k=1

Then . .
C*(E | R) = C*(ug | wij = uj; = u?j, Z U = Z ug; = 1)
k=1 k=1

since by [[Sch20], Remark 1.1.9] the relations w;; = uf; = u;, D3 uk = Dy Uy = 1

already imply w;;uir = djw;; and wjug; = 0jpuj; in a C*-algebra. In a *

-algebra

this is not true, hence in the universal *-algebra we still need all relations from R.

1.3 Compact Quantum Groups

Next we introduce the notion of compact quantum groups. These object can be
defined in different ways. We will use the definition of Woronowicz [[Wor98|, Defi-
nition 1.1|. He was also the one who first introduced the notion of compact quantum
groups in 1987. With this definition one can easily see how it links to classical com-
pact groups. In this section, we will also introduce Hopf algebras. These are objects
that are strongly related to compact quantum groups.

The main source for this section is [BCET20.

Definition 1.12. A compact quantum group (CQG) is a pair (A, A) where A is
a unital C*-algebra and A : A - A® A is a unital *-homomorphism with the

following properties
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1) (A®id)A = (id® A)A  (coassociativity)

2) (A®1)A(A) and (1 ® A)A(A) are linearly dense in A ® A.

(cancellation property)
The map A is called comultiplication.

The first questions that might come to mind after reading this definition is: Where
does this definition come from? Why does it make sense? The following remark
shows that the C*-algebra A of a CQG is commutative if and only if A =~ C(G)
for a compact group G, i.e. a topological group which is compact and a Hausdorff
space. Thereby, we need 1) for the associativity of the multiplication and 2) for
the cancellation property of the group and vice versa. Therefore the names of the

properties 1) and 2) make indeed sense.

The following remark is similar to [[Webl17], Remark 2.5] and [[Gro20], Proposition
2.1.2].

Remark 1.13. i) Let G be a compact group and let C'(G) be the continuous functions
on GG. We define
Ag: C(G) = C(G)®C(G)
by
Ac(f)(g;h) := f(gh),
where we used C(G)® C(G) = C(G x G) with (f1 ® f2)(g,h) = fi(g)f2(h) [Bla06],
Theorem 11.9.4.4]. Then (C(G),Ag) is a compact quantum group. Indeed, C(G)

is a unital C*-algebra and Ag is a unital *-homomorphism. Moreover, the coasso-
ciativity follows from the associativity of G: For f € C(G) let Ag(f) = [1® fo, i.e.

fi1(g) fa(h) = f(gh), then

(AG ®2d>(AG<f))<gv h7 k) = (AG(fl) ®f2)(gv hv k) = fl(gh>f2(k)
= f(ghk) = fi(g)f2(hk) = (f1 ® Ac(f2))(g, b, k)

The case Ag(f) = ZZ ;i [i ® [; follows analogously.

Furthermore, the space (C(G) ® 1)A¢(C(G)) is spanned by functions of the form
(g,h) — fi(g) f2(gh) with fi, fo € C(G). Therefore it is a unital *-subalgebra. Using
the cancellation property of G (i.e. gt = gs and tg = sg both imply ¢ = s), one can
show that this set separates the points, hence we get with the Stone-Weierstrass
Theorem that it is dense in C'(G) ® C(G). Similarly one can show the density of
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the set (1® C(G))Ac(C(G)).

it) If (A,A) is a CQG with some commutative C*-algebra A, then the Gelfand-
Naimark Theorem (Theorem tells us that A =~ C(G) with G = Spec(A), which
is a compact space. Moreover, the comultiplication A : A - A® A induces a group
law m : G x G — G by

m : Spec(A) x Spec(A) — Spec(A), (¢1,92) — (p1,92) 0 A,

which is associative since the coassociativity holds. Here we used

Spec(A® A) = Spec(C(G) ® C(G)) = Spec(C(G x G))
~ G x G = Spec(A) x Spec(A)
with (1, 02)(a ®) = ¢1(a)pa(b).
Therefore G is a compact semi-group. From the linear density of (C(G)®1)A(C(G))
and (1® C(G))A(C(G)) now follows that G has the cancellation property and this

implies together with the compactness of G that G is indeed a group. Moreover,

one can check A = A (where Ag is defined as in 7)).

Hence we get for every compact quantum group (A, A):
A is commutative <= (A4,A) = (C(G), Ag) for some compact group G.

So we see that CQGs generalise compact groups as a non-commutative analog.

At this point we want to introduce two CQGs which we will need later when talking

about quantum automorphism groups.

Definition 1.14. i) [Wan98| The quantum permutation group S, is the CQG
(O(S;F), A) defined by

M=

O(Sy) = C (i | wiy = uj; = u?j, 2 Ui = Z ug; = 1) and A(uy;) =

k=1 k=1 k

Uik @ Uy,
1

where 1 <i,j < n.

i1) |Gro2la] The projective version PO, of the orthogonal quantum group is the
compact quantum group (O(PO;), A) where O(PO;") is the universal C*-algebra

generated by elements v;]l for 1 <, k,7,7 <n with

) _ Jt
Vg = Ui
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n n

Ji,rs _ sS§ Kl, Ik
Z UiUki = 0inOjs = Z U5 Usy

k=1 k=1
n
g,rs 18
Z VggVql = 0jrUk;
q=1

and
n

Avg) = ] vi @vil.

r,s=1

Here we will also introduce an isomorphism notion for CQG, as we need it in a
later theorem, by using the notion of a quantum subgroup. Moreover, we want to
state the definition of Hopf algebras. These algebras are important for working with

CQGs since we can associate to every CQG a corresponding Hopf algebra.

Definition 1.15. Let GGy, G5 be two CQGs. Then G is a quantum subgroup of G,

written G € (Y, if there exists a surjective *-homomorphism
o :O(Gsy) — O(Gy) with (0 ® 0)Ay = Ay0,

where A; are the corresponding comultiplications.
If Gy € G5 and G5 < G, we write G; =~ Gy and call GG; and Gy isomorphic.

Definition 1.16. A Hopf algebra is a quadruple (A, A, S, €) where A is a unital
algebra with multiplication map m : A® A — A and

A:A—> A®A (comultiplication),
S:A— AP (antipode),

€: A—C (counit)

are unital algebra homomorphisms satisfying
1) (id®A)A = (A®id)A
2) m(id® S)A = €(-)1 = m(S ® id)A
3) (e®id)A = (id®e)A = id.

A Hopf *-algebra is a Hopf algebra where A is a *-algebra and A and e are

*~homomorphisms.
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Remark 1.17. i) With A% we denote the algebra A with the opposite multiplication,
i.e. @-p00 b =b-4a. Therefore we have in the above definition S(ab) = S(b)S(a) for
all a,be A.

i1) To every CQG G = (A, A) we can associate a Hopf *-algebra which is dense in A.
We will write O(G) for both, the corresponding Hopf *-algebra and the correspond-
ing C*-algebra A. This abuse of notation will simplify the writing. We will later
look at the theorem which states the existence of the corresponding Hopf *-algebra

since we need the notion of representations for this. This will be Theorem [4.3]
At the end of this section, let as look at an easy example of a Hopf *-algebra.
Example 1.18. The CQG from Remark i) is also a Hopf *-algebra together

with
S:0(G) - C(@G)?, Sf(t):= ft™)

and
€: C(G) = C, e(f) = f(e),

where e € (G is the neutral element.



Chapter 2

Quantum Graphs and Quantum

Automorphism Groups

Now we also want to introduce quantum graphs and quantum automorphism groups.
Quantum graphs are quantum analogs of graphs and quantum automorphism groups
of graphs are quantum analogs of graph automorphisms, i.e. we can show that the
commutative analog is a classical graph respectively the space of graph automor-
phisms.

The main source for this chapter is again [BCE20).

2.1 Quantum Graphs

As Matsuda already described in [Mat21], quantum graphs were first introduced by
Duan, Severini and Winter in [DSW13|. They were called non-commutative graphs.
Since every reflexive undirected classical graph is only a reflexive symmetric rela-
tion, Weaver formulated quantum graphs as reflexive symmetric quantum relations
on a von Neumann algebra in [Wea2l|. Quantum relations were introduced by Ku-
perberg and Weaver in [KW12|. In [BCE"20| quantum graphs were then formulated
(similarly to the definition in [MRV1S§]|) as finite quantum sets with an adjacency

matrix. That is the definition we will use.

In this section we start with the definition of a quantum set and a J-form since
we need this to introduce the notion of quantum graphs. We will look at some
examples of quantum sets and quantum graphs and show that a quantum graph is

indeed the non-commutative analog of a graph.

14
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Definition 2.1. A (finite, measured) quantum set is a pair X = (O(X),1x), where
O(X) is a finite-dimensional C*-algebra and ¢x : O(X) — C is a faithful state, i.e.
a linear unital functional with ¢ x(z*z) = 0 and ¢¥x(z*z) = 0 only if z = 0. With
| X | we denote the dimension of O(X).

Remark 2.2. 1) By Wedderburn’s Theorem (Theorem there exist m € N and
Ny, ..., N, € N such that O(X) = @;", Mn,(C). This implies in particular that
O(X) is unital.

i1) By defining {a,b) := ¥ x(b*a), we get a scalar product on O(X) since ¥x is
faithful, i.e. ¢ (z*z) = 0 implies x = 0. Then (O(X),{:,-)) is a Hilbert space
because

Yx(@*2) < [z = [z,

so O(X) is also complete with respect to the norm induced by the scalar product. To
distinguish between the Hilbert and C*-structures on O(X), we denote the Hilbert
space with L?(X). Note that

(ab, ¢y = p(c*ab) = v((a*c)*b) = (b, a*c)

is true for all a,b,c € L*(X).
Withmx : O(X)®O(X) — O(X) we denote the multiplication, i.e. mx(a ®b) = ab.
Since mx € B(L*(X) ® L*(X), L*(X)), we can form the adjoint m'.

i1i) Let nx : C — O(X) be the unit map, i.e. nx(a) = al. Then the adjoint of 7y

is ¥ x since
by nx (@) = b, al) = dx(@lb) = ¢Yx(b)a = (Px(b), .
Definition 2.3. Let § > 0. We call a state ¢x : O(X) — C a d-form if
mxml, = 6%id.

It should be remarked here that the formula in this definition is really a statement
about ¥ x although it is not clear at first sight. This is the case since the adjoint of
mx is formed with respect to the scalar product {(a, by = ¥ x(b*a).

Since the above definition is not very illustrative, let us look at a few examples of

quantum sets where the corresponding state is a d-form.
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Example 2.4. i) Let [n] := {1,...,n} and C([n]) be the C*-algebra of (continuous)

functions on [n] with the pointwise multiplication m. We define
v:C(n) > C, w(f Zf
Then (C([n]), ) is a quantum set. Furthermore, we have

Xy @ xqry X @ Xiay)) = nX gy XXX (ks X iy = 1 Oy X ) (X X ry)
1 1 1
= n5ij5ik¢(X{i})2 = 77/51']‘(51'1@? = 5ij5ikﬁ = 5jk5ij5
= 0ir0ih (Xgiy) = O Oxqayxgsy) = OirX s X(i})
= (m(x(jy ® Xir}): X(i})

and hence

n n

= m! QLI @x) = 2 m! () = n 35 £ xio © Xt

i=1 =1

This implies that v is a y/n-form since
m(m'(f)) =m(n ). f(i) (x@p®xe) = nz F@mxm®x) = n Y| fli)xe = nf.
i=1 ‘

Moreover, we get the well-known scalar product {(f,g) = £ 3" | g(i)f(i).

i1) Since C'([n]) = C", we also have the quantum set (C", ) with y/n-form

$:C —C, (@), Z%

This map we will denote from now on with ,,. We have the pointwise multiplication

m and

mT<( i=1,..., = zn: ez®ez

i7i) The matrix algebra M,,(C) together Wlth the normalized trace
tr: M,(C) = C, tr((a;)y) = Za“

is a quantum set and tr is an n-form.

Indeed, one can check that m'(a) = N3 -1 @ij(€ix ® ex;) and hence

n n
m(m'(a)) = m(n Z a;j(eir @ex;)) =n Z a;j€ikekj
kyij=1 kyij=1

n n
=N Z aijeij = n2 Z aijeij =na

kyi,j=1 5,7=1
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iv) Let n(i) € N and Q; € M,;(C) be positive and invertible matrices with
Yo tr(Q;) = land tr(Q; ') = 6% for 1 < i < s. Then the C*-algebra @;_, M,;(C)
together with ¢((z1,...,x,)) := Di_; tr(Qiz;) is a quantum set and ¢ is a d-form.

In fact, one can show that every quantum set is of this form.

Now we can finally define quantum graphs. For this we first recall the definition of a
classical (finite) graph without multiple edges. A classical graph X without multiple
edges consists of a finite vertex set V(X) and edge set E(X) < V(X) x V(X).
A graph is called reflexive if (v,v) € E(X) for all v € V(X) and undirected if
(v,w) € BE(X) = (w,v) € E(X) for all w,v € V(X). W.Lo.g we can always assume
V(X) = {1,...,n} for some n € N. The adjacency matrix A = (a;;);; € M,(C) is
defined by

1, if (4,5) € B(X)

0, if (4,4) ¢ E(X).

aij =
Note that a matrix is an adjacency matrix for some undirected, reflexive graphs

without multiple edges if and only if afj = ij,a;; = aj; and a; = 1fori,j=1,...,n.

The following definition is taken from [BEVW20] since its a bit more general than
the definition of a quantum graph given in [BCE*20].

Definition 2.5. Let X be a quantum set with a d-form ¥ x. A self-adjoint linear
map Ay : L*(X) — L*(X) is called a quantum adjacency matriz if

mX(AX®AX)m} 252Ax. (1)

In the following we only want to look at undirected and reflexive quantum graphs.

Therefore we require two additional conditions:

(id @ nlmx)(id ® Ax ®id)(mlny ®id) = Ax (2)
mx(Ax @ id)ml, = 6%id (3)

Then (1) guarantees that the quantum graph does not have multiple edges,
(2) states that it is undirected and (3) that it is reflexive. See also Proposition [2.7]
We call X = (O(X),¥x, Ax) a quantum graph.

It is not clear yet whether a quantum adjacency matrix really needs to be self-
adjoint, so there are also definitions of quantum graphs where this is not required.
Since we mostly refer to [BCE*20] and it is required there, it is included in our

definition.
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Convention 2.6. From now on we always consider classical undirected, reflexive

graphs without multiple edges.

Definition [2.5(looks quite complicated and not very intuitive. In order to understand
the definition better, we now prove similarly to Remark that a quantum graph
is a classical graph if and only if the corresponding C*-algebra is commutative.
This also clarifies why the equations (1), (2) and (3) guarantee the corresponding

properties.

Proposition 2.7. i) If X is a classical graph with n vertices and adjacency matriz
Ax = (aij)ij, then Ax is a quantum adjacency matriz and for the conditions (1), (2)
and (3) in Definition we have

(1) = a?j =ai;, (2)<=a;=a; and (3) <= a;=1,

where the equalities have to be true for alli,j € {1,... ,n}.
it) Let (O(X),¥x, Ax) be a quantum graph where O(X) is a commutative C*-algebra.
Then X 1is a classical graph.

Proof. i) For a classical graph with n vertices, we always consider the quantum set
(C™, 4,,) from Example i1). We look at the three equalities from the definition

above.
(1)
mx((Ax ® Ax)(ml(er))) = mx((Ax ® Ax)(nex ® er)) = n- mx(Axe, ® Axey)

!
=n(aly,...,a2)" =nlaw, ..., an)" = nAxes

(id @ nlimx)(id ® Ax ®id)(mbnx ®id)(1 ® ;)

= (@d@ﬁXmX)(ld@)Ax@)ld Z ®6k

— (id®nlimx)(id® Ax ® id)(nz e Qe @ ey)

1=1

= (id® n&mx)(nZ e; ® Axe; ® ey)

i=1

X
—nzel®nx apier) = Zez®am

=1

n
T !
= Zakiei = Ayer = Axe
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(3)
mx(Ax ® id)yml (ex) = mx(Ax ®id)(ne, ® e) = n - mx(Axer ® ex)
= NQkk€Ck ; neg
Since the above equalities have to be true for all k€ {1,...,n}, we get

(1) = af; = ay, (2) <= ay;=a; and (3) < a;=1

Hence we can see that Ay is a quantum adjacency matrix because Ax is a symmet-

ric matrix with entries in {0, 1} and a; = 1.

i1) Let (O(X),1¥x,Ax) be a quantum graph with |X| = n and where O(X) is a
commutative C*-algebra. Then the Gelfand-Naimark Theorem tells us that there
exists a compact space X such that O(X) = C'(X). Since O(X) is n-dimensional we
get that the space X must have n elements, hence we can assume X = {1,... n}.

Moreover, the Riesz Representation Theorem tells us that ¢ x is of the form

bx(f) = L fdu (f e C(X))

for some unique Borel probability measure x : {1,...,n} — [0,1].

We then get

H({li})X{i} X X{i}> if M({Z}) # 0

, otherwise

m&(X{z‘}) =

e}

because

<— ® X > 1 J' J'
1

- m&]u({z})&ku({z}) = 040 ({})

= zkj X{j}X{i}dﬂ—f XX kX (i dp
X X

= {X{ips XX {RD)

it ({7 # 0 and O, Xy xin) = Sadaa(Li}) = 0 a({i}) = .
Since ¢x is a 0-form we get 6% xy = mX(m&(X{i})) for all i € {1,...,n}. Hence
p({i}) # 0 and &y = ﬁx{i}, which implies p({i}) = 3 for all i € {1,...,n}.
Using

n

L= (L)) = Yalti) =

i=1
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we get 62 = n and p({i}) = L. Therefore ¥x(f) = £ 3", f(i), so we get the
quantum set from Example i1) (or actually part i), but the two spaces are
isomorphic anyway). Now part ¢) implies that for Ax = (a;;);; we get a?j = a;,

a;; = aj; and a; = 1. Thus (O(X),v¢x, Ax) is just a classical graph. O
So here we also get the equivalence for every quantum graph X = (O(X),¢x, Ax):
O(X) is commutative < (O(X),¢¥x,Ax) = (C", ¢, Ax) with n = | X|.

Therefore the notion of a quantum graph is also just a generalisation of a classical
graph as a non-commutative analog.

We now want to look at an example of a quantum graph with a non-commutative
C*-algebra. This example is taken from [[Gro21b|, Example 3.13].

Example 2.8. Let (My(C),tr) be the quantum set from Example i1i) with
n = 2. We define

A My(C) — My(C), (Z Z) - (Z Z) + <‘Z Z)

Then (M;(C),tr, A) is a quantum graph.
Indeed, let f : {1,2} — {1,2}, f(1) := 2, f(2) := 1, then A(e;;) = epu4) + €ij-

Since
1
Cerinsy em) = trlepesasy) = trlemeswsm) = duotresm) = 50k0d6)
1
= S05widsw; = Opwyitr(erwi) = trierayrmeis) = tr(€hm i) = {€ij» €k £1))s

we get

(Aleij), en) = Ceayp) + €ijr erm) = ep) 1) € + €ijs €x1)
= (eijs epmyr)) + {eijren) = {eijs esayra) + er) = {eij, Alew)),

so we know that A is self-adjoint. Moreover,

m(A® A)m(ei;) = m(2 )" Alen) ® Alexy))

k

I
—

=m(2 ) (eru i) + i) ® (ermyrGy + €rs))

e

[y

k

2
=2 eparg) + € = Aesay + eig) = 22 A(ey),
k=1
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where the second equation is true since f(k) # k for k = 1,2. Furthermore,

(id @ n'm) (id®RA ®id)(m'n ®id)(1 ® e;;)

Mw

= (1d® nTm) (1d® A®id)( en) ®eiy)

l=1
2

= (id@n'm)(id® A®id)(2 ) e ® e @ i)

k=1

2
Z e ® (Bwidsy; + 01ik;)
= er@rG) + €y = Aleyj)

and

2
ezk ®€k] = 22 6f +€zk)®€kj)

k=1

m(A®id)m'(e;;) =

HMN’

2
=2 Z €ik€L; = 2 €ij-
k=1

Hence the three conditions from Definition 2.5 are fulfilled.
However, since with this example you do not really have a picture in mind, we want
to look at two further examples of quantum graphs which have classical analogs.

To prove that these examples are indeed quantum graph, we first need the following

lemma. The idea for this lemma is taken from [[Bral2|, Remark 3.6].

Lemma 2.9. Let X = (O(X),1x) be a quantum set. Then
(Yx ® zd)m} = (id®¢x)m} =id

and
m}mx = (mx ®id)(id®m}).

Proof. We have mx (nx ®id) = mx(id®nx) = id, so forming the adjoint and using
77& = 1y yields
(¥x ®id)ymy = (id ® Px)ml = id.
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Moreover,

(mx®id)(a®b®c¢),dR®e) ={ab® c,d® e) = {ab,d){c,e)
= <b7 a*d><c’ 6> = <b® ¢, a*d® €>

implies

{(mx @id)(id®@m))(g®h),d®¢) = {(mx @id)(g @mk(h)),d®¢)
= (mk(h), g"d®@¢)
= (h,g*de) = {gh,de)
={mx(g®h),mx(d®e))
= (mymx(g®h),d®e)

and hence (mx ®id)(id @ mk)(g ® h) = miymx (g ® h) for all g, h e O(X). O

Proposition 2.10. Let X = (O(X),vx) be a quantum set with a §-form .

i) The set X together with Ax = §*¢x(-)1 is a quantum graph, called complete
quantum graph. If X is the quantum set (C™,1,,), then we have the complete classical
graph.

it) The set X together with Ax := id is a quantum graph, called trivial quantum

graph. If X is the quantum set (C" 1),), then we have the trivial classical graph.
Proof. i) First of all, Ay is self-adjoint because Ax = 6%¢x(-)1 = 6%(-, 1)1 implies
(Ax(@),By = (0%a, 1YL, by = 6%a, 11, by = %a, 1), 1) = {a, 6(b, 1)1y = {a, Ax (D).

We continue by checking the equalities from Definition [2.5]
(1) The equality

mx(Ax ® Ax)(a®b) = §*(a, 1)6%b, 1)1 = 6*a®@b, 1@ 1)1
implies
mx(Ax ® Ax)(mk(a)) = 6*ml (a),1® 1)1 = 6%, 1)1 = 62Ax(a).
(2) We have

(id@nfmx)(id® Ax ®id)(a®@b®c) = (id® Yxmx)(a ® Ax(b) ® ¢)
= ad*)x (Px(b)c) = ad®x (b)vx(c)
= (id ® 1hx)(a ® b)6*hx (c)
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and thus we get

(id @ nlmx)(id ® Ax ®@id)(mlnx ®id)(1® c)
— (id®nlomy)(id ® Ax ®id)(minx(1) @ c)
= (id ® ¥x) ((mlnx (1)8%0x (¢) "2 FV18%px () = Ax(e).

3) We conclude from the equality
mX(AX ® Zd)((l ® b) = mx((SQl/Jx(a)l &® b) = 52¢X(a)b = 52(¢X ® zd)(a &® b)

that
mx(Ax @id)ml = 6% (Yx @idyml "B 524,

Hence, (O(X),¥x, Ax) is a quantum graph.
It (O(X)a wX) = (Cna ¢n)a then

Ax(er) = v/n tnlep)l = n%l =1= Zei

i=1

for all 1 < k < n. This implies (Ax);; = 1 for all 1 < 4,5 < n, hence (C",,, Ax)

is the complete classical graph.

i1) Of course, the identity map is self-adjoint. We check again the three conditions
from Definition [2.5] to show that X with Ax = id is a quantum graph.

(1)

mx(AX ®Ax)m§( = mX(zd®zd)mTX = meE( = (52’ld = 52AX

(2) We have

(id @ nlmx)(id ® Ax ®id) = (id @ nlimx)(id ® id ® id)
=1d@¢Yxmx = (id ®Yx)(id ® mx)

and therefore

(id @ nfemx)(id ® Ax @ id)(mlny @ id)(1® a)
= (id®@nmx)(id ® Ax ®id)(mnx(1) ®a)
= (id ®x)(id @ mx ) (mnx (1) ® a)

= (id ®x)(id ® mx)(ml ®id)(1® a)

= (id ® ¥x)((mx ®id)(id @ m}))' (1 ®a)
2B id @ v (mmx) (1@ a)
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= (id® ¢x) (mimx) (1 ® a)
= (id®@vx)(mk(a) "2 B0 = Ax(a).

(3)

mx(Ax @id)ml, = mx (id @ idyml, = mxml, = 6%d.

If (O(X),vx) = (C" 4y,), then Ax(ey) = e, for all 1 < k < n. Hence (Ax);; = 0;;
and therefore (C", 1, Ax) is the trivial classical graph. ]

2.2 Quantum Automorphism Groups of Quantum

Graphs

Next we want to introduce quantum automorphism groups of quantum sets and
quantum graphs. For this we first look at classical automorphism groups and quan-
tum automorphism groups of classical graphs to motivate the definition of quantum
automorphism groups of quantum graphs. We show again that the quantum objects
are the non-commutative analogs of the classical ones. At the end of this section we
look at a more concrete example of a quantum automorphism group of some quan-
tum graph and prove that the CQGs S, and PO; are quantum automorphism
groups of some quantum sets.

The following two definitions, the next proposition and its proof are taken from
[Sch20].

Definition 2.11. Let X be a classical graph (see Convention 2.6). A graph auto-
morphism is a bijection o : V(X) — V(X) such that

(i,4) € E(X) <= (a(i),0(j)) € E(X).

The set of all graph automorphisms of X together with the composition forms a

group which we denote with Aut(X).

Remark 2.12. Every o € Aut(X) we can view as a matrix
o € M,({0,1}) where 0;; = do();

and n is the number of vertices of X. Then (4, j) € E(X) < (0(i),0(j)) € E(X)
is equivalent to Axo = 0 Ax. Moreover, we have for all 1 < 7,5 < n the equalities

of = 0y = o5 and Y 0 = y._, 0k = 1 since o is bijective. Hence o is a

j
permutation matrix (i.e. a matrix in M, ({0, 1}) with exactly one non-zero entry in

*
ij
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every row and column) which commutes with Ay.

Conversely, if we have a permutation matrix (0;;);; which commutes with Ax. Then
o:{l,...,n} = {1,....n}, o(i):=jifo;; =1

is a graph automorphism. Therefore we can identify Aut(X) with all permutation

matrices that commute with Ay.

This motivates the following definition.

Definition 2.13. Let X be a classical graph with n vertices and adjacency matrix
Ax. We define C(Gx) as the universal C*-algebra with generators {w;;};j=1. n
and relations uf; = uy = ufj, D Uik = Dy uk; = 1 foralli,j =1,...,n and
uAx = Axu (with u = (u;;)45).

One can show that Gx = (C(Gx),A) with A(uy;) = Y, ui @ ug; is a CQG
[[Sch20], Lemma 2.1.2|. We call Gx the quantum automorphism group of X.

Now we want to show that the quantum automorphism group is just the non-
commutative analog of the classical graph automorphism group. So we show that
if we add the relations u;juy = wgu;; to the universal C*-algebra C(Gx) we get
C(Aut(X)), the continuous functions on Aut(X).

Proposition 2.14. Let X be a classical graph and
A= C* gy | ujy = ugy = u?j,Zuik = Zu"’j =1, ulx = Axu, u;jup = up;),
k k

then A = C(Aut(X)).

Proof. First note that A is also a CQG with A from Definition 2.13] This can be
shown similarly to [[Sch20], Lemma 2.1.2|. Because A is commutative we get again
A = C(Spec(A)) by Gelfand-Naimark. From Remark i1) we know that

m : Spec(A) x Spec(A) — Spec(A4), (¢1,92) — (p1,92) 0 A

turns Spec(A) into a compact group.

Let 0 € Aut(X). Then we get by Remark [2.12]and since 0;; € {0, 1} (so the elements
commute) that the matrix elements o;; satisfy the relations from the universal
C*-algebra A. Hence there exists a unique *-homomorphism ¢, : A — C with

o (u;j) = 0;;. Moreover,

900(1) = QOG(ZUHQ = ZO'Z'k = 1.
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This implies ¢, # 0 and therefore ¢, € Spec(A). Thus we can define the map
® : Aut(X) — Spec(A), o0 +— @,.

This map is obviously injective since ¢, = @5 implies 0;; = @, (w;j) = @5(uiy) = 7ij
for all ¢,j. For ¢ € Spec(A) we define o;; := ¢(w;;). Then (0;;);; is a permu-
tation matrix which commutes with Ay since the elements wu;; satisfy the corre-
sponding relations and ¢ is a unital *-homomorphism. Hence o € Aut(X) and
0o (uij) = 035 = p(wij), so ¢, = ¢. Therefore, ® is also surjective.

Now it is left to show that ® is also a group homomorphism. This follows from

(I)(U o 5)(%;’) = (U o 5)7;;' = Zaik(}kj = Z Spcr(uik>§0&(ukj) = Z(SOU, S%)(Uik ®Ukj>

k

= (Po: 05) (Aluig)) = m(po, ) (uig)-

Moreover, the map @ is continuous since Aut(X) is finite and therefore
Spec(A) = {¢, | 0 € Aut(X)} is also finite. Hence Spec(A) =~ Aut(X) as compact
groups. This also implies C'(Spec(A)) =~ C(Aut(X)) as compact groups via the

group isomorphism
C(Spec(A)) — C(AutX)), g— go®.
Finally, A = C(Aut(X)). O

Remark 2.15. In the following chapters we will define some certain universal
*-algebras and denote them with the letter O. All this universal *-algebras can
also be defined as universal C*-algebras. Since they are all generated by the el-
ements of a unitary matrix, one can check that they exist. We will not list the
definition for the universal C*-algebras again, but simply denote the corresponding
universal C*-algebra with the letter C. Observe, that Lemma implies that the
universal C*-algebra is always dense in the universal *-algebra.

In [BCE"20| only the universal *-algebras are considered, but we also look at the
universal C*-algebras to see the connection of the quantum automorphism groups

of quantum graphs and classical graphs.

So now we also want to define quantum automorphism groups of quantum sets and
quantum graphs. To motivate the definition we first note the following fact:
If X is a classical graph and wu;; the generating elements from C(Gx), then (u;;);;

is a unitary matrix and the map

px :C" > C"®C(Gx), pxle):= Z e @ Uj;
j=1
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is a unital *-homomorphism satisfying
px(Ax-) = (Ax ®id)px.
This leads us to the following definition.

Definition 2.16. i) Let X = (O(X), ¥ x) be a quantum set with n = |X| and fix
an orthonormal basis {e;}"_, for L*(X).

We define C(Aut™ (X)) as the universal C*-algebra generated by the coefficients u;;
of a unitary matrix u = (u;;);; € M, (C(Aut™(X))) that satisfies the relations which

make the map
px 1 O(X) = O(X) @C(AUE (X)), pxle) i= Y e; @y
j=1
a unital *~homomorphism.

i1) Let X = (O(X), ¢¥x, Ax) be a quantum graph with n = |X| and fix an orthonor-
mal basis {e;}", for L*(X).

We define O(Gx) to be the universal *-algebra generated by the entries of a unitary
matrix u = (u;)7;-; € M,(O(Gx)) that fulfils the relations which make the map

n

px : O(X) > O(X)®O(Gx), px(e):= Z e; @ uj;

7=1

a unital *~homomorphism satisfying the Ax-covariance condition, i.e.

px(Ax-) = (Ax ®@id)px.

The notation O(Gy) implies that this *-algebra comes from a CQG Gx. We will
later see that this is the case for both *-algebras, so they are associated to some
CQGs Aut™(X) and Gx. We call Aut™(X) and Gx the quantum automorphism
group of X and u the fundamental representation of the respective CQG.

For better understanding of the definition, let us see what the properties of px mean

for the fundamental representation wu.

Lemma 2.17. Let X be a quantum graph with |X| = n. If we view u as a linear
map

n

u: LA(X)®O0(Gx) » LA(X)®O0(Gx), ul®a):= > by(&) ®ua.

1,j=1

Then
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i) u(-®1) = px and u(§®a) = u(®1)(1Qa) for all { € L*(X), a € O(Gx),
it) w is unital,
i) w(* ®1) =u(l®1)* for all § € L*(X),
w) W& @Nu(la®1) = u(&& ®1) for all §1,& € L*(X),
v) u(Ax ®id) = (Ax ® id)u.
Viewing u and Ax as matrices, the last point is equivalent to

Z e; ® (UAX)]]C = 2 e; ® (Axu)jk. (1 <k n)

j=1

Proof. i) We have

ulep®1) = Z bij(er) @ ui; = Z Ojrei @ui; = 261 ® uix = px(ex),
hence u(- ® 1) = px. Moreover,

u(é ®a) = wa @uija:(zn] bi (&) @uiy)(1®a) = u( ®1)(1®a)

i,7=1 7,7=1
for all £ € L?(X) and a € O(Gx).
Using that px is a unital *~homomorphism we get the corresponding properties of

u as a linear map.
i) uw(l®l)=px(1) =1®1
i) u(€*®@1) = px(§) = px(§)* = u(( ®1)*
iv) u(§& @ Du(&®1) = px(§1)px (&) = px (&) = (616 ®1)
v) u(Ax{®a) = u(Ax{®1)(1Q®a) = px(AxE)(1®a) = (Ax @id)px(§)(1® a)
= (Ax ®@idu(E®1)(1®a) = (Ax ®@id)u(l ®a).

If we view Ax as a matrix (a;;);; € M,,(C), then the equality v) implies

Z e; ® (uAx)jk = Z e; ® Z UjiAig, = Z ik Z e; ®uj = Z apu(e; ® 1)
j=1

j=1 i=1 i ] i=1

Z are; ®1) = u(Axer, ®1) 2 (AX ®id)u(er ®1)

i=1

X6 ® U = Z ;€5 ® Uik = Z €, ® Z Q5 Uik

n
=1 4,j=1 j= =1
n

AXu
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and since

u(Axer ®1)(1®a) = u(Axer ® a)
and (Ax ®id)u(e; ®1)(1®a) = (Ax ®id)u(er ® a)

we get the equivalence. O

Remark 2.18. In some sources the generating matrix of the quantum automorphism
group does not have to be a unitary, but px has to satisty the ¢ x-invariance con-
dition (¢x ® id)px = ¥x(-)1. These two statements are equivalent. We just show
one direction of this equivalence since the other is way more complicated to show.

If w is a unitary, i.e. D upug; = D5 ) Uy, = 0y, then
(Vx ®id)(px(efer)) = (bx ®@id)(px(ei)*pler))
= (¥Yx® Zd)(Z e; ® u;)(z er @ ugk))
=1 =1

Yx(ejer) @ uju,

1

-

Jsl

I
M:

jl ® ujzulk Z u]zu]k

j,l=1

= i = Ux(€fex)l

and this implies (¢x ® id)px = ¥x(-)1 since with 1 = > | ae; we get
(Vx ®id)(px(er)) = (Vx @id)(px (1"er)) = (Px ®id)(px Z

E(@DX@zd)(pX efer)) Zcm/)x (efer)l

Il
WM:

2 fek 1 —1/}X<€k)1

To obtain the CQGs Aut™(X) and Gx from the *-algebras C(Aut™ (X)) and O(Gx)
we need (among other requirements) that these *-algebras are Hopf *-algebras. This

result is proved in the following proposition.

Proposition 2.19. The *-algebras C(Aut* (X)) and O(Gx) admit a Hopf *-algebra
structure defined by

Augj) Z Uik @ ugj, Sluig) = uj, e(uy) =6y (1<i,j<n).



30CHAPTER 2. QUANTUM GRAPHS AND QUANTUM AUTOMORPHISM GROUPS

Proof. Both *-algebras are unital since v is a unitary matrix. First of all, one can
check that the defined (*-)homomorphism exist, so e.g. the matrix (3 ;_; wir®uy;)i;

fulfills the same properties as (u;;);;. Moreover,

and analogously one can show that S and e are unital.
We continue by checking the conditions 1) — 3) from Definition [1.16]

1)
(id ® A)A(ugy) Z Ui, @ A(up;) Z Z Wik, @ upr ® uyj

n
=1 k=11=1
n

ZA ui) @ w; = (A @ id)A(uiy)

=1

b

~

2)
(id ® S)(A(ui;)) = Z w ® S(ug;)) = Z Ui @ uy)
k=1 k=1
= Z Zku;‘k ) €(uij)1
k=1
3)
(e@id)(Aluig)) = Y elum) @urj = ¥ Oir ® gy = s
k=1 k=1
and in the same way one can show (id ® €)A = id. ]

Now we want to check whether the notation C(Gx) is fine, i.e. whether Definition

and are compatible.
Proposition 2.20. If X is a classical graph, then C(Gx) from Definition is

the same as the quantum automorphism group from Definition [2.13. Moreover, we

get Aut™(C",4,) = S;.

Proof. 1f we look at a classical graph with n vertices, we consider again the quantum
set (C",y,). Let (e;); = v/nd;;. Then {e;}; is an orthonormal basis for C" since

<€z‘7 €j> = 1/%(@;“(31') = ¢n<5ij\/ﬁei> = 5@%\/52 = 5z‘j-



2.2. QUANTUM AUTOMORPHISM GROUPS OF QUANTUM GRAPHS 31

Note that > e; @ z; = 7 e; ®y; = ; = y; for all 1 < i < n since the
equality of the sums implies

Ve ® i = (@@ D3¢ @1;) = (e @ 1)(Y & @) = vines D

Jj=1 Jj=1

and therefore e; ® (z; — y;) = 0 = x; = y;.
We have

Z e; @uji = px(e;) = px () = px(e;)* = 2 €; ® uj;,
j=1 =t

which is equivalent to uj; = u,; for all 7, j. Moreover,

\/ﬁz e; ®dipuj; = Vi 2 e; ®uj; = Vndipx(e;) = px(eer)
j=1 J=1

= px(epx(er) = (Y ¢ @ i) (Y er ® w)
j=1 =1
= Z ejer ® iy = \/n Z €j & Ujiljt,
dl=1 J=1

which is equivalent to d;xu;; = ujuj for all ¢, 7. In particular u;; = ufj Since u is

a unitary we have

n n
D kit = ) uakt =
k=1 k=1
and therefore we get
n n
T ST
k=1 k=1
The relations

n n
ok 2 o L
Ujj = U = U and Zu’k_ Zukﬂ =1
k=1 k=1

already imply d;,u;; = ujuj, in a C*-algebra [[Sch20], Remark 1.1.9] and they imply
px(1) =1®1 since

px(1) =px(—= ) &) =—= D, e;Quji=— ) &®) uji =11
NG ; N ;1 N ;1 J ; J
Thus we get that u satisfying the relations which make px a unital *-homomorphism
is equivalent to

n n
ok 2 o o
Uij = Uy; = U and Z Upj = Z w = 1.
k=1 k=1
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Moreover, the Ax-covariance condition is equivalent to uAx = Axu because from

Lemma we get D7, €5 ® (uAx ) = D1 €; @ (Axu)jy for all 1 <k < n.

Hence we have
C(Gx) = C*(uyj | U’:j = Uj; = Z Z =1, uldx = Axu).

Therefore both definitions coincide for classical graphs.

This proof also shows Aut*(C" ¢,) = S’ since in the definition of quantum
automorphism groups of quantum graphs, the only additional condition is the
Ax-covariance condition compared to the definition of the quantum automorphism

groups of quantum sets. Hence we get
C(Aut™(C", ) = C*(uy | ufy = uyy = ufy, > u = Y wy = 1) = O(S))
k=1 k=1

and therefore Aut*(C", 1,) = S, since the comultiplications are also the same. [J

The last point in this chapter is a more concrete example of a quantum automor-
phism group of a quantum graph. The following proposition and its proof is similar
to [[Wan98|, Theorem 4.1].

Proposition 2.21. Let X = (M, (C), tr, A) be the quantum set from Ezample[2.]]iii)
with some quantum adjacency matrix A. Then O(Gx) is the universal *-algebra

generated by elements v,?l with 1 < 1,7, k,l < n which satisfy the following relations

’L”*
Y = Vik (2.1)
Z iR = = 37 otk (2.2)
k=1 k=1
v = 850k (2.3)
q=1
(Vi A = AV is- (2.4)

Thus, we also have Aut*(M,(C),tr) = PO; .

Proof. The proof is quite similar to the one of Proposition [2.20]
Let (eij)k = v/ndird;i. Then {e;;};; is an orthonormal basis for M, (C) since

1
<€ij7 6kl> = tr(ezleij) = tT’(leeij) = 5;“-\/5757“(6”) = 5’62\/5(5”5[ = 5]@5”.
One can show that

n n
Z epl Q Ty = Z e @Y == T;; = y;; forall 1 <¢,5 < n.
k=1 kl=1
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We have px(e;;) = Zk,l ep ® v,ljl Therefore we get

n n n
Ji * * ij i
E en ® vy = px(eji) = px(ey)” = E e Uy = E ek @ vy
k,l=1 k=1 k,l=1

which is equivalent to (2.1). Furthermore, (vf/);; has to be a unitary matrix. This

implies
n n 2.1)
- kl rs Jjt_rs
Oir0js = Z (v*)ij v = Z Ukz Uy = Z Ui Ukt
k=1 k=1 k=1
and
n n 2.1) n
_ kl(, #\rs __ Kkl ki* (2] ki, lk
6i76j3 - Z Uij (U )kl - Z UZ]UTS - Z UZ]UST
k’l:I k7l:1 k,l:I

which is equivalent to (2.2). Moreover,

Vn Z e ® 0jvig = px (0jrv/neis) = px(eijers) = px(ei)px (ers)

k=1
n n n
. ij rs\ __ iy, rs
= ( Z en @ vig)( 2 €pq @ Vpg) = Z Cki€pg & Vg Upq
k=1 pg=1 klp.q=1
n n
_ ij.rs __ tj,\Ts
=/n Z €kqOlp ® Vg Vpg = Vn Z kg ® VgV,
k l,p q=1 k,l,q=1
— 1] ,,1S8
=vn Z ekq®2"’kl“lq’
k,q=1

and this is equivalent to (2.3). By Proposition we know that O(Gx) is a Hopf
*_algebra with S(v;jl) _ it (2 v . Applying S to both sides of (2.3) leads us to

v

lk ] rs _ V' qk
(SJTUsz - JTUkl Z/qu ql - Usp gz' (*)

n

With these relations we also get that px is unitary because

n

px(1) = PX(\%Z%’) = \/Lﬁ D en®uj = \/—ﬁ > 6kl®2%

k=1 kl=1

Z%z@ZUﬁpﬁ z Z%z@% \/ﬁ;ekk®1:1®1-

kll i,j=1 kll

Furthermore, the A-covariance condition is equivalent (2.4) because from Lemma

we get that it is equivalent to Zk,l en @ (VA)ki; = g er @ (Av)yy; for all
1 <14,7 <n wherev = (U;]l)khj
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Similarly as in the proof of Proposition[2.20|this also implies that C(Aut ™ (M,,(C), tr))
is the universal C*-algebra generated by elements v,?l which satisfy the relations
(2.1)-(2.3) and hence Aut™ (M, (C),tr) = PO, since the comultiplications are also
the same by Proposition [2.19| m



Chapter 3

Linking Algebras of Quantum
Graphs

In this chapter we want to define a quantum isomorphism notion for quantum
graphs. For this we need the definition of some linking algebra of two quantum
graphs. We also look at the definition of bigalois extensions, which is a quantum
analog of a torsor in the context of group actions, and show that this linking algebra
is a bigalois extension if it is non-zero.

The source for this chapter is again mainly [BCE™20).

3.1 Bigalois Extensions

In this section, we will introduce bigalois extensions. We show that a bigalois
extension is the quantum analog of a torsor and that every Hopf *-algebra itself is a
bigalois extension. First, we need the notion of a *-comodule algebra and a Galois

extension. Throughout this section, let (A, A, S, €) be a Hopf *-algebra.

Definition 3.1. A left A *-comodule algebra is a unital *-algebra Z equipped with

a unital *~homomorphism « : Z — A ® Z which satisfies
1) (ld®a)a = (A®id)a
2) (e®id)a = id.

Similarly, a right A *-comodule algebra is a unital *-algebra Z equipped with a
unital *-homomorphism 5 : Z — Z ® A which satisfies

1) (fid)s = (id®A)fS

35
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2) (id®e)f = id.

Definition 3.2. A left A *-comodule algebra (Z, «) is called a left A Galois exten-

ston if the linear map
K:ZQZ—>ARZ, k(r®y)=cal)(l®y)

is bijective. Similarly, a right A *-comodule algebra (Z, 5) is called a right A Galois

extension if the linear map
Kr i ZQZ —>ZRA, K (r®y)=(x®1)5(y)
is bijective.

The following example illustrates what a Galois extension means in the context of

finite groups.

Example 3.3. If GG is a finite group and G — X is an action of GG on a finite space
X, then we call X a left G-torsor if the action is free and transitive, i.e. t-x = x
implies ¢ = e and for all x,y € X there exists a ¢ € G with g - = y. This is
equivalent to the fact that the map

. GxX->XxX, (g,2)— (9 -z,2)

is bijective. We set O(X) = C(X) and O(G) = C(G). Then O(X) is a left O(G)

*_comodule algebra with the map
a:0(X) > 0(G)®O(X) = C(G x X), a(f)(g.):= f(g- )
Moreover, X is a left G-torsor if and only if the map
it O(X)®O(X) - O(G)®O(X), ki(fi® f2) = (fi® fo) 0@

is bijective and that is the case if and only if O(X) is a left O(G) Galois extension

since

(1 ® f2)(®(g, 7)) = (L ® f)(g-2,2) = filg - 2) fo(x) = (a(f1)(1 ® f2))(g, ).

Therefore we can regard a Galois extension as a quantum analogue of a torsor in

the context of group actions.

Now we finally state the definition of a bigalois extension. In short, it merges the

terms of a left and right Galois extension.
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Definition 3.4. Let A and B be Hopf *-algebras. A unital *-algebra Z is called an
A-B-bigalois extension if

1) (Z,«) is a left A Galois extension

2) (Z,0) is a right B Galois extension

3) Z is an A-B-bicomodule algebra, i.e. (id® f)a = (a ®id)p.

In fact, every Hopf *-algebra is itself a bigalois extension. This result is formulated
in the following proposition. In its proof, the idea for the inverse maps of x; and x,

is taken from [[Sch04], Lemma 4.4.1], but the explicit calculation is new.

Proposition 3.5. Let (A, A,S,€) be a Hopf *-algebra. Then A itself with the map

A is an A-A-bigalois extension.

Proof. We know (id ® A)A = (A®id)A and (e ® id)A = (id ® €)A = id from the
definition of Hopf algebras, hence (A, A) is a left and right A *-comodule algebra
and an A-A-bicomodule algebra.

To prove that the maps x; and «, from Definition [3.2) are bijective, we use Sweedler’s
sumless notation. That is, we write A(b) = b1)®b(o) for b e A, even if A(b) is not an
elementary tensor. So we omit the possible summation sign. This is not a problem
because all occurring functions are linear.

The inverse maps are given by
ki (a®b) = aS(ba)) ® by and k" (a®b) = a) ® S(ag)b.
We check this by using the equations 1), 2), 3) from Definition which imply
1) b ® b)) ® bay2) = byy @ by) @ bz

2) ba)S(b)) = €(b)1 = S(bu))b)

for all b e A. Since
Hr(a X b) = (CL X 1)A(b) = ab(l) X b(g),
we get

fr (Rr(a®D)) = K (aba) ® b)) = aba)S(be))) ® be)e)
= (a®1)(ba)S(be)m)) ® b 2)
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= (@®1)(m@id)(id ® S @id)(b) ® b)1) ® bz)(2))
2 (a®1)(m®id)(id ® S @ id) (byn) ® byz) @ bio))
= (a®1)(ba)1)S(ba)2) ® bez))

2 (a® 1)(e(b)1 ® b))

= (@®@1)(1®e€(b))bez)

D a@1)(1®b) =a®b

and similarly

k(K (a®D)) = kr(aS(bay) ® b)) = aS(bay)be)n) ® b))

D

2 aS(bym)bye) ® by 2 ae(b) @b 2 a®b.

In the same way, one can check ;' (a ®b) = a1y ® S(a))b. O

3.2 Quantum Isomorphisms of Quantum Graphs

Now we want to introduce the linking algebra of two quantum graphs X and Y
to define an isomorphism notion of quantum graphs. We will show later that the
linking algebra is a O(Gy)-O(Gx)-bigalois extension if it is non-zero. But first,
we want to look at isomorphisms and quantum isomorphisms of classical graphs to
motivate our definition. This is similar to the definition of graph automorphisms

and the quantum automorphism group of a classical graph.

Definition 3.6. Let X and Y be to classical graphs. Then X and Y are isomorphic,
written X = Y, if there is a bijection o : V(X) — V(Y') such that

(i,)) € BE(X) <= (0(i),0(j)) € E(Y).

As one can already imagine, similarly to Remark [2.12] one can show that we can
identify graph isomorphisms with all permutation matrices ¢ which fulfillc Ax = Ayo.

This motivates again the quantum isomorphism notion for two classical graphs.

Definition 3.7. Let X and Y be two classical graphs. Then we call X and Y
quantum isomorphic, written X =, Y, if there exists a unital C*-algebra with
elements p;; for i € V(X) and j € V(Y') such that

Pl = Py = Pij» Zpij = sz’j =1 and Ayp = pAx.
@ J
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Remark 3.8. i) Clearly, X =~ Y implies X =, Y since the matrix elements o;; of the
bijection between V(X) and V(Y) satisfy the relations from Definition 3.7 The
other direction is not true in general, so there are quantum isomorphic graphs which

are not isomorphic.

i1) For two classical graphs there are also other quantum isomorphism notions with
additional requirements for the C*-algebra, see for example Chapter 4 of [LMR20)].
By Theorem 4.4 of [LMR20], some of them are even equivalent.

Next we want to define a quantum isomorphism notion for quantum graphs. For this
we need the linking algebra. In [BCE™20)] this linking algebra was usually introduced
to extend the definition of the graph isomorphism game *-algebra A(Iso(X,Y)) to

*

include quantum graphs. This *-algebra characterises whether the graph isomor-

phism game has a perfect A*-strategy. More details can be found in Chapter 2 of
[BCE20].

Similar to the part about quantum automorphism groups, we get that if X =, Y,
then (p;;);; is a unitary matrix and the map py x(e;) 1= >, e; ® p;; is a unital
*-homomorphism satisfying py x(Ax-) = (Ay ® id)py x. This motivates the defini-
tion of the linking algebra.

Definition 3.9. Let X = (O(X),¢x,Ax) and Y = (O(Y), ¢y, Ay) be quantum
graphs with |X| = n and |Y| = m and let {¢;};-1,_, and {fi}i=1,.» be orthonormal
bases for L*(X) and L*(Y). We define the linking algebra of X and Y as the

universal *-algebra O(Gy,Gx) generated by the entries of a unitary matrix
p = (pij)i € BILA(X), L*(Y)) ® O(Gy, Gx)

that satisfies the relations which make the map
prx  O(X) = O(Y) @ O(Gy,Gx), prxles) = fi®py
i=1
a unital *~homomorphism with

pyx(Ax-) = (Ay ®id)py x-

If O(Gy,Gx) #0, we call X algebraically quantum isomorphic to Y and write
X = g% Y.

In [BCE*20| there were also other quantum isomorphism notions introduced such

as the notion of a C*-algebraically quantum isomorphism, written X ~¢« Y. That
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is, the linking algebra admits a non-zero C*-representation. Moreover, the quantum
isomorphism notion X =, Y, which is, the linking algebra admits a tracial state.
It even holds that X =« Y <= X ~¢« Y [[BCET20|, Corollary 4.8|.

Since we will only use the term algebraically quantum isomorphic in this thesis, we

will drop the term "algebraically" and just write quantum isomorphic.

Remark 3.10. i) If we have two finite-dimensional Hilbert spaces H; and Hs and
an algebra A, then we can view an element in B(Hj, Hs) ® A as an element in
M dim(H2) < dim(#,) (A) by identifying the element b;; ® a with the matrix (d;;a),;. If
u € B(Hy, Hy) ® A, then u = Z” bi; ® u;; for some u;; € A, so we identify u with

the matrix (UZ] )Z] .

it) If X =Y, then we get O(Gy,Gx) = O(Gx) and pyx = px. This follows
directly from the definition.

itg) If X and Y are just classical graphs, then the properties of py x are in a

C*-algebra equivalent to
p;kj = p?j = DPij, sz'j = Zp,-j =1 and Ayp = pAX.
i J
Hence

C(Gy,Gx) =C*(py; | p:} = pfj = pij?Zpij = sz’j =1, Ayp = pAx),
( J

where 1 < i < Y| and 1 < j < |X|. This can be proven similarly to Proposition
2.20, Therefore we get for classical graphs:

C(Gy,Gx) #0<=—= X %qy

i) If X = (M,(C),tr, Ax) and Y = (M,,(C), tr, Ay) with some adjacency matrices
Ay and Ay, then one can show similar to Proposition that O(Gy,Gx) is
generated by elements v,’fl with 1 < 4,5 < n and 1 < k,I < m which satisfy
(2.1)-(2.3) from Proposition [2.21] and (02)s;Ax = Ay (V) pis-

As already mentioned we now want to show that the linking algebra is a bigalois
extension if it is non-zero. This means that a quantum isomorphism between two
quantum graphs X and Y is nothing other than a O(Gy )-O(Gx)-bigalois extension.

Note that the other direction is not true in general, i.e.

"there exists a O(Gy)-O(Gx)-bigalois extension = X =4+ Y.
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Theorem 3.11. Let X,Y be quantum graphs. If O(Gy,Gx) is non-zero, then
O(Gy,Gx) is a O(Gy)-O(Gx)-bigalois extension.

Proof. Let O(Gy,Gx) # 0 and p, u and v be the matrices of generators of O(Gy, Gx),
O(Gy) and O(Gx) respectively. Recall that a matrix (a;;);; is unitary if and only

if ZZ a;"kail = 5kl = Zj Clkj&?}.
1) One can check that the matrix (3, wix ® p;)i; fulfills the same properties as

(pij)i;- Therefore, by the universal property, we get a *-homomorphism

a:O(Gy,Gx) = O(Gy) ® O(Gy, Gx) with a(p;;) Zuzkz & Prj-

Then « is unital since

sz]plj - Z pm) (pu - Z 2 Uik ®pk] Z Uj1 ®pl])

= ZZZ Wi Ui ®pkjpzj = ZZ Okt ®pkjplj
1
k
Furthermore, we have
(id ® a)(a(p;) = (id @ a)(> ui @ prj) = 2. it @ i @ pyj
k kool
= (A®id) (Z ug @ piy) = (A ®id)(a(pi;)),
1
hence (id ® a)a = (A ® id)a and
(e®id)(a(py) = (e®id)(>. un @ prj) = . 6ixbrj = Pijs
k k

hence (e ® id)aw = id. Therefore (O(Gy,Gx),a) is a left O(Gy) *-comodule.
We define the map

m: O(Gy) ® O(Gy,Gx) — O(Gy,Gx) ® O(Gy, Gx)

n = (id®m)(y ®id)
with
v O(GY) - O(GY7 GX) & O(Gy, GX)? 7 uw . szt ®p]t

and m is the multiplication of O(Gy,Gy). Then 7 is the inverse of

Ry . O(Gy, Gx) ® O(Gy, G)() — O(Gy) @ O(Gy, Gx), /{l(ZE@y) = Oz([L’)(l @y),
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since
m(k(pij @ pt)) = (id @ m)(y @ id)(ex(pi;)(1 @ pur))
= (id®@m)(y ®id) (Z Uis @ PsjPri)
= (1d®m) (Z Zpit ® Py ® PsjPri)
s t
= Z Z Pit ® PoyPsjPri
s t
= Zpit ® OiPrr = Pij @ Pt
t
and

Ki(m(ui; @ prr)) = ra((id @ m)(Z Pit ® P @ pri)) = ki (Z it @ PjiPrt)
¢ ¢
= apa) AR phpr) = DO 1is ® par) (1 @ plypra)
¢ t s
= Z Z Ujs ®pstp;‘<tpkl = Z Uis @ 0Pt = Uij @ Pt
t s s
2) Similarly, one can check that (O(Gy,Gx), 5) is a right O(Gx) *-comodule with
B:O(Gy,Gx) = O(Gy,Gx) ® O(Gx), B(pij) = sz’k & Vgj
k
and one can analogously construct an inverse of
kr: O(Gy,Gx)® O(Gy,Gx) — O(Gy,Gx) ®O(Gx), k(z®y) = (x®1)B(y).
3) Moreover, O(Gy,Gx) is an O(Gy)-O(G x)-bicomodule since
(id ® B)(a(psy)) = (d® 5)(2 Uiy @ Prj) = Zk: Zz: Uit ® Prr ® vy
k:

= (a®id)(Y pa®@vy) = (a®id)(B(p;)),

hence (id® f)a = (e ®id)[.



Chapter 4
Representation Theory

In the fourth chapter we want to take a closer look at the representation theory
of CQGs. This will enable us to introduce the notion of monoidal equivalence.
As already noted we also need the notion of representations to construct the Hopf
*-algebra which lies dense in the C*-algebra of a CGQ. In the fifth chapter we will
then make a connection between monoidal equivalence of quantum automorphism
groups and quantum isomorphisms of quantum graphs.

The main sources for this chapter are [NT13| and [BCE20].

4.1 Representations of CQGs

In this section, we start with the definition of a representation and then state
the theorem about the existence of the dense Hopf *-algebra. We will also define a
certain tensor product for representations. Moreover, we prove that the fundamental
representation of a quantum automorphism group is indeed a representation and

using this we can finally prove the existence of the quantum automorphism groups.

Definition 4.1. Let A be a *-algebra with a unital *~homomorphism A : A - A® A
and H a finite-dimensional Hilbert space. A (finite-dimensional) representation of
(A, A) on H is an invertible element v € B(H) ® A such that

(id® A)(v) = vigv13.  (see Section [1.1] for notation)
A representation of G is called unitary if ve B(H) ® A is unitary.

Remark 4.2. i) Here we took the definition of representations from [NT13| instead
of [BCE20] since in [BCE*20] a representation is an element of A® B(H) instead
of B(H)® A. The Hilbert space as the first component of the tensor product fits

43
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better in our case because in Definition we can view the fundamental represen-
tation u as an element of B(L?*(X)® O(Gx)) and then get u(- ® 1) = px, so here

the Hilbert space is also the first component.

it) Let {e; : 1 < i < n} be an orthonormal basis of H. If v € B(H) ® O(G) is a

representation, we get

([d®A)(v) = (i[d@A)( Y] by @vig) = Y by @ Avyy).
ij=1 ij=1
Since v1v13 = ZZj,kzl bij ® vir ® vi;, we have that v is a representation if and only
if

A(Uij) = 2 Vik ®Ukj-

k=1
i71) There is always the trivial representation on C given by 1 € O(G) =~ B(C) ® O(G),
since A(1) =1 ®1.
Now we can look at how the associated Hopf *-algebra O(G) corresponding to a
CQG G is constructed, as we already announced in Remark i1). The *-algebra
consists of the matrix coefficients of all finite-dimensional unitary representations

of G. This is formulated in the following theorem.

Theorem 4.3 (|[Webl17|, Theorem 4.10). Let G = (A, A) be a CQG and Ay be the
subspace of A which is spanned by the matrixz coefficients of all finite-dimensional

unitary representations of G. Then
e Ay < A is a dense *-algebra,
o Ay is a Hopf *-algebra with comultiplication Al 4, .

Now we also want to introduce the notion of intertwiners. These are special linear
maps between the Hilbert spaces of two representations. For the rest of this section
let G be a CQG.

Definition 4.4. Let u € B(H)®O(G) and v € B(K)®O(G) be two representations.

We call a linear map T': H — K an intertwiner or morphism between u and v if
V(T ®id) = (T ®id)u.

We denote the space of all morphisms between u and v with Mor(u,v). Two rep-
resentation v and v are called equivalent if there exists an invertible element in
Mor(u,v), so we get v = (T ®id)u(T ' ®id) for some linear map T. Moreover, we
call u irreducible if Mor(u,u) = Cid.
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For two representations u and v we can also define a certain tensor product which
we will denote with u @ v and introduce in the next proposition. For n € Ny we
denote with u®" the element u @ --- @ u, i.e. n — 1 times the tensor product of u
with itself if n € N and ©®° = 1.

Proposition 4.5. Let ue B(H)® O(G) and v e B(K)® O(G) be two representa-
tions.

i) We define the tensor product of u and v as u @ v = u13v93.

Then u@ve B(H® K)® O(G) is a representation and u@ 1 is equivalent to u.

ii) If u and v are unitary, then T € Mor(u,v) <= T' € Mor(v,u).

Proof. i) Note that
B(H) ® B( ) Mdlm (C) ® Mdlm )(C) = Mdim(H)dim(K) <C> = B(H ® K)

Since

UigVo3 = Z bij @ by @ w;jvk

kyisjl
we have u@v € B(H) ® B(K) ® O(G) =~ B(H ® K) ® O(G). Moreover, the
corresponding matrix of u®wv is the Kronecker product of the corresponding matrices
of u and v (see [Gro20]). Using

A(uijvkl) = A uz] vkl Z Usp ® up] Z Vkq ® /Uql Z UipVkgq ® Upj Vgl
p,q

and (u & v)dim(K)(i D+kdim(K)(j—1)+1 = UijUkt, We get that v @ v is a representation.
Furthermore, we have u@ 1 = Z by @b Quyy = Z” bij ®id ® u;j = uy3. Using
H ~ H® C we get that id : H — H is an element of Mor(u,u @ 1) since

U13 §®1®a me ®1®u”a=Zblj(£)®uwa=u(£®a)
i,J
Therefore u @ 1 is equivalent to w.
ii) Let T € Mor(u,v), then TT: K — H and

wW(T' @idw* = (W(T ®id)u) = (T®id)! =TT ®id,
since u* = uf. Therefore u(T' ®id) = (TT ® id)v, hence T € Mor(v, u). O

The next example shows that the fundamental representation of a quantum auto-
morphism group of a quantum graph or quantum set X is indeed a representation

and that mx,ny and Ax are intertwiners.
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Example 4.6. i) The fundamental representation u of a quantum automorphism
group of a quantum graph or quantum set X is a representation of (O(Gx),A)
respectively (C(Aut*(X)),A) on L*(X). For the quantum graph this is true since
u is an element of M, (O(Gx)) =~ L*(X)® O(Gx), as a unitary it is invertible and
the equality A(u;;) = >, uir ® ug; is true by Proposition m The reasoning for

the quantum set is the same.

i1) Let X be a quantum graph and u the fundamental representation of Gx. Then
we have my € Mor(u @ u,u),nx € Mor(1,u) and Ax € Mor(u,u). Indeed, let {e;};
be an orthonormal basis of L?(X). We have my : L?(X) ® L*(X) — L?(X) and

u(mx ®id)(e; ®er ®a) = u(e;er ®a) = px(eer)(1®a)
= px(e)px(en)(1®a) = (D e; @ ui) (Y e ®up)(1®a)

j 1
= Z eje; @ ujupa = (myx ® id) (Z e; ® e @ ujua)
Jil 4.l

= (mx® id)(u13(2 e, ®e Q@uipa) = (mx @ id)(uis(us(e; e, ®a)))

= (mx ®id)(u@u)(e; ® ex ® a))),
nx : C — L*(X) (B(C) =~ C) and
u(nx ®id)(a®a) = ulal ®a) = px(al)(1®a)
=apx()(1®a) =al®a = (nx ®id)l(a ®a),
Ay i L3(X) — L*(X) and
wAx ®id) = (Ax ®id)u

by Lemma v).

Finally, we state the theorem which proves the existence of the quantum automor-

phism group of a quantum graph or a quantum set.

Theorem 4.7 ([NT13], Theorem 1.6.6). Let (A, A) be a Hopf *-algebra such that A
is generated by the matriz coefficients of finite-dimensional unitary representations

of (A, A), then (A, A) = (O(G), A) for some CQG G.

Remark 4.8. The above theorem shows that the notation in Definition 2.16] makes
sense and that the CQGs Aut™(X) and Gx really exists since C(Aut™ (X)) and
O(Gx) are both Hopf *-algebras by Proposition and generated by their funda-
mental representation which is indeed a representation by Example 7).
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At the end of this section we state another theorem which we will need when working

with monoidal equivalence in the next sections.

Theorem 4.9 ([NT13|, Theorem 1.3.7). Every finite-dimensional representation of

G 1s equivalent to a direct sum of irreducible representations.

4.2 Monoidal Equivalence

In this section we introduce the notion of monoidal equivalence of two CGQs and
look at some examples of monoidal equivalent CQGs. In the next chapter we will
show that if a quantum automorphism group of a graph X is monoidally equivalent
to another CQG, then there exists a corresponding quantum graph to this CQG

which is quantum isomorphic to X.

For a CGQ G, let Rep(G) be the representation category, i.e. the category whose
objects are equivalence classes of representations of G and whose morphisms are
given by the intertwiner spaces Mor(u, v). With Irr(G) we denote the set of equiva-
lence classes of irreducible objects in Rep(G). Note that from now on we also denote

the equivalence class of some representation u € B(H) ® O(G) with u € Rep(G).
Definition 4.10. Let GG; and G5 be two CQGs. We say that G; and G5 are

monoidally equivalent and write G7 ~™°" (35 if there exists a bijection

@ Irr(Gh) — Irr(Go)

with ¢(lg,) = lg, (where 1g, is the trivial representation of G;) and for all
u; € Irr(Gy) and v; € Irr(Gy) (i = 1,...,n, 7 = 1,...,m) there are linear iso-
morphisms

@ Mor(u; @ ... Up, V1 @D ... V) — Mor(p(ug) @ ... o(uy), (1) & ... o(vy))
with ¢(id) = id and for all intertwiners S, 7" we have:

o p(SoT)=e(S)op(T) (if SoT is well-defined)
o o(5") = (9)!

* p(S®T) = ¢(5) ®¢(T).
Remark 4.11. By Theorem[4.9we can extend ¢ to a functor ¢ : Rep(G) — Rep(Gs)

since every u € Rep(G1) is equivalent to a direct sum @;u; with u; € Irr(Gy), so we
can define p(u) := @®;¢(u;). This functor is in particular essentially surjective which

means that every object in Rep(Ga) is of the form ¢(u) for some u € Rep(Gy).
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If we have two quantum sets with d-forms, then it is quite easy to see whether their
quantum automorphism groups are monoidally equivalent. This is exactly the case
if the two § are the same. This statement is formulated in the following theorem.
With this we can easily follow that the two CQGs S, and PO; from Definition

1.14] are monoidally equivalent.

Theorem 4.12 ([DRVV10], Theorem 4.7). Let (B;, ;) be quantum sets where 1; is
a ;-form (i = 1,2). Then the CQGs Aut® (By,v1) and Aut*(Bg, 1) are monoidally
equivalent if and only if 61 = 0s.

Corollary 4.13. The CQGs S, and PO;; are monoidally equivalent.

Proof. From Exampleii) and iii) we know that 1,2 : C** — Cand tr : M, (C) — C

are both n-forms. Therefore we get with Theorem [4.12

Aut™(C™ ahn2) ~™" Aut™ (M, (C), tr)
and then the Propositions and imply S, ~™" PO} O]
Using this theorem we get another interesting monoidal equivalence.

Example 4.14. The group SO(3) is defined as all orthogonal matrices in R**?
with determinant 1. By [Ban99] we know that SO(3) is the quantum automorphism
group of (My(C), tr). This implies SO(3) ~on Si since tr and ¢, are both 2-forms.



Chapter 5

Linking Algebras of CQGs

In this chapter we also want to define a linking algebra for two monoidally equiv-
alent CQGs, which do not necessarily have to be quantum automorphisms groups
of some quantum graphs. With the help of this new linking algebra we can finally
prove the theorem which we already mentioned at the beginning of Section [4.2]
It connects the monoidal equivalence of quantum automorphism groups with the
quantum isomorphism of the corresponding quantum graphs. In the end we will
also have a closer look at the linking algebra of S;’z and PO;.

The main sources of this chapter are [BEHY22] and [BCE*20].

The existence of the linking algebra in the following definition is proved in [[BRV05],
Theorem 3.9 and Proposition 3.13].

Definition 5.1. Let G; and G5 be two monoidally equivalent CQGs and
¢ : Rep(G1) — Rep(Gs) be the map from Remark [£.11] Then there exists a unique
unital *-algebra @(Gl, G2) which is spanned by the matrix coefficients of unitary
elements X* € B(H,, Hy)) ® O(G4, Gy) where z € Irr(Gy). We call O(Gy, G,) the
linking algebra of G; and GS.

Remark 5.2. i) Since ¢ is defined on Rep(Gy), we also have unitary elements
X% e B(Hy, Hyz)) ® O(G1,Gs) for all z € Rep(Gy). Moreover, we know from the
proof of [[BRV05|, Theorem 3.9] that

(p(S) ®id) X3 X5, = X*(S ®id)
for all S € Mor(y & z, ),

(o(T) @id) X" = X{3X5(T ®id)

49
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for all T € Mor(z,y @ z) and that X! is the unit element of O(Gy, Gy). Therefore
we also get
(p(T)®id) X" = XY(T ®1id)

for all T' e Mor(z,y) and
(X¥)13(p(T) ®id) = X5(T @ id)

for all T' € Mor(1,y & z) because (X¥)#; X7, = id since XV is a unitary element.

These equalities will be useful in the proof of the next theorem.

i1) It is not mentioned in [BEHY22|, but similar to Theorem one can show that

O(G1, Go) is a O(Gh)-O(Gy)-bigalois extension if it is non-zero.

it7) If we have a quantum set (O(X), 1), then (£*®id)(mfnx)(1) = €* (see Section
for notation). The idea that this equality holds is taken from |Rij07].
Indeed,

(€& @id)(mlnx) (1), y) = {(minx) (1), (€ ®@id) (y))
= {(mln) (1), £®y) = (1, &y) = (&, y),

where the second equation is true since

E®y,r®z2) =& 1)y, 2) =, (1,62 =y, (T Qid)(x® 2)).

If two quantum graphs are quantum isomorphic, then their quantum automorphism
groups are monoidally equivalent (see [BCE*20| Section 4.2). The converse is not
true in general. However, we get another theorem connecting monoidal equivalence
with quantum isomorphism, which we can now finally prove. It states that if a CQG
is monoidally equivalent to a quantum automorphism group of some quantum graph
X, then there exists a quantum graph Y with X =4« Y such that the CQG is its
quantum automorphism group. For the proof of this we first need the following

lemma.

Lemma 5.3. Let H be a finite-dimensional Hilbert space and also a unital *-algebra,
where the equality {a*b, c) = {b,ac) holds for all a,b,c € H. Then H is a C*-algebra.

Proof. We define the map ® : H — B(H), a — ¢, with ¢,(h) = ah. Then & is well
defined because H is finite-dimensional, thus all linear maps are bounded and hence
¢, € B(H). Moreover, ® is injective since ¢, = ¢, implies a = ¢,(1) = ¢,(1) = b.
Therefore, H ~ ®(H). The space ®(H) is norm-closed since it is isomorphic to H
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and hence finite-dimensional. Furthermore, it is a *-subalgebra of B(H) because
P! = pax since (a*hy, hy) = (hy,ahy). This implies that ®(H) is a C*-algebra,
hence H is a C'*-algebra. O]

The proof of the following theorem is based on the given proof in [BCE*20| (The-
orem 4.11) and the proof of Theorem 3.6.5 in [Rij07].

Theorem 5.4. Let X = (O(X),¢¥x, Ax) be a quantum graph and Gx its quantum
automorphism group. Let G be another compact quantum group that is monoidally
equivalent to Gx. Then there exists a quantum graph Y = (O(Y), ¢y, Ay) such
that G =~ Gy and X s quantum isomorphic to'Y, i.e. X =~ % Y.

Proof. 1. Construction of Y:

Let ¢ : Rep(Gx) — Rep(G) be the map from Remark[4.1T]and u be the fundamental
representation of Gx. We define v := ¢(u). Then v € B(H)®O(G) for some Hilbert
space H. We set L*(Y) := H and dy := dim(H). Additionally we define

my = p(mx) € Mor(v@v,v),ny := p(nx) € Mor(1,v),
Yy = nl € Mor(v,1) and Ay := ¢(Ax) € Mor(v,v).

Then my is associative since
my (id @ my) = p(mx (id @ mx)) = ¢(mx(mx ®id)) = my (my Qd)
and 7y is a unit map because
my (id@ny) = p(mx(id @ nx)) = ¢(id) = id = p(mx (nx @ id)) = my (ny @ id).
We define the map -# : L2(Y) — L*(Y) by
& & = (€ @id)(myny)(1).
Then

(> = (€ @id)(mlny) (1), 1) = (mbay ) (1), (€ @id)'y)
Remar kB0 (1l i) (1), € @ ) = (1, my (€ @ y)) = (1, €v)

and therefore also

(EF®@u,y®@2) = (€%, y)z, z) = (1, &YXz, 2) = 1, my (£ @y) Xz, 2)
= (my (1), £ ®@y)(z,2) = My (1) @ 2,£ @Y ® 2)
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for all £, x,y,2 € L*(Y). Together with
mymy = p(mlmy) “"2 B o(my @ id)(id @ my)) = (my ®id)(id @ m},)
this implies
(E#2,1) = (my (¥ @), 1) = (* @z, m}, (1))
= (m}.(1) @z, @ml(1))
= {(m} ®@id)(1 @), ([d@m})(E@1))
= (1@, (my ®id)(id @ m},)(€ ®1))

=A@z, mymy(®1))
= (my (1@ ), my (§®1)) = (x,£).

This shows that the scalar product of L?(Y) is induced by 1y since

Uy (§%x) = nl (¥ ) = nl (¢F2)T = (il (¢F), 1) = (¥ a, 1) = (2,9).

With this knowledge we now get that # is an involution because the equalities

{(a&), y) = (1, agy) = @™, y),
() y) = LRy = &),
<(§1€2)#7y> = <17£1£2y> = <£#7£2y> = <§f£#7y>

imply (a€)* = ag¥, (6¥)* = € and (61&)* = ¢}
Therefore L*(Y) is a unital *-algebra with multiplication my, unit map 7y and
involution #. In fact, L?(Y) is even a C*-algebra because it fulfils the requirements

of Lemma[5.3] We denote this C*-algebra with O(Y).
We also get that oy is a faithful state since ¥y (1) = (1,1) = |1|* = 1 and

Uy (7€) = (€,&) = |€]l, hence ¢y (£7E) = 0 and ¢y (£%E) = 0 only if £ = 0. In
addition, 1y : L*(Y) — C is a d-form since

myml, = p(mxml) = ¢(6%d) = 6%d.

Moreover, Ay : L*(Y) — L*(Y) is a quantum adjacency matrix because
A} = p(Ax)" = p(A) = o(Ax) = Ay,

so Ay is self-adjoint and (1)-(3) from Definition are true:

(1) my(Ay ® Ay)m}, = p(mx(Ax ® Ax)mk) = p(6?Ax) = 6% Ay
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(2) (id® n;my) (1d® Ay ®id) (m;ny ® id)
= ¢((id ®nkmx)(id ® Ax ® id)(minx ®id)) = p(Ax) = Ay

(3) my(Ay ®id)m!, = p(mx(Ax ®id)ml) = p(6%d) = §%d.

Therefore (O(Y), vy, Ay) is a quantum graph.

2. Gy = G-

Let Gy be the quantum automorphism group of Y with fundamental representation
w € My, (O(Gy)). We have that O(G) is generated by the entries of ¢p(u) = v
because ¢ is essentially surjective and O(Gx) is generated by the entries of w.

Therefore, we get with Proposition 3.4.15 from [Gro20] that it is enough to show
Mor (w®™, w®™") = Mor(v®™, v®")

for all m,n € Ny to prove that Gy =~ (. The monoidal equivalence implies
Mor(v®™, v®") = o(Mor(u®™, u®")) for all n,m € Ng. Moreover, by some categori-

cal reasoning, the space | J Mor (u®™ u®") is generated by the maps {id, mx, nx, Ax}

n,meN

and therefore the space | J Mor(v®™ v®") is generated by the images

n,meN

{p(id), p(mx), (nx), p(Ax)} = {id, my,ny, Ay}.

But the set |

Therefore we have

Mor(w®™, w®™") is also generated by the maps {id, my,ny, Ay }.

n,meN

U Mor (v®™, v®") = U Mor (w®™, w®")

n,meN n,meN

and hence Mor(v®™ v®") = Mor(w®™, w®") for all m,n € N.

3. X = g% Y:
Since we now get the monoidal equivalence of Gx and Gy, Remark i) implies
that there exists an element X* € B(L2(X), L3(Y)) ® O(Gx, Gy) which satisfies

(i) ny ®id = p(nx) ®id = X" (nx ®id)
(i) (my ®1id) X{5X55 = (@(my) ®id) X3 X5 = X" (mx ® id)
(iii) (X")i5(mbny ®id) = (X9)i(p(miny) ®id) = Xis(mlnx ®id)

(iv) (Ay ®id)X" = (p(Ax) ®id) X" = X*(Ay @id).
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The map p : O(X) — O) ® O(Gx, Gy), ple;) = 2 fi ® Xj; is then a unital
*-homomorphism with p(Ax-) = (Ay ® id)p.

Indeed, we have

p(1) = X“(1®1) = X (ix ®id)1®1)) £ (y @id)(1® 1) = 1@ 1,

pleier) = X4 (eiep ®1) = X*((mx ®id)(e; ®ep ® 1))
2 (my ®id)(Xi5X3(e: @ x ® 1)) = (my @ id)(Xi5(e: ® ), f; © X))

= (my ®id)(2 fi® f; ® X X5)) = Zflfj ® Xp; Xy

Jil 4,

= (Z fi® Xﬁ)(z [i ® X5) = plei)ple),
l J

pled) = X"(ef ©1) "mEERD X (e @ id) (mlenx) (1) ® 1)
= (e} ®@id ®id) X35((minx)(1) ®1)
= (¢ ®id ®id) X35((minx ®id)(1®1))
D (e @id@id) X (mlny @id)(1©1))

= (e} @id ®id) Xy (mhny)(1) @ 1)

= (e} ®id®id)( ) (bg; ® id) (miny ) (1) ® (X))

= (e ®id®id)(Z(f;6k ®id)(myny)(1) ® (X))

_ Z(f;@-k ®id)(myny) (1) ® (XJ5)*

= 27 ®@id)(mymy) (1) ® (X)) = 3 fF @ (X5)" = ple)”,

p(Axe;) = X(Axe; ®1) = X" (Ax ®id)(e; ®1) 2 (Ay @ id) X (e; @ 1)
= (Ay ®@id)p(e;).

By the universal property of O(Gy,Gx) we know that there is a *-homomorphism

~

Y O(Gy,Gx) — O(Gx, Gy) with ¢(pi;) = Xji (where p;; generates O(Gy,Gx)).

Therefore, O(Gy,Gx) # 0, so X 24+ Y (see Definition [3.9). O

Now we want to have a closer look at the linking algebra of the CQGs S, and PO} .
For this we first state the following remark, which makes it easier to calculate the

linking algebra explicitly.
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Remark 5.5. Let Aut™ (B, ;) and Aut®(Bs, ) be two monoidally equivalent
quantum automorphism groups. Then their linking algebra is given by the uni-

versal *-algebra generated by the coefficients of a unital *-homomorphism
p:B1— B® @(AUtJF(Bl, 1), Aut™ (Ba, 1))

with

(Y2 ®@id)p = ¢ (-)1.
The coefficients of p are defined as the set {(w ® id)p(x) : x € By,w € Bj}.
For example, if A, B and C are vector spaces where A and B are finite-dimensional,
then the coefficients of the map A — B ® C with a — >, ; bij(a) ® ¢;; is the set
span({c;;}i;). Indeed, let {a;}; and {b;}; be a basis of A and B respectively. Then
the maps {b}}; form a basis of B* where b}(b;) = d;r. Hence, every coefficient is a

linear combination of elements of the form
(b; ®1id) Z bij(a) ® cij) Z bi(ajbi)ci; = Z OkiuCij = Z a;Ckj,
. J

where we assumed a = >}, a;ja;. Therefore
{(w®id)p(z) : x € A,w e B*} = span({c;;}ij)-

By Corollary we know that the CQGs S, and PO; are monoidally equivalent,
hence we can look at their linking algebra using the above remark. This proposition

is a new result.
Proposition 5.6. The linking algebm of SY, and PO} is the universal *-algebra
generated by elements p;jx where 1 < 14,7 <n and 1 < k < n? with

TL2

2 Pijk = 0ij (5.1)

Piji = Djik (5.2)

Zpirkprjl = (Sklpijk (5-3)
n 1
me'k = —. (5‘4)
i=1 n

Proof. By Remark the *-algebra @(S;;, PO} is generated by the coefficients

of a unital *~homomorphism

p:C" — M,(C)® O(SH, POY)

n2s
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with

(tr @ id)p = 2 (1.
We can write p(ex) = 3, ; eij @ pijx for some elements pijx € @(S;E,PO;{). The
proof is now similar to the proof of Proposition [2.21]

Since p has to be unital we get
Zez]®2pmk_Zel]®pljk_p26k _:0 _1®1_261]®5’LJ
NN 7]
which is equivalent to (5.1). Moreover, p has to be involutive. This implies
|

Zeji ®p;kjk = p(ek) = p(ek) - p ek‘ Zejl X Djik

ij irj
and this is equivalent to (5.2). Furthermore, we need p to be multiplicative. Hence

Zeij ®2pirkprjl = Z €ij & PirkDrji = 2 Osr€ij @ DiskPril
2,7 r

1,7,T 1,7,7,S

- Z €is€rj @ DiskPrjl = 2615 ®p“k Zem ®prﬂ)

©,J,7,8 r,J

= p<€k)p<el) - P(ekez) = 5ka(€k) = Zez‘j ® 5lkpijk
1,]
which is equivalent (5.3). Finally, the equality (tr ® id)p = ¥,2(+)1 is equivalent to
(5.4) since

I=n ¢n2(ek)1 =n (t’f’@ld) (ek’ =n Ztr €ij ngkz n Zéz] —Pijk = nzpnk

(2%

]
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