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Introduction

This thesis deals with a group theoretical verification of the characterisation
of unitary easy groups — groups that were classified by Tarrago and Weber
in 2016 [20].
The term “easy group” was coined by Banica and Speicher in [5] and

describes (in the context of this work) closed subgroups of the orthogonal
group On, whose associated symmetric tensor categories with duals are
generated by linear maps that originate in combinatorial considerations,
namely partitions of sets.

As it turned out, one can even assign a symmetric tensor category with duals
to a closed subgroup of the unitary group Un. In this context, the underlying
combinatorial considerations are partitions of two-coloured sets and unitary
easy groups are again such, where their associated tensor categories are
generated by certain linear maps stemming from partitions of coloured sets.
The easy groups classified by Banica and Speicher [5] correspond to unitary
easy groups, where the underlying sets are non-coloured (i.e., all elements of
the underlying sets have the same colour).

The characterisation of (unitary) easy groups in terms of symmetric tensor
categories with duals that originate in orthogonal respectively unitary rep-
resentations of groups makes a Tannaka-Krein-approach viable to recover a
group from a given category of partitions. This is the approach chosen in [5]
and [20]. An elementary group theoretical verification of the results is still
missing, which will be addressed in this thesis.

To this end, we deal with unitary representations of easy groups respectively
unitary easy groups and use the fact that the correspondence to a certain
category of partitions gives rise to certain relations on the generators of a
certain commutative universal C∗-algebras which translates to relations in
terms of polynomials in the entries of matrices that belong to those (unitary)
easy groups.
Due to the description of easy groups in terms of (objects associated to)

categories of partitions, it is, in the spirit of the generalisation of the notions
“compact group” and “compact matrix group” as discussed in chapter 2
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of this thesis, possible to drop certain partitions from those categories of
partitions to end up with so-called easy quantum groups respectively unitary
easy quantum groups.

Additionally, we take a brief look at (unitary) easy groups as Lie groups,
which they are, since they are closed subgroups of the orthogonal group On

respectively the unitary group Un.
An open question in this field is how to find examples of non-easy groups,

that is, matrix groups G with Sn ⊆ G ⊆ On respectively Sn ⊆ G ⊆ Un that
are not easy.
In the first chapter, we recap some basic facts about matrix groups and

show that Gln(K) is a smooth manifold, where K denotes either the field of
real or complex numbers.

In the second chapter, we familiarise with the notions of compact quantum
group and compact matrix quantum group. To form a better understanding
for comultiplications, basic theory of algebras, coalgebras, bialgebras and
Hopf algebras is developed.

The third chapter deals with easy groups and their relationship to so-called
categories of partitions.
In chapter four, we give a group theoretical verification that the unitary

easy groups found in [20] are indeed the groups given there.
The appendix is meant to give a brief overview over — and hopefully some

kind of intuition for — the concepts and notions that occur throughout the
thesis. The appendix is meant to make this thesis more or less self-contained
and thus hopefully accessible for students of other fields of study, even though
some kind of capability of mathematical thought on the readers part will be
necessary and knowledge of the content of basic courses in linear algebra and
analysis certainly helpful.
Finally, I want to thank my friends and family for their ongoing support

throughout my studies and helpful input during the development of this
thesis, namely I want to thank my parents for their incredible support in
matters outside of my studies and Eileen Oberringer, Michael Brill, Daniel
Krämer, Steven Klein and Christian Steinhart for reading through the text.
In addition, I want to thank my supervisor and teacher Moritz Weber for his
great lectures and the guidance through the topic of my thesis. Last, but not
least, I want to thank Prof. Dr. Ernst-Ulrich Gekeler and Prof. Dr. Gabriela
Weitze-Schmithüsen for their instructive lectures and their time and input on
questions regarding this thesis.
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A few remarks on notation
Apart from the following agreements on notation, we will avoid fixed notation
for certain parts of the thesis (e.g., “For this section let V be a k-vector
space...”) to improve readability.
Throughout the thesis, N := {1, 2, 3, . . . } denotes the natural numbers,

N0 denotes the non-negative integers, Z denotes the integers, Q denotes the
rational numbers, R denotes the real numbers and C denotes the complex
numbers. The symbol K stands for either the real– or the complex numbers.
Given a natural number n, Nn denotes the set of natural numbers at most as
large as n, i.e., Nn := {1, 2, . . . , n}. Given a complex number z = z1 + iz2,
we denote by z∗ the complex conjugate of z, i.e., z∗ = z1 − iz2.

Given two sets A and B, we denote by A−B := {x | x ∈ A ∧ x /∈ B} the
set difference of A and B to avoid confusion with coset notation. If A ⊆ B,
we call Ac := B − A the relative complement of A in B. By BA, we denote
the set of maps from A to B, i.e., BA = {f : A→ B}. If B is at least a group,
we put B(A) := {f : A→ B | f(a) 6= eB only for finitely many a ∈ A}.

For a non-negative integer n, we denote Zn := Z/nZ. For a natural number
n, by Sn := Sym(Nn) we denote the symmetric group on n letters.

Given an index set I and a family of sets (Ai)i∈I , we denote by ∏i∈I Ai the
cartesian product of the sets Ai, i.e.,

∏
i∈I Ai = {(ai)i∈I | ai ∈ Ai}.

For natural numbers n and k, we put

Ikn := {i = (i1, . . . , ik) | i1, . . . , ik ∈ Nn},

Given integers i, j, we define

δi,j :=
1, if i = j,

0 else,

the so called Kronecker Delta. This definition extends to multi-indices
standing to reason.

Given a natural number n and a field k, we denote by ei := (δi,j)t1≤j≤n the
i-th vector of the canonical basis of kn. The set kn turns into a k-vector space
with componentwise addition and scalar multiplication. We will understand
elements of kn as column vectors. Vectors ξ ∈ kn will be expressed as

ξ = (ξ1, . . . , ξn)t =
n∑
i=1

ξiei

whenever convenient, functionals ϕ ∈ (kn)∗ := Hom(kn, k) will be expressed
as ϕ = ∑n

i=1 ϕiε
i, where {ε1, . . . , εn} ⊆ (kn)∗ denotes the dual basis to

vii



{e1, . . . , en} ⊆ kn; accordingly, we agree on numbering row indices of matrices
(that originate from linear maps) in superscript and column indices of matrices
in subscript.

Given a linear map ϕ : V → W between Hilbert spaces over K, we denote
by ϕ† the adjoint map of ϕ. Given a matrix A ∈ Gln(K), we write A† := (A∗)t,
where we mean componentwise complex conjugation.

We reserve the brackets “〈·, ·〉” for dual pairings and use the brackets “(·|·)”
for inner products.
In a topological space (X,T), we denote by clT(A) the closure of A ⊆ X

and by IntT(A) the interior of A ⊆ X, both with respect to T. If there is no
confusion to be feared about the topology in question, we simply write cl(A)
or Int(A) respectively.

If not explicitly stated otherwise, we assume an euclidean or unitary space
to be equipped with the standard inner product and the norm induced by it.
If euclidean or unitary spaces make an appearance as a topological space, we
assume the topology induced by the standard inner product, if not stated
otherwise explicitly.
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Chapter I.

Matrix groups

The set Gln(k) := Mn(k)× forms a group with respect to matrix multiplication
(see Example A.1.2 and Example A.3.6), subgroups of Gln(k) are called matrix
groups. If k = K is the field of real or complex numbers, the group Gln(K)
even carries a lot more structure; it then also is a topological group and a
differentiable manifold in a compatible way, meaning the law of composition
and the inverse map i : Gln(K) → Gln(K), A 7→ A−1 are smooth. Such
groups are called Lie groups.

It is a crucial result in the theory of Lie groups that closed subgroups of Lie
groups are themselves Lie groups with the relative topology, as a consequence
every closed subgroup of Gln(K) is itself a Lie group; such groups are called
matrix Lie groups.

The main goals of this chapter are convincing ourselves that Gln(K) indeed
is a Lie group, seeing that the orthogonal and unitary groups are compact
and how subgroups of the orthogonal group On respectively the unitary group
Un can be represented on the Hilbert spaces Tm(Kn) for natural numbers n
and m in a natural way.

For this chapter, the sections 1, 2 and 4 of Appendix A and the sections 1,
2 and 3 of Appendix B should make the content understandable.

1. The algebra of square matrices
As discussed in Remark A.2.5, in the situation of finite-dimensional vector
spaces, we can identify Endk(V ) with Mn(k), where n = dim(V ); under this
identification, invertible linear maps correspond to matrices with non-zero
determinant. The set Mn(k) turns into a unital algebra over k, i.e., a k-vector
space together with a k-bilinear multiplication and a neutral element with
respect to this k-bilinear multiplication, in the following way:

1



Chapter I. Matrix groups

Lemma I.1.1: Let n be a natural number and let k be a field. Then, Mn(k)
turns into an algebra over k with addition, componentwise multiplication and
multiplication of matrices as laws of composition. The neutral element with
respect to addition of matrices is the zero-matrix, the neutral element with
respect to multiplication of matrices is the identity In = diag(1, . . . , 1).

For k = K, we can make Mn(K) into a normed vector space over K. As it
turns out, this space is isometrically isomorphic to Kn·n and thus a Banach
space over K, since convergence in Km is precisely componentwise convergence
and K with the usual absolute value is a Banach space. But even more holds
true: Mn(K) together with the operator norm is a unital Banach algebra,
i.e., a Banach space over K that is at the same time a unital algebra over K
such that the norm is submultiplicative.
Lemma I.1.2 (Operator norm): Let n be a natural number. The map

‖·‖op : Mn(K) −→ K, A 7−→ sup{‖Ax‖ | ‖x‖ = 1}

is a norm on Mn(K), the so-called operator norm. The operator norm is
submultiplicative, i.e., for A,B ∈Mn(K) it holds ‖AB‖op ≤ ‖A‖op‖B‖op.

Proof: First, we show that ‖·‖op is indeed a norm.
(i) Suppose A = 0. Then Ax = 0 for all x ∈ Kn, in particular ‖Ax‖ = 0

for all x ∈ Kn and thus ‖A‖op = 0.
Suppose now ‖A‖op = 0. Then ‖Ax‖ = 0 for all x ∈ Kn with ‖x‖ = 1,

hence for x ∈ Kn − {0}, it holds ‖Ax‖ = ‖x‖‖A(x/‖x‖)‖ = 0. Because ‖·‖
is a norm on Kn, this means Ax = 0 for all x ∈ Kn and thus A = 0.

(ii) Let A ∈Mn(K) and α ∈ K. Then we have

sup{‖(αA)x‖ | ‖x‖ = 1} = sup{|α|‖Ax‖ | ‖x‖ = 1}
= |α| sup{‖Ax‖ | ‖x‖ = 1},

i.e., ‖αA‖op = |α|‖A‖op.
(iii) Let A,B ∈Mn(K). It holds

sup{‖(A+B)x‖ | ‖x‖ = 1} ≤ sup{‖Ax‖+ ‖Bx‖ | ‖x‖ = 1}
= sup{‖Ax‖ | ‖x‖ = 1}+ sup{‖Bx‖ | ‖x‖ = 1}.

For the submultiplicativity, let A,B ∈Mn(K). Then we can calculate

sup{‖ABx‖ | ‖x‖ = 1} = sup{‖Bx‖‖A(Bx/‖Bx‖)‖ | ‖x‖ = 1}
= ‖Bx‖ sup{‖Ax‖ | ‖x‖ = 1}
≤ sup{‖Ax‖ | ‖x‖ = 1} sup{‖Bx‖ | ‖x‖ = 1}. �
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1. The algebra of square matrices

This, together with the preceding remark, shows that Mn(K) turns into a
unital Banach algebra over K with the operator norm.

Lemma I.1.3: The matrix multiplication

· : Mn(K)×Mn(K) −→Mn(K), (A,B) 7−→ AB

is continuous with respect to the topology induced by ‖·‖op, where we equip
Mn(K)×Mn(K) with the product topology.

Proof: We have to check that for sequences (An)n∈N, (Bn)n∈N inMn(K) with
An → A and Bn → B it holds AnBn → AB. We have

‖AnBn − AB‖op = ‖AnBn − AnB − AB + AnB‖op

= ‖An(Bn −B) + (An − A)B‖op

≤ ‖An‖op‖Bn −B‖op + ‖An − A‖op‖B‖op

which gets arbitrarily small, since convergent sequences are bounded. �

Lemma I.1.4: Let A ∈ Mn(K) with ‖A‖op < C. Then for 1 ≤ i, j ≤ n, we
have |Aij| < C.

Proof: Since ‖ei‖ = 1, we have for 1 ≤ i ≤ n that ‖Aei‖ ≤ ‖A‖op < C. Now

|Aij| ≤
( n∑
i=1
|Aij|2

)1/2
= ‖Aej‖ < C

which we wanted to show. �

We read from Lemma I.1.4 that if a sequence (An)n∈N in Mn(K) converges
to A ∈Mn(K), it holds (An)ij → Aij for 1 ≤ i, j ≤ n.
A speciality in the case of finite-dimensional K-vector spaces is that the

converse is also true. This is, however, terribly wrong in general.

Lemma I.1.5: Let n be a natural number and let (An)n∈N be a sequence in
Mn(K) such that (An)ij → A for 1 ≤ i, j ≤ n. Then ‖An − A‖op → 0.

For a proof of this assertion, check Remark B.4.7.

Example I.1.6 (Vector spaces as smooth manifolds): Let V be an n-dimen-
sional R-vector space equipped with any norm (giving V a topology) and
an ordered basis B = (b1, . . . , bn). In a normed vector space, any non-empty

3



Chapter I. Matrix groups

open subset is the space itself, because by normalisation, every open ball fits
a basis of said normed vector space.
The coordinate map

DB : V −→ Rn,
n∑
i=1

vibi 7−→
n∑
i=1

viei

is continuous, hence (V,DB) is a chart for V . Choosing a different basis B′ in
V yields a different chart (V,DB′) and the change of charts is just the change
of basis-matrix, i.e., the changes of charts are diffeomorphisms as invertible
linear maps.

Remark I.1.7: As an n2-dimensional R-vector space, Mn(R) is a smooth n2-
dimensional manifold with the chart (Mn(R), DB). For Mn(C), we consider
its realification, which is a 2n2-dimensional R-vector space, and thus make
Mn(C) a smooth 2n2-dimensional manifold.

2. The general linear group
Inside the Banach algebra Mn(K) sits the general linear group Gln(K),
consisting of the matrices with non-zero determinant. These are in a one-to-
one correspondence with invertible endomorphisms of Kn.

Definition I.2.1 (Matrix group): Let n be a natural number and let k be a
field. Then Gln(k) = {A ∈ Mn(k) | det(A) 6= 0} forms a group with the
multiplication of matrices as law of composition. A subgroup H ⊆ Gln(k) is
called a matrix group.

Remark I.2.2: Important for the following topological considerations is the
fact that det : Mn(K)→ K is continuous, since for a matrix A = (aij)1≤i,j≤n,

det(A) =
∑
σ∈Sn

sgn(σ)a1
σ(1) · · · anσ(n)

is a polynomial in the entries of A.

Lemma I.2.3: Let n be a natural number. The general linear group Gln(K)
together with multiplication of matrices and the operator norm is a topological
group, i.e., multiplication of matrices and inversion of matrices are continuous
with respect to the operator norm.

4



2. The general linear group

Proof: The continuity of multiplication of matrices with respect to the opera-
tor norm was already shown in Lemma I.1.3. Given a matrix A = (aij)1≤i,j≤n,
the adjugate matrix A# =: B = (bij)1≤i,j≤n has the entries

bij = (−1)i+j det(Aji ) (I.1)

where Aji denotes the (n− 1)× (n− 1) matrix resulting from cancelling the
j-th row and the i-th column of A.
For an invertible matrix A ∈ Gln(K) and its adjugate matrix A# it holds

AA# = A#A = det(A)In, see section 6.4 in [12].
Given a convergent sequence (Am)m∈N of matrices Am = ([am]ij)1≤i,j≤n in

Gln(K) with limit A, the component sequence ([am]ij)m∈N converges to the
entry aij of A and thus, due to Eq. (I.1) and the continuity of the determinant,
we have componentwise convergence of the adjugates A#

m to the adjugate
A#. Componentwise convergence implies convergence in operator norm, see
Lemma I.1.5. �

Proposition I.2.4: Let n be a natural number. Then Gln(R) is a smooth
manifold.

Proof: Since det : Mn(R) → R is continuous, R − {0} ⊆ R is open and
Gln(R) = det−1(R − {0}) is an open subset of the smooth n2-dimensional
manifold Mn(R). This renders Gln(R) an n2-dimensional smooth manifold
itself. The chart for Gln(R) is the restriction of the chart for Mn(R) to
Gln(R). �

Proposition I.2.5: Let n be a natural number. Then Gln(R) is a Lie group,
i.e., Gln(R) is a topological group and a smooth manifold at the same time
and the laws of composition are smooth with respect to the topology on Gln(R).

Proof: We already established that Gln(R) is both a topological group and
a smooth manifold. What remains to show is that multiplication of matrices
µ : Gln(R) × Gln(R) → Gln(R) and inversion i : Gln(R) → Gln(R) are
smooth maps.
Note that Gln(R)×Gln(R) is a smooth manifold together with the chart

(DB ×DB,Gln(R)×Gln(R)).
A map f : M → N between an m-dimensional smooth manifold M and

an n-dimensional smooth manifold N is called smooth in a point p in the
open set U ⊆ M , if for a chart (ψ,W ) of N around p the local coordinate
representation

fϕ,ψ := ψ ◦ f ◦ ϕ−1 : ϕ(U) −→ ψ(W )

5



Chapter I. Matrix groups

is smooth in the point ϕ(p) ∈ Rm, i.e., the situation is captured in the
commutative diagram

U W

ϕ(U) ψ(W )

f

ϕ ψ

fϕ,ψ

This notion of smoothness does not depend on the chosen charts because the
changes of charts are smooth, the fact that we have the chain rule and the
Inverse Function Theorem.

We agree on the ordered basisB = (E1
1 , . . . , E

1
n, E

2
1 , . . . , E

2
n, . . . , E

n
1 , . . . , E

n
n)

for Mn(R). For µ and i, we have, at any point of the domains, the local chart
representations

µDB ,DB : Rn·n ×Rn·n −→ Rn·n,(
(a1

1, . . . , a
n
n), (c1

n, . . . , c
n
n)
)
7−→

( n∑
k=1

a1
kc
k
1, . . . ,

n∑
k=1

ankc
k
n

)

and

iDB ,DB : Rn·n −→ Rn·n, (a1
1, . . . , a

n
n) 7−→ 1

det((aij)1≤i,j≤n)(b1
1, . . . , b

n
n),

where B = (bij)1≤i,j≤n is the adjugate matrix to (aij)1≤i,j≤n.
The determinant det : Gln(R) → R, interpreted as map between the

smooth manifolds Gln(R) and R, is smooth, since for a matrix A ∈ Gln(R) it
holds det(A) = detDB ,id(a1

1, . . . , a
n
n) and det(A) is a polynomial in the entries

of A.
Hence, we recognise both local coordinate representations as smooth maps

between subsets of euclidean spaces. �

The following important result goes back to Cartan and is also known as
Closed Subgroup Theorem in english literature. It can for example be found
in [11] III.2.33. Satz

Proposition I.2.6 (Closed Subgroup Theorem): Let G be a Lie group and
let H be a subgroup of G. Then H is a Lie group with respect to the induced
topology if and only if H is closed in G.

Remark I.2.7: Since all the definitions up to this point were made for topo-
logical groups that are at the same time real smooth manifolds, we have to

6



3. Compactness of the unitary groups

think about Gln(C) for a second. For a natural number n, we embed Gln(C)
into Gl2n(R) by sending an invertible matrix A = (aij)1≤i≤n to the block
matrix (ρ(aij))1≤i≤n ∈ Gl2n(R), where ρ is the homomorphism of rings

ρ : C −→M2(R), a+ ib 7−→
(
a −b
b a

)
.

An invertible matrix in Gln(C) gets sent to an invertible matrix in M2n(R),
because any matrix in Gln(C) is conjugated to a matrix in Jordan normal
form without zero-entries on the diagonal and the determinant of a block
matrix is the product of the determinants of the diagonal blocks.

Since convergence is precisely componentwise convergence, this subgroup of
Gl2n(R) is furthermore closed. Hence, using the Closed Subgroup Theorem,
we can view Gln(C) as a Lie group.

3. Compactness of the unitary groups
Recall that for a natural number n, the sets

On := {A ∈ Gln(R) | AAt = AtA = In},
Un := {A ∈ Gln(C) | AA† = A†A = In}

are called the orthogonal and the unitary group. These are indeed groups
with the multiplication of matrices and it can be shown that they consist
precisely of the structure preserving maps of the Hilbert spaces Kn, i.e., linear
isometries. For further details, see Corollary A.4.15.

Lemma I.3.1: The map

f : Mn(K) −→Mn(K), A 7−→ A†,

sending a matrix A to its hermitian transpose, is continuous with respect to
the topology induced by ‖·‖op.

Proof: Let (An)n∈N be a sequence in Mn(K) with limit A ∈ Mn(K). Then
(A†n)ij = [(An)ji ]∗ → [Aji ]∗ = (A†)ij. �

Proposition I.3.2: Let n be a natural number. Then, the groups On ⊆Mn(R)
and Un ⊆Mn(C) are compact and hence, in particular, matrix Lie groups.

7



Chapter I. Matrix groups

Proof: We only give the proof for Un, for On the same arguments go through.
The map f : Mn(K) → Mn(K), A 7→ A†A is continuous, since the ma-

trix multiplication and the map mapping A to its hermitian transpose are
continuous. We have Un = f−1({In}), i.e., Un is closed.

For A ∈ Un and x ∈ Kn we have ‖Ax‖ = ‖x‖, i.e., ‖A‖op = 1 and thus, Un
is bounded. Hence, by Heine-Borel, Un is compact. �

4. Unitary representations
Reminder I.4.1: Let n be a natural number and let H = Cn be equipped
with the canonical basis {e1, . . . , en}. For a multi-index i = (i1, . . . , im) ∈ Imn ,
we put ei := ei1 ⊗ · · · ⊗ eim . The set {ei | i ∈ Imn } forms a basis of the
algebraic tensor product Tm(H) := ⊗m

i=1H. As a finite-dimensional K-vector
space, Tm(H) is a Hilbert space, too. The inner product from Remark B.5.1
in this case reads

(ξ|η)Tm(H) =
( ∑
i∈Imn

ξiei

∣∣∣∣ ∑
j∈Imn

ηjej

)
Tm(H)

=
∑
i∈Imn

ξi(ηi)∗.

Definition I.4.2 (Unitary representation): Let H be a Hilbert space over K,
let B(H) denote the set of bounded linear operators on H and U(H) denote
the subset of unitary operators on H. Furthermore let G be a locally compact
group. If π : G→ U(H) is a weakly continuous homomorphism, π is called a
unitary representation of G on H.

The groups we consider meet the requirements for unitary representations.
To see this, note that open and closed subsets of locally compact Hausdorff
spaces are locally compact with respect to the subspace topology. Since
Gln(C) is a smooth manifold, Un is, in particular, locally compact.

Proposition I.4.3: Let n be a natural number, let H = Cn and let G ⊆ Un be
an open or closed subgroup. Then, for every non-negative integer m, the map

π(G,m) : G −→ B(Tm(H)), g 7−→ Tm(g) := g⊗m

is a unitary representation of G on B(Tm(H)).
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4. Unitary representations

Proof: For the unitarity, let g ∈ G. Since G ⊆ Un, we have (gξ|gη) = (ξ|η)
for all ξ, η ∈ H. For ξ = ∑

i∈Imn ξ
iei and η = ∑

j∈Imn η
jej in Tm(H), we have

(Tm(g)(ξ)|Tm(g)(η))Tm(H) =
(
Tm(g)

( ∑
i∈Imn

ξiei
)∣∣∣∣Tm(g)

( ∑
j∈Imn

ηjej
))

Tm(H)

=
∑
i∈Imn

∑
j∈Imn

ξi(ηj)∗(Tm(g)(ei)|Tm(g)(ej))Tm(H)

=
∑
i∈Imn

∑
j∈Imn

ξi(ηj)∗
m∏
k=1

(g(eik)|g(ejk))

=
∑
i∈Imn

∑
j∈Imn

ξi(ηj)∗
m∏
k=1

(eik |ejk)

=
∑
i∈Imn

∑
j∈Imn

ξi(ηj)∗(ei|ej)Tm(H) = (ξ|η)Tm(H),

i.e., in fact π(G,m) : G→ U(Tm(H)).
To see that π is a homomorphism, let g and h ∈ G. Then

π(G,m)(gh)(ξ) = Tm(gh)
( ∑
i∈Imn

ξiei
)

=
∑
i∈Imn

ξiTm(gh)(ei)

=
∑
i∈Imn

ξi(gh)(ei1)⊗ · · · ⊗ (gh)(eim)

=
∑
i∈Imn

ξiTm(g)(hei1 ⊗ · · · ⊗ heim)

=
∑
i∈Imn

Tm(g)
(
Tm(h)(ξiei)

)
= π(G,m)(g)π(G,m)(h)(ξ).

Finally, for the continuity of π(G,m) with respect to the weak operator
topology on B(Tm(H)), let (gn)n∈N be a sequence in G with limit g, i.e.,
(gnξ|η)→ (gξ|η) for all ξ, η ∈ H, and let ε > 0 be given. We have to see that
(π(G,m)(gn)ξ|η)Tm(H) → (π(G,m)(g)ξ|η)Tm(H) for all ξ, η ∈ Tm(H).

For ξ = ∑
i∈Imn ξ

iei and η = ∑
j∈Imn η

jej in Tm(H) and some natural number
n, we can expand

|(Tm(gn)ξ|η)Tm(H) − (Tm(g)ξ|η)Tm(H)|

=
∣∣∣∣ ∑
i∈Imn

∑
j∈Imn

ξi(ηj)∗
m∏
k=1

(
(gn − g)eik

∣∣∣ejk)∣∣∣∣.

9



Chapter I. Matrix groups

Put α := ∑
i∈Imn

∑
j∈Imn |ξ

i(ηj)∗|.
As by assumption we have ((gn − g)eik |ejk) → 0 for each 1 ≤ k ≤ m,

we find natural numbers Nk such that |((gnk − g)eik |ejk)| < (ε/α)1/m for all
nk ≥ Nk. For N := max{Nk | 1 ≤ k ≤ m} we thus, using the triangular
inequality for |·|, find that

∣∣∣∣ ∑
i∈Imn

∑
j∈Imn

ξi(ηj)∗
m∏
k=1

(
(gn − g)eik

∣∣∣ejk)∣∣∣∣ < α
m∏
k=1

(
ε

α

) 1
m

= ε

for all n ≥ N which we wanted to show. �
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Chapter II.

Compact matrix quantum groups

In 1987, Woronowicz [24] introduced the notion of a “compact matrix pseudo
group”, later renamed to compact matrix quantum group. This notion gen-
eralises the notion of a compact matrix group. The starting point for this
notion is the algebra of continuous functions on a compact matrix group,
which can be supplied with a rich structure. Dropping “the commutativity
condition” yields a new object, which is not a group anymore: a so-called
compact matrix quantum group.
Later, in 1995, this approach was carried out [25] on the notion of a

compact group as well, leading new objects called compact quantum groups
that generalise compact matrix quantum groups.
This chapter is dedicated to familiarising with those two notions, and to

do so, we take a small detour to coalgebras, bialgebras and Hopf algebras;
objects that appear in many branches of modern pure mathematics. For the
most part, the presentation follows [18].
For this chapter, section 3 of Appendix A and the sections 3, 4, 5, 6 of

Appendix A should be helpful.

1. Coalgebras
Reminder II.1.1 (Algebra): Let k be a field and (A,+, ·) be a k-vector space.
If there is a bilinear multiplication

• : A× A −→ A,

such that (A,+, •) forms a unital ring, the tuple (A,+, ·, •) is called an
algebra over k or k-algebra.

11



Chapter II. Compact matrix quantum groups

The bilinearity of “•” from Reminder II.1.1 is precisely the requirement
that “•” is compatible with the addition and scalar multiplication on A in
the sense that we have distributivity from the left and right.
If, on the one hand, we start with a unital algebra (A,+, ·, •), by the

universal property of the tensor product A⊗k A, there is one and only one
linear map m : A⊗k A→ A that renders commutative the following diagram:

A× A A⊗k A

A

τ

•
m

Given an element a ∈ A, it is easy to check that the map

ηa : k −→ A, λ 7−→ λa

is linear. Furthermore, the map ηa allows the recovery of a, as ηa(1) = a. If
we define η := η1, we can express that A is a unital ring via the commutative
diagrams

A⊗k A

k ⊗k A A

m

∼=

η⊗id

A⊗k A

A⊗k k A

m

∼=

id⊗η

Finally, we can capture the associativity of m : A ⊗k A → A by the
commutative diagram

A⊗k A⊗k A

A⊗k A A⊗k A

A

m⊗id id⊗m

m m

If on the other hand we have a k-vector space A with linear maps η : k → A,
m : A⊗k A→ A that render the above diagrams commutative, one can check
that in fact A is a k-algebra. Thus, in this spirit, we also write (A,mA, ηA)
for the k-Algebra (A,+, ·, •).

“Reversing the arrows” in the above commutative diagrams is what we do
to define a coalgebra over k.

12



1. Coalgebras

Definition II.1.2 (Coalgebra): Let (C,+, ·) be a vector space over the field
k. If there are linear maps ∆: C → C ⊗k C and ε : C → k that satisfy

(i) (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(ii) (ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆

we call the tuple (C,+, ·,∆, ε) a coalgebra over k. We will often just write
(C,∆, ε), when addition and scalar multiplication are clear from context. The
map ∆ is called comultiplication, the map ε is called the counit.

Coalgebras are sometimes refered to as “cogebras”, see [6], III.§11.1.

Example II.1.3 (of Coalgebras): Let k be a field.

(i) The field k has a coalgebra structure determined by ∆k(1) := 1 ⊗ 1,
εk(1) := 1. This coalgebra structure is unique.

(ii) Let ∅ 6= S be a set. The k-vector space kS := {∑s∈S λ(s)s | λ ∈ k(S)}
is made into a coalgebra over k by the maps

∆: kS −→ kS ⊗k kS,
∑
s∈S

λ(s)s 7−→
∑
s∈S

λ(s)s⊗ s,

ε : kS −→ k,
∑
s∈S

λ(s)s 7−→ 1.

This coalgebra is called the set coalgebra.

(iii) Consider the k-vector space V := kn×n equipped with the canonical
basis {Ei

j | 1 ≤ i, j ≤ n}, where Ei,j := (δi,kδj,`)1≤k,`≤n. With the maps ∆, ε
defined via linear extension of

∆(Ei
j) :=

n∑
k=1

Ei
k ⊗ Ek

j , ε(Ei
j) := δi,j,

V turns into a coalgebra over k, the so-called matrix coalgebra. We denote
M c

n(k) := (V,∆, ε).
The comultiplication and counit as given above are the most natural, i.e.,

the dual maps to matrix multiplication and the map sending λ ∈ K to λIn.
Thus, (V,∆, ε) is precisely the dual coalgebra of Mn(k), see Proposition II.1.5.
For the assertion, see [18] Example 2.1.15, for a proof of this, check [14],
Example 2.25.

13



Chapter II. Compact matrix quantum groups

As with associative laws of composition, coassociativity implies general
coassociativity. This requires, just as for associative laws of composition, a
rather tricky proof; for example one can show this via induction over two
parameters. Essentially, one has to show that for any natural number n, the
maps

∆(n,k) := id⊗(k−1) ⊗∆⊗ id⊗(n−k−1) (k ∈ Nn)
coincide. We will denote this map with ∆n.

When working with coalgebras, a handy notation for the comultiplication
is in use: Given a coalgebra (C,∆, ε) over k and c ∈ C, we can express
∆(c) ∈ C ⊗k C as a finite sum ∆(c) = ∑

i ci(1)⊗ ci(2) with some ci(1), ci(2) ∈ C.
Often, the summation and the enumerating indices of c(1), c(2) are omitted,
so ∆(c) = c(1) ⊗ c(2). This notation is the so-called Sweedler-notation. In the
Sweedler-notation, coassociativity and counit axioms read

c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2) ⊗ c(3),

ε(c(1))c(2) = c = c(1)ε(c(2)).

To comfortably use the Sweedler-notation for simplifying calculations, one
has to think about the following assertions:

(i) For all natural numbers n ≥ 2, it holds ∆n = (∆⊗ id) ◦∆n−1,
(ii) For any natural number n, any i ∈ Nn−1 and m ∈ Nn−i ∪ {0} it holds

∆n = (id⊗m ⊗∆i ⊗ id⊗(n−i−m)) ◦∆n−i,

see [18], Chapter 2, Section 1. For a detailed proof, see [14], Lemma 2.12.
To find the correct notion for a structure preserving map between coalgebras,

we proceed similarly as before and express the properties of homomorphisms
between algebras in commutative diagrams: For k-algebras (A,mA, ηA) and
(B,mB, ηB), a linear map f : A→ B which renders commutative the diagrams

A⊗k A B ⊗k B

A B

mA

f⊗f

mB

f

k

A B

ηA ηB

f

is called a homomorphism of algebras.

Definition II.1.4 (Coalgebra map): Let (C,∆C , εC) and (D,∆D, εD) be coal-
gebras over the field k. A linear map f : C → D with the properties

14



2. Tensor products of algebras and coalgebras

(i) ∆D ◦ f = (f ⊗ f) ◦∆C ,
(ii) εD ◦ f = εC

is called a coalgebra map or homomorphism of coalgebras.

In Sweedler-notation, the properties of a coalgebra map read

f(c)(1) ⊗ f(c)(2) = f(c(1))⊗ f(c(2)), εD(f(c)) = εC(c).

That the chosen definitions are what we wanted them to be can be seen by
the following proposition:

Proposition II.1.5: Let (C,∆C , εC) be a coalgebra over the field k. Then the
maps ∆: C → C ⊗k C and ε : C → k define dual maps m : C∗ ⊗ C∗ → C∗

and η : k → C∗ that evaluate

m(φ, ψ)(c) = φ(c(1))ψ(c(2)), η(λ)(c) = λε(c)

for φ, ψ ∈ C∗, c ∈ C and λ ∈ k. The coassociativity of ∆ and the counit
axioms for ε are precisely what turns (C∗,m, η) into an algebra over k.

Conversely, if (A,m, η) is a finite-dimensional algebra over k, (A∗,m∗, η∗)
is a coalgebra over k.

The proof of this important statement is elementary and merely requires
going through the diagrams.

The alert reader will have noticed that actually, the dual map of ∆ should
be ∆∗ : (C ⊗k C)∗ → C∗ — here it is crucial that we can regard (C ⊗k C)∗
as a subspace of C∗ ⊗k C∗ (see Remark A.3.11) and we mean the restriction
m := ∆∗|ι(C⊗kC)∗ . This fact causes problems for infinite-dimensional algebras
whose dual space in general cannot be supplied with a coalgebra structure
so easily. Here one has to restrict to a special subspace of the dual to make
ends meet. For finite-dimensional algebras A, it holds A∗ ⊗k A∗ ∼= (A⊗k A)∗
so that we can go the other way (making identifications), too.

2. Tensor products of algebras and coalgebras
In this section, we see how to give tensor products of algebras and coalgebras
a natural algebra respectively coalgebra structure. This natural structure
will be important for the definition of a bialgebra.
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Chapter II. Compact matrix quantum groups

Let (A,mA, ηA) and (B,mB, ηB) be algebras over k. As a k-vector space,
the tensor product A⊗k B makes sense and turns into a k-algebra itself with
the multiplication

• : A⊗k B × A⊗k B −→ A⊗k B,( n∑
i=1

ai ⊗ bi,
m∑
j=1

a′j ⊗ b′j
)
7−→

n∑
i=1

m∑
j=1

mA(ai, a′j)⊗mB(bi, b′j),

or equivalently, with the composition • of the following maps:

A⊗k B ⊗k A⊗k B A⊗k A⊗k B ⊗k B A⊗k B.
id⊗τ⊗id mA⊗mB (II.1)

Here τ denotes the so-called twist map τ : A⊗kB → B⊗kA, defined by linear
extension of a⊗ b 7→ b⊗ a for a ∈ A and b ∈ B, which is an isomorphism of
vector spaces over k.

If we start with coalgebras (C,∆C , εC) and (D,∆D, εD) over k, we can
equip the vector space tensor product C ⊗k D with a natural coalgebra
structure via the comultiplication ∆C⊗D defined as the composition

C ⊗k D C ⊗k C ⊗k D ⊗k D C ⊗k D ⊗k C ⊗k D
∆C⊗∆D id⊗τ⊗id (II.2)

and the counit εC⊗D := εC ⊗ εD : k ⊗k k ∼= k → C ⊗k D.
Let ϕ := id⊗ id⊗ τ ⊗ id⊗ id and ψ := id⊗ τ ⊗ τ ⊗ id. When proving that

∆C⊗D is coassociative, we just need the isomorphism of vector spaces

ϕ ◦ ψ : C ⊗k D ⊗k C ⊗k D ⊗k C ⊗k D −→ C ⊗k C ⊗k C ⊗k D ⊗k D ⊗k D

to identify

c(1) ⊗ d(1) ⊗ c(2)(1) ⊗ d(2)(1) ⊗ c(2)(2) ⊗ d(2)(2)

= c(1)(1) ⊗ d(1)(1) ⊗ c(1)(2) ⊗ d(1)(2) ⊗ c(2) ⊗ d(2),

then the coassociativity of ∆C⊗D follows from the coassociativity of ∆C

respectively ∆D. Everything else is straight forward computation.
Also straight forward is checking that if f : C → C ′ and g : D → D′ are

coalgebra maps, then f ⊗ g : C ⊗k D → C ′ ⊗D′ (where both vector spaces
are equipped with the natural coalgebra structures) is a coalgebra map, too.
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3. Bialgebras and Hopf algebras

3. Bialgebras and Hopf algebras
Lemma II.3.1: Let A be a vector space over the field k, let mA : A⊗k A→ A
and ηA : k → A be k-linear maps that make A an algebra over k and let
∆A : A→ A⊗k A and εA : A→ k be k-linear maps that make A a coalgebra
over k. Furthermore, k be equipped with its unique coalgebra structure and
A⊗k A be equipped with the natural algebra and coalgebra structures. Then,
the following are equivalent:

(i) mA and ηA are coalgebra maps,
(ii) ∆A and εA are algebra maps.

Proof: We only show “(i) ⇒ (ii)”, the other implication is proven similarly.
Suppose mA and ηA are coalgebra maps, i.e.,

(∆A ◦mA) = (mA ⊗mA) ◦∆A⊗A, εA ◦mA = εA⊗A,

∆A ◦ ηA = (ηA ⊗ ηA) ◦∆k, εA ◦ ηA = εk.

Plugging in suitable elements yields that this means for all a, b ∈ A that
∆A(ab) = ∆A(a)∆A(b), ∆A(α1A) = α1A ⊗ 1A and εA(ab) = εA(a)εA(b),
εA(α1A ⊗ 1A) = α, i.e., what we wanted to show. �

Definition II.3.2 (Bialgebra): Let A be a vector space over the field k with
maps m, η, ∆ and ε such that (A,m, η) is a algebra over k and (A,∆, ε) is a
coalgebra over k. If either of the statements of Lemma II.3.1 holds true, then
(A,m, η,∆, ε) is called a bialgebra over k.

Unsurprisingly, a linear map f : (C,mC , ηC ,∆C , εC)→ (D,mD, ηD,∆D, εD)
between bialgebras is called a homomorphism of bialgebras, if f is both an
algebra and a bialgebra map. If a bialgebra map f : C → D is invertible as a
linear map, f is called an isomorphism of bialgebras.

Remark II.3.3 (Convolution algebra): Let (A, η,m) be an algebra over k
and let (C,∆, ε) be a coalgebra over the field k. Then, Homk(C,A) turns
into an algebra over k with the product

f ? g := m ◦ (f ⊗ g) ◦∆,

where f, g ∈ Homk(C,A), and has the unit η ◦ ε. In Sweedler-notation, the
product reads (f ? g)(c) = f(c(1))g(c(1)).

Note that if A = k, then Homk(C,A) = C∗ is the dual algebra of C and if
k = C, then Homk(C,A) ∼= A.
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Chapter II. Compact matrix quantum groups

If f : C → D is a coalgebra map and ϕ : A → B is an algebra map, the
maps

f ∗ : Homk(D,A) −→ Homk(C,A), ψ 7−→ ψ ◦ f,
ϕ∗ : Homk(C,A) −→ Homk(C,B), ψ 7−→ ϕ ◦ ψ

are algebra maps.

Definition II.3.4 (Hopf algebra): Let (A,m, η,∆, ε) be a bialgebra over the
field k. If idA has a convolution inverse S in the convolution algebra Endk(A),
i.e., S ? idA = idA ? S = η ◦ ε, then (A,m, η,∆, ε, S) is called a Hopf algebra
over k. The map S is called antipode.

Remark II.3.5: Let (A,m, η,∆, ε, S) be a Hopf algebra over the field k. Be-
cause S is the convolution inverse of idA, for all a ∈ A it holds

S(a(1))a(2) = ε(a)1A = a(1)S(a(2)).

Since Endk(A) together with the involution product is an algebra, the antipode
is unique.

The antipode is an antialgebra map and an anticoalgebra map, i.e., for all
a, b ∈ A it holds

(i) S(ab) = S(b)S(a), S(1) = 1,
(ii) S ⊗ S ◦∆(a) = τ ◦∆ ◦ S(h), (ε ◦ S)(a) = ε(a).

A proof of this can be found in [16] Proposition 1.3.1.

Example II.3.6 (Function algebra of finite group): Let G be a finite group,
let eG denote its neutral element and let k be a field. On the vector space
kG = {ϕ : G→ k}, we may introduce an algebra structure via the point-wise
laws of composition, i.e., for ϕ, ψ ∈ kG, α ∈ k and g ∈ G, we define

(ϕ+ψ)(g) := ϕ(g)+ψ(g), (αϕ)(g) := αϕ(g), (ϕ·ψ)(g) := ϕ(p)·ψ(g).

Furthermore, we can introduce a coalgebra structure by virtue of

∆(ϕ)(g, h) := ϕ(gh), ε(ϕ) := ϕ(eG).

Those two structures are compatible, i.e., (kG, µ, η,∆, ε) is a bialgebra. Finally,
S(ϕ)(g) := ϕ(g−1) declares an antipode on kG, rendering kG a Hopf algebra
over k.
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4. Compact matrix quantum groups

Denoting by δg the map defined via δg(h) := δg,h, we obtain a basis
{δg | g ∈ G} of kG. Using this basis, we can express the aforementioned maps
in coordinates:

∆(δg) =
∑

(h1,h2)∈G2

h1h2=g

δh1 ⊗ δh2 , ε(δg) = δg,eG , S(δg) = δg−1 .

This construction uses the identification kG×G ∼= kG⊗ kG, which fails when
G is not finite.

4. Compact matrix quantum groups
Example II.4.1: Let G ⊆ Un be a closed subgroup. Then G is compact since
Un is compact (see Proposition I.3.2). Hence, the algebra of continuous
functions C(G) := {ϕ : G → C continuous} endowed with the supremum
norm and the involution defined via

∗ : C(G) −→ C(G),
(ϕ : G→ C, g 7→ ϕ(g)) 7−→ (ϕ∗ : G→ C, g 7→ ϕ(g)∗)

is in fact a C∗-algebra. That (C(G), ‖·‖∞) is a Banach algebra is a standard
result shown in a regular course on analysis, for a proof see for example [22],
Satz 1.23. The rest is easily checked.
The coordinate functions uij : G → C, A 7→ Aij belong to the algebra of

continuous functions C(G), since convergence in G is precisely componentwise
convergence. Furthermore, by a Stone-Weierstraß-argument, they generate
C(G).
Using the identification C(G)⊗C C(G) ∼= C(G×G), by virtue of

C(G)⊗ C(G) −→ C(G×G), f ⊗ g 7−→
(
(s, t) 7→ f(s)g(t)

)
,

we declare a comultiplication ∆ on C(G) via

∆: C(G) −→ C(G×G), ϕ 7−→ (∆(ϕ) : G×G→ C, (A,B) 7→ ϕ(AB)).

As the coordinate functions uij generate C(G), it is sufficient to check what
∆ does on these: For (i, j) ∈ {1, . . . , n}2 and matrices A,B ∈ G, it holds

∆(uij)(A,B) = uij(AB) =
n∑
k=1

AikB
k
j ,
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Chapter II. Compact matrix quantum groups

hence ∆(uij) = ∑n
k=1 u

i
ku

k
j , which corresponds to ∑n

k=1 u
i
k⊗ukj . Note that this

is precisely the dualised matrix multiplication of Example II.1.3.
Writing the coordinate functions into a matrix U = (uij) ∈Mn(C(G)), we

obtain an invertible matrix in Mn(C(G)), because U∗U t = (UU †)∗ = In. To
see this, note that (U∗U t)ij = ∑n

k=1(uik)∗u
j
k and, since G ⊆ Un, for any A ∈ G

it holds ( n∑
k=1

(uik)∗u
j
k

)
(A) =

n∑
k=1

(Aik)∗A
j
k = δi,j = (1(A))ij,

where 1 denotes the function 1: G→Mn(C(G)), A 7→ diag(1, . . . , 1).

This is the principal example that led to the notion of a compact matrix
quantum group. Abstracting from this example and “dropping the commuta-
tivity condition”, we come up with the following definition:

Definition II.4.2 (Compact matrix quantum group): Let n ∈ N and let A
be the C∗-algebra generated by n2 elements uij, where 1 ≤ i, j ≤ n. If the
matrices U = (uij)1≤i,j≤n and Ū = (uij

∗)1≤i,j≤n are invertible in Mn(A) and
the map

∆: A −→ A⊗min A, uij 7−→
n∑
k=1

uik ⊗ ukj

is a ∗-homomorphism, the tuple (A,U) is called a compact matrix quantum
group.

This definition is due to Woronowicz, the founder of the theory of compact
quantum groups. At first, he called such objects “compact matrix pseudo
groups”, see [24] later, the term compact matrix quantum group has been
agreed upon.
Abstracting even further, we carry out this process on compact groups,

too. This leads to the notion of a compact quantum group, see [25]

Definition II.4.3 (Compact quantum group): Let A be a separable unital
C∗-algebra and ∆: A→ A⊗min A be a unital ∗-homomorphism. If it holds

(i) The homomorphism ∆ is coassociative, i.e., (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,
(ii) The sets

{((b⊗ 1A) ◦∆)(c) | b, c ∈ A}, {((1A ⊗ b) ◦∆)(c) | b, c ∈ A}

are linearly dense in A⊗min A,

then (A,∆) is called a compact quantum group.
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4. Compact matrix quantum groups

The notion of a compact quantum group indeed generalises that of a
compact matrix quantum group, see [21], Proposition 6.1.4.
The “compactness” in the name compact quantum group is due to the

development of the notion as a generalisation of a compact topological group.
Due to the famous Gelfand-Naimark theorem, we can go the other way as
well, more precisely: If we start with a commutative unital C∗-algebra and a
comultiplication ∆: A→ A⊗minA, we can recover a compact group from it
in the following way:

Proposition II.4.4: Let A be a commutative unital C∗-algebra together with
a comultiplication ∆: A → A ⊗min A rendering the pair (A,∆) a compact
quantum group. Then, A is isomorphic to the C∗-algebra of complex-valued,
continuous functions C(G) over some compact Hausdorff topological group
G. The comultiplication, seen as a mapping ∆: C(G)→ C(G×G), is, for
f ∈ C(G) and g, h ∈ G, given by ∆(f)(g, h) = f(gh). The correspondence
of compact quantum groups (A,∆) and compact groups G is unique up to
equivalence.

This result can be found in [21], Proposition 5.1.4. A detailed proof of this
assertion can be found in [13], Proposition 2.1.2.
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Chapter III.

Easy groups

This chapter is dedicated to the central objects for this thesis: (unitary) easy
groups. Those are compact matrix groups G ⊆ Gln(K) with Sn ⊆ G ⊆ On

respectively Sn ⊆ G ⊆ Un, whose associated symmetric tensor categories
with duals are generated by linear maps associated to partitions of sets. The
orthogonal case was first treated by Banica and Speicher in 2009, see [5]; the
unitary case was treated by Tarrago and Weber in 2016, see [20].

The orthogonal easy groups and unitary easy groups are completely classi-
fied, this was done in the papers cited above. An open question in this field is,
how to classify non-easy groups, that is, compact matrix groups G ⊆ Gln(K)
with Sn ⊆ G ⊆ On respectively Sn ⊆ G ⊆ Un which are not easy.

The sections 3 and 4 of Appendix A and sections 3, 5 and 6 of Appendix B
should provide the means necessary to understand the content of this chapter.

1. Schur-Weyl duality
Let n be natural number and letH := Cn. For any non-negative integerm, the
group Un ⊆Mn(C) has a natural unitary representation πm : Un → B(Tm(H))
via

πm : Un −→ B(Tm(H)), g 7−→ g⊗m

and the symmetric group Sm operates on Tm(H) via linear extension of

ρm : Sm −→ B(Tm(H)), ρ(σ)(ei) := eiσ(1) ⊗ · · · ⊗ eiσ(m) =: eσ(i).

These two actions are quite compatible in the following sense: It holds
ρm(σ) ◦ πm(g) = πm(g) ◦ ρm(σ) for all σ ∈ Sm and g ∈ Un, since for
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Chapter III. Easy groups

ei ∈ Tm(H) we find

(ρm(σ) ◦ πm(g))(ei) = ρm(σ)(gei1 ⊗ · · · ⊗ geim)
= geiσ(1) ⊗ · · · ⊗ geiσ(m)

= πm(g)(eiσ(1) ⊗ · · · ⊗ eiσ(m)) = (πm(g) ◦ ρm(σ))(ei).

The statement of Schur-Weyl duality is that this is essentially everything
that commutes with ρ respectively π. More precisely, it holds

Lin(ρm(Sm)) = Lin(πm(Un))′, Lin(ρm(Sm))′ = Lin(πm(Un)),

where M ′ denotes the so-called commutant of M ⊆ B(Tm(H)), which is
defined as M ′ := {T ∈ B(Tm(H)) | TA = AT for all A ∈M}.
The above calculations show the inclusions Lin(ρm(Sm)) ⊆ Lin(πm(Un))′

and Lin(πm(Un)) ⊆ Lin(ρm(Sm))′, the other inclusions are by far out of reach
in the context of this thesis and need involved arguments from representation
theory. A proof can be found in [17], Chapter 9, Section 1.

The statement of classical Schur-Weyl duality can also be expressed in the
terminology developed in the following pages, see [20], Section 7.

For clarity, for the next few lines, we make a distinction between Sn and its
fundamental representation ρ(Sn). For the rest of this thesis, this distinction
does not play a role.

If, instead of Sn, we consider its fundamental representation ρ(Sn), we get
a different commutant, because the operation of the permutation matrices
on Cn is different to that of Sn on Cn (check Example IV.2.2(ii) for the
definition of the fundamental representation of Sn). Then, we have

Lin(ρ(Sn))′ = C[Pm(n)],

where Pm(n) is the so-called partition monoid, C[Pm(n)] is called partition
algebra and m is an indeterminate. This is in keeping with Theorem III.4.8.
Without going into too much detail, the idea is representation of partitions of
sets with 2n elements by suitable pictures, that is, diagrams with an upper
line of n points and a lower line of n points and lines joining those points
that belong to the same block of the partition.
As a generalisation of this, we will in the following do the same with

partitions of sets with k + ` elements and apply the same tools there.

2. Categories of partitions
In the spirit of the previous section, we want to assign to a partition of a set
with k + ` points a pictorial representation with an upper row of k points, a
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2. Categories of partitions

lower row of ` points and connecting lines joining elements of the same subset
of the partition.

Definition III.2.1 (Sets of partitions): Let k and ` be non-negative integers,
let {◦, •} be the set of the two colours black and white, let M ′ be the set
M ′ = {1, . . . , k, 1′, . . . , `′} and let M := M ′ × {◦, •}. The colours black
and white are called inverse to each other. Consider a subset S ⊆ M with
pM ′(S) = M ′ and #(S) = k + `, where pM ′ : M →M ′ denotes the projection
onto M .

A partition of S is a decomposition into pairwise disjoint non-empty subsets
of S, the so-called blocks of the partition. By P ◦•S (k, `) we denote the set of
partitions of S.
Let p ∈ P ◦•S (k, `) be a partition of S. Draw the points of S in two rows:

an upper row with k coloured points and a lower row with ` coloured points.
We associate to p a pictorial representation by joining the points that belong
to the same block with lines. If the lines can be drawn such that no two
different lines cross, the partition is said to be non-crossing.

By P ◦•(k, `) := ⋃
S⊆M P ◦•(k, `) we denote the set of coloured partitions of

coloured sets S with k + ` points, where S ⊆M fulfils the requirements listed
above, and by P ◦• := ⋃

k∈N0

⋃
`∈N0 P

◦•(k, `), we denote the set of coloured
partitions.

Furthermore, by NC◦•(k, `) ⊆ P ◦•(k, `), we denote the set of non-crossing
partitions of coloured sets with k + ` points and by NC◦• ⊆ P ◦•, we denote
the set of non-crossing partitions.

Remark III.2.2: If in the situation of Definition III.2.1 we take S ⊆M with
p{◦,•}(S) = {◦} or p{◦,•}(S) = {•}, we end up with the same notion of partition
as given in [5], Definition 1.5. Such partitions are called non-coloured.

Example III.2.3: Let k = 4, ` = 3 and consider the sets

S = {(1, ◦), (2, ◦), (3, •), (4, ◦), (1′, •), (2′, ◦), (3′, •)},
S ′ = {(1, ◦), (2, •), (3, •), (4, ◦), (1′, •), (2′, ◦), (3′, ◦)}.

Let p = {(1, ◦), (2, ◦)}, {(1′, •), (2′, ◦)}, {(3, •), (4◦), (3′, •)} ∈ P ◦•S (4, 3) and
p′ = {(1, ◦), (2′, ◦)}, {(1′, •), (2, •)}, {(3, •), (4, ◦)}, {(3′, ◦)} ∈ P ◦•S′ (4, 3). To
these partitions, the pictures

p = and p′ =
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Chapter III. Easy groups

are associated. From those pictures, we can immediately tell that p ∈ NC◦•
and that p′ ∈ P ◦• −NC◦•.

Definition III.2.4 (Operations on the set of partitions): Let k, `, m and n
be non-negative integers.

(i) Let p ∈ P ◦•(k, `) and q ∈ P ◦•(m,n). Horizontally concatenating p and
q gives rise to a partition p⊗ q ∈ P ◦•(k +m, `+ n), the tensor product
of p and q.

(ii) Let q ∈ P ◦•(k, `) and p ∈ P ◦•(`,m). If the ` lower points of q and the
` upper points of p are identically coloured, the vertical concatenation
(writing p under q and removing the ` middle points and eventual loops)
is called the composition pq ∈ P ◦•(k,m) of p and q.

(iii) Let p ∈ P ◦•(k, `). Reflecting p at the horizontal axis gives rise to a
partition p∗ ∈ P ◦•(`, k), the involution of p.

(iv) Let p ∈ P ◦•(k, `). Reflecting p at the vertical axis and inverting the
colours gives rise to a partition p̃ ∈ P ◦•(`, k), the verticolour reflection
of p.

(v) Given a partition p, shifting the leftmost- or rightmost point on the
upper- respectively lower line to the lower- respectively upper line and
inverting this points colour yields a new partition, a rotated version of
p.

Example III.2.5 (Composition of partitions): Let k = 2, ` = 3 and consider
the non-coloured partitions p = {1, 5}, {4}, {2, 4} ∈ P (3, 2) and q = {1, 4},
{2}, {3, 5} ∈ P (2, 3). Then we have the pictorial representations

p = and q =

We will use those partitions to illustrate the operations on partitions.

(i) Tensor products: The tensor products p⊗ q respectively q ⊗ p are

p⊗ q = and q ⊗ p =
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2. Categories of partitions

(ii) Composition of partitions: We find

pq = and qp =

Note the removal of the “isolated block on the center line” in the composition
qp.

(iii) Involution: For the partition p from Example III.2.3, the involution
looks like this:

p = and p∗ =

(iv) Verticolour reflection: For the same partition p, verticolour reflection
yields the picture

p = and p̃ =

(v) Rotation: If we take the partition p from Example III.2.3 and rotate
the rightmost point of the lower line to the upper line, we get a new partition
p′. In pictures:

p = and p′ =

The following definition stems from [20], Section 3.3.

Definition III.2.6 (Category of partitions): For non-negative integers k, `,
let C(k, `) ⊆ P ◦•(k, `) be subsets. If their union C = ⋃

k∈N0

⋃
`∈N0 C(k, `)

fulfils

(i) C is closed under the tensor product,
(ii) C is closed under composition,

(iii) C is closed under involution,
(iv) C contains , ∈ P ◦•(0, 2) and , ∈ P ◦•(1, 1),
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C is called a category of partitions.
We write C = 〈p1, . . . , pk〉, if C is the smallest category of partitions that

contains p1, . . . , pk ∈ P ◦• and call C the category generated by p1, . . . , pk. The
partitions and are usually omitted because they are always contained by
definition.

Remark III.2.7: Categories of partitions can be shown to be stable under
rotation and verticolour reflection, see [20], Section 3.3.

Definition III.2.8: Let C ⊆ P ◦• be a category of partitions. If ⊗ ∈ C,
then C is called globally coloured. Otherwise, C is called locally coloured.

The globally coloured case has been completely classified by Daniel Gro-
mada in 2018, see [9]. It “behaves similarly to the non-coloured case”, which
can also be seen later in Chapter 4.

3. Partition C∗-algebras
Definition III.3.1 (Adapted multi-indices to a partition): Let k and ` be
non-negative integers and let p ∈ P ◦•(k, `) be a partition. For multi-indices
i = (i1, . . . , ik) ∈ Ikn and j = (j1, . . . , j`) ∈ I`n, we attach the indices i1, . . . , ik
to the k upper points of p, the indices j1, . . . , j` to the ` lower points of p
standing to reason and define

δp(i, j) :=
1, if lines connecting blocks only join equal numbers,

0, else.

If δp(i, j) = 1, we call the pair (i, j) adapted to the partition p.

Note that in the situation of Definition III.3.1, the colourings of the points
of the underlying sets play no role.

Example III.3.2: Consider the partitions from Example III.2.3 and the multi-
indices i = (1, 1, 3, 3) ∈ I4

3 , j = (2, 2, 3) ∈ I3
3 . Attaching the indices to the

pictorial representations yields the pictures

1 1 3 3

2 2 3
and

1 1 3 3

2 2 3

Clearly, δp(i, j) = 1 and δp′(i, j) = 0.
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4. Tensor categories associated to matrix groups

Using the notion of adapted multi-indices to a partition, we can describe
what it should mean that generators of a universal C∗-algebra “fulfil the
relations of partition”:

Definition III.3.3: Let n be a natural number, let uij, where 1 ≤ i, j ≤ n, be
n2 elements and let C(uij|1 ≤ i, j ≤ n) be the C∗-algebra generated by the
elements uij.
Let furthermore p ∈ P ◦•(k, `) be a partition, r = (r1, . . . , rk) ∈ {◦, •}k

be the upper colour pattern of p and s = (s1, . . . , s`) ∈ {◦, •}` be the lower
colour pattern of p. Put (uij)• := (uij)∗, (uij)◦ := uij.
The generators uij fulfil the relation R(p), if for all multi-indices β ∈ I`n

and i ∈ Ikn it holds
∑
α∈Ikn

δp(α,β)(uα1
i1 )r1 · · · (uαkik )rk =

∑
j∈I`n

δp(i, j)(uβ1
j1 )s1 · · · (uβ`j` )s` .

If k = 0, the left-hand side of the above equation is δp(∅,β), if ` = 0, the
right-hand side of the above equation is δp(i,∅).

For a translation guide between pictorial representations of coloured parti-
tions and the corresponding relations, see [20], end of Section 4.

Definition III.3.4 (Easy quantum group): Let n be a natural number, let G
be a compact matrix quantum group and let C(G) be the universal unital
C∗-algebra generated by the elements uij, where 1 ≤ i, j ≤ n, such that U
and Ū are unitary.
If there is a set of partitions C0 ⊆ P ◦• such that

C(G) = C∗(uij, 1 ≤ i, j ≤ n | R(p)),

G is called easy. If, in addition, all uij are self-adjoint, then G is called
orthogonal easy.

4. Tensor categories associated to matrix groups
As established in Proposition I.4.3, a compact subgroup of On respectively
Un can, for each natural number m, be represented on Tm(Cn). Associated
to these representations are so-called intertwiners, and suitable collections
of those form vector spaces. This enables associating a symmetric tensor
category with duals to G. By Tannaka-Krein duality, such symmetric tensor
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categories with duals allow for the reconstruction of a closed subgroup of On

respectively Un.
We first carefully go through the orthogonal case and then treat the unitary

case, which only requires small modifications.
For Intertwiner spaces, we follow the definition given in [5], Definition 1.1.

Definition III.4.1 (Intertwiner spaces): Let n be a natural number, let k
and ` be non-negative integers and let G ⊆ On be a compact group. We
denote

MorG(k, `) := {ϕ ∈ Hom(T k(Cn), T `(Cn)) | ϕ ◦ T k(g) = T `(g) ◦ ϕ ∀ g ∈ G}.

For brevity, we denote Mor(k, `) := Hom(T k(Cn), T `(Cn)). By MorG we
denote the collection of intertwiner spaces MorG(k, `), where k, ` are non-
negative integers.

Proposition III.4.2: Let n be a natural number and let G ⊆ On be a com-
pact group. Then, the collection MorG of vector spaces MorG(k, `) forms a
symmetric tensor category with duals in the sense that it has the following
properties:

(i) If ϕ, ϕ′ ∈ MorG, then ϕ⊗ ϕ′ ∈ MorG,
(ii) If ϕ, ϕ′ ∈ MorG are composeable, then their composition belongs to

MorG,
(iii) If ϕ ∈ MorG, then ϕ∗ ∈ MorG,
(iv) The identity idCn belongs to MorG(2, 2),
(v) The twist map τ defined by τ(ξ ⊗ η) = η ⊗ ξ belongs to MorG(1, 1),

(vi) The map ξ = ∑n
i=1 ei ⊗ ei belongs to MorG(0, 2).

This result is taken from Banica and Speicher, see [5], Proposition 1.2.

Proof: In the following, let k, `,m and n be natural numbers.

(i) Let ϕ ∈ MorG(k, `) and ψ ∈ MorG(m,n). Then for their tensor product
it holds ϕ⊗ ψ ∈ MorG(k +m, `+ n), since for all g ∈ G we have

(ϕ⊗ ψ) ◦ T k+m(g) = ϕ ◦ T k(g)⊗ ψ ◦ Tm(g)
= T `(g) ◦ ϕ⊗ T n(g) ◦ ψ = T `+n(g) ◦ (ϕ⊗ ψ).

(ii) Let ϕ ∈ MorG(k, `) and ψ ∈ MorG(n,m). Then ψϕ ∈ MorG(k,m), as
for all g ∈ G it is

(ψ ◦ ϕ) ◦ T k(g) = ψ ◦ T `(g) ◦ ϕ = Tm(g) ◦ (ψ ◦ ϕ).
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4. Tensor categories associated to matrix groups

(iii) For ϕ ∈ MorG(k, `), we show ϕ† ∈ MorG(`, k). Then by Defini-
tion A.4.19, also ϕ∗ ∈ MorG. It holds

(ϕ ◦ T k(g))† = T k(g)† ◦ ϕ† = T k(g†) ◦ ϕ†

= ϕ† ◦ T `(g†) = ϕ† ◦ T `(g)† = (T `(g) ◦ ϕ)†,

what we wanted to see.
(iv) Clearly, for all g ∈ G and ξ ∈ Cn, we have idCn gξ = gξ = g idCn ξ.
(v) For g ∈ G and ei ⊗ ej it holds

τ ◦ T 2(g)(ei ⊗ ej) = τ(g(ei)⊗ g(ej))
= g(ej)⊗ g(ei) = T 2(g)(ej ⊗ ei) = T 2(g)(τ(ei ⊗ ej)).

(vi) Let g ∈ G. By the orthogonality of g, we know that the rows of g
form an orthonormal basis of Rn (see Corollary A.4.15). Hence,

T 2(g)(ξ) =
n∑
i=1

gei ⊗ gei

=
n∑
i=1

( n∑
j=1

gji ej

)
⊗
( n∑
k=1

gki ek

)

=
n∑
j=1

n∑
k=1

( n∑
i=1

gji g
k
i

)
ej ⊗ ek

=
n∑
j=1

n∑
k=1

(ggt)jkej ⊗ ek =
n∑
j=1

n∑
k=1

δj,kej ⊗ ek =
n∑
i=1

ei ⊗ ei = ξ,

which concludes the proof. �

What makes this construction interesting, is the following important asser-
tion (see Theorem 1.3 and Theorem 1.4 in [5]):

Theorem III.4.3: The construction G 7→ MorG induces a one-to-one corre-
spondence between compact subgroups G ⊆ On and symmetric tensor cate-
gories with duals Cx ⊆ C.

For homogenous groups, that is, groups G with Sn ⊆ G ⊆ On, this
assignment induces a one-to-one correspondence between homogenous groups
and subcategories of MorSn.

To deal with the unitary case, i.e., groups G with Sn ⊆ G ⊆ Un, we have
to modify the definition of an intertwiner in the following way:
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Definition III.4.4: Let k and ` be non-negative integers, let Sn ⊆ G ⊆ Un
be a compact group, let S be a coloured set with k + ` points and let
r = (r1, . . . , rk) ∈ {◦, •}k, s = (s1, . . . , s`) ∈ {◦, •}` be the colourings of the
upper respectively lower row of S. Let again g◦ := g, g• := g†.

A linear map ϕ : T k(Cn)→ T `(Cn) is called intertwiner, if for all g ∈ G it
holds

ϕ ◦ (gr1 ⊗ · · · ⊗ grk) = (gs1 ⊗ · · · ⊗ gs`) ◦ ϕ.
The set
MorSG(k, `) := {ϕ ∈ HomC(T k(Cn), T `(Cn)) | ϕ is intertwiner for G and S}
is called intertwiner space of G with respect to the colouring of S. Letting
M ′ = {1, . . . , k, 1′, . . . , `′}, M := M ′ × {◦, •} and

S = {S ⊆M | pM ′(S) = M ′ and #(S) = k + `},

we put MorG(k, `) := ⋃
S⊆S MorSG(k, `) and MorG := ⋃

k∈N0

⋃
`∈N0 MorG(k, `).

It is immediate that the collection of intertwiner spaces of a compact group
G, where Sn ⊆ G ⊆ Un, is a tensor category with duals and that this category
contains the generators , and any of their rotations.

Finding groups G with Sn ⊆ G ⊆ On respectively Sn ⊆ G ⊆ Un thus can
be done by finding suitable symmetric tensor categories with duals. Finding
well controllable tensor categories will be the strategy in the following.
Definition III.4.5: Let k and ` be natural numbers and let p ∈ P ◦•(k, `).
The map defined via linear extension of

Tp : T k(Cn) −→ T `(Cn), ei 7−→
∑
j∈I`n

δ(i, j)ej ,

where i ∈ Ikn, is called linear map associated to p.

Example III.4.6: Consider the partitions p and q

p = and q =

of Example III.2.5(i) and let n ∈ N. The associated linear maps are uniquely
determined by

Tp(ei ⊗ ej) =
∑
j∈I3

n

δp((i, j), j)ej1 ⊗ ej2 ⊗ ej3 =
n∑
k=1

ej ⊗ ek ⊗ ei,

Tq(ei ⊗ ej ⊗ e`) =
∑
j∈I2

n

δq((i, j, `), j)ej1 ⊗ ej2 = ei ⊗ e`.
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4. Tensor categories associated to matrix groups

For the linear maps associated to the composition pq and the composition
Tp ◦ Tq, we get

(Tp ◦ Tq)(ei ⊗ ej ⊗ e`) = Tp(ei ⊗ e`) =
n∑
k=1

e` ⊗ ek ⊗ ei,

(Tpq)(ei ⊗ ej ⊗ e`) =
n∑
k=1

e` ⊗ ek ⊗ ei,

and for the linear maps associated to the composition qp and for the compo-
sition Tq ◦ Tp, we obtain

(Tq ◦ Tp)(ei ⊗ ej) = Tq

( n∑
k=1

ej ⊗ ek ⊗ ei
)

=
n∑
i=1

ej ⊗ ei = n · (ej ⊗ ei),

Tqp(ei ⊗ ej) =
∑
j∈I2

n

δqp((i, j), j)ej = ej ⊗ ei.

This assignment of linear maps to partitions behaves well with the opera-
tions we already defined on partitions, see [5] Proposition 1.9.

Proposition III.4.7: Let p and q be partitions. Then, for their associated
linear maps, it holds:

(i) Tp⊗q = Tp ⊗ Tq,
(ii) Tpq = n−b(p,q)Tp ◦ Tq,

(iii) Tp∗ = T ∗p ,
(iv) For p ∈ { , , , } it holds Tp = idCn,
(v) For p = it holds Tp = τ ,

(vi) For p ∈ { , , } it holds Tp(1) = ξ.

Here, b(p, q) denotes the number of points that get erased from the mid-
dle line when forming pq, τ denotes the twist map and ξ is the map from
Proposition III.4.2.

Because we already saw such a case in Example III.4.6, we have an idea,
where the correction term n−b(p,q) comes from: Dropping the isolated block on
the center line in the composition qp creates the factor n1 in the evaluations
of Tqp. This has to be accounted for when comparing Tqp and Tq ◦ Tp.
As a result of Proposition III.4.7, we can describe the tensor category

associated to the symmetric group Sn:
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Theorem III.4.8: Let n be a natural number and let k and ` be non-negative
integers. Then,

MorSn(k, `) = Lin({Tp | p ∈ P (k, `)}),

hence MorSn consists of the linear span of linear maps associated to partitions.

5. Easy groups
Now, everything is in place to define what an easy group is; see [20], Definition
5.5.

Definition III.5.1 (Easy group): Let n be a natural number and let G be a
closed matrix group with Sn ⊆ G ⊆ Un. If there is a category of partitions
C ⊆ P ◦• such that ∈ C and such that for all non-negative integers k, `
and coloured sets S with upper colouring r ∈ {◦, •}k and lower colouring
s ∈ {◦, •}` it holds that MorSG(k, `) is spanned by all linear maps Tp, where
p ∈ C(k, `) and p has upper colouring according to r and lower colouring
according to s, then G is called unitary easy.
If C is a non-coloured category of partitions, it holds Sn ⊆ G ⊆ On and

the group G is called orthogonal easy.

This means: Easy groups can be recovered via Tannaka-Krein duality and
thus are closed subgroups of On respectively Un. Without the requirement
“ ∈ C”, this is precisely the definition of a easy quantum group. Here “the”
is justified because it is equivalent to the definition given in Definition III.3.4,
see [20], Lemma 5.6.

Theorem III.5.2 (Easy groups): Let n be a natural number. There are ex-
actly 6 easy groups, namely:

(i) The symmetric group Sn,
(ii) The group S′n = Z2 ×Sn,

(iii) The hyperoctahedral group Hn = Z2 oSn,
(iv) The bistochastic group Bn,
(v) The group B′n = Z2 ×Bn,

(vi) The orthogonal group On.

As a generalisation of the bistochastic group Bn, consisting of orthogonal
matrices with row and column sums equal to one, we denote by Cn the group
of unitary matrices with row and column sums equal to one.
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5. Easy groups

Theorem III.5.3 (Unitary easy groups): Let n be a natural number. The
unitary easy groups are the following:

(i) Ogrp,glob(k) : On × Zk, where k ∈ 2N0,
(ii) Ogrp,loc : Un,

(iii) Hgrp,glob(k) : (Z2 oSn)× Zk = Hn × Zk, where k ∈ 2N0,
(iv) Hgrp,loc(k, d) : (Zd oSn)× Zk, where d ∈ N0 − {1, 2} and k | d,
(v) Sgrp,glob(k) : Sn × Zk, where k ∈ N0,
(vi) Bgrp,glob(k) : Bn × Zk, where k ∈ 2N0,

(vii) Bgrp,loc(k) : Cn × Zk, where k ∈ N0.

The orthogonal easy groups were completely classified in 2009 by Banica
and Speicher, see Theorem 2.8 in [5], the unitary case was treated by Tarrago
and Weber in 2016, see Theorem 7.2 in [20].
The product “∼×” for the easy groups from Theorem III.5.3 is in fact the

usual direct product of groups, as Zk is a finite group and 0 ∈ G has finite
order, hence we omit the symbol here.

For k = 0, we put Z0 := {0}. This means that the orthogonal easy groups
reappear in the list above as special cases of unitary easy groups.

5.1. Categories corresponding to easy groups
The categories of partitions corresponding to the easy groups are

Orthogonal case Unitary case
Sn = 〈 , , 〉 Ogrp,glob(k) = 〈 ⊗nest(k/2), ⊗ , 〉
Z2 ×Sn = 〈 ⊗ , , 〉 Ogrp,loc = 〈 〉
Z2 oSn = 〈 , 〉 Hgrp,glob(k) = 〈bk, , ⊗ 〉, 〉
Bn = 〈 , 〉 Hgrp,loc(k, d) = 〈bk, bd ⊗ b̃d, , 〉
Z2 ×Bn = 〈 ⊗ , 〉 Sgrp,glob(k) = 〈 ⊗k, , ⊗ , ⊗ , 〉
On = 〈 〉 Bgrp,glob(k) = 〈 ⊗k, ⊗ , ⊗ , 〉

Bgrp,loc(k) = 〈 ⊗k, ⊗ , 〉

see [5] for the result, [13], Theorem 2.6.13, for the categories corresponding
to the orthogonal easy groups and [20], Theorem 7.2, for the result for the
unitary easy groups.
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Chapter IV.

A hands-on approach to easy
groups

In this chapter, we show that the (unitary) easy groups as classified by Banica
and Speicher respectively Tarrago and Weber allow a representation on K of
suitable dimension that fits the description provided through polynomials in
the matrix entries.
To be able to do this, we need to understand the occurring products of

groups and recall some basic facts on group representations. As for the
products involved, the wreath product is probably the one unfamiliar to the
reader.
Sections 1 and 3 of Appendix A and section 3 of Appendix B should be

helpful for this chapter.

1. Wreath products
The following section aims at understanding the law of composition on the
groups Zd oSn, where n and d are natural numbers. It is quite technical.

Recall that if (G, •) and (H, ?) are groups, X is a set and α : H ×X → X
is a group action of H on X, then this group action α induces a group
homomorphism α : H → AutGX , which gives rise to a group operation of H
on GX . The wreath product of G and H is the group

G oX H := GX oα H.

In literature, this product sometimes is called the unrestricted wreath product
[19], §34, Aufgabe 16, while G(X) oα H is called restricted wreath product or
just wreath product. For the groups in question in this thesis, this distinction
does not matter.
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Chapter IV. A hands-on approach to easy groups

For further details and a proof of the above assertion, see Appendix 1, in
particular Lemma A.1.11.
The key example of wreath products that appear in this thesis is the

following:

Example IV.1.1: Let n and d be natural numbers, let G = (Zd,+), X = Nn

and H = (Sn, ◦). In this setting, GX = {f : Nn → Zd}, which we can
identify with ∏n

i=1Zd by identifying the map f : Nn → Zd with the tuple
(f(1), . . . , f(n)) ∈ ∏n

i=1Zd. The group action α : Sn ×Nn → Nn induces the
maps

ασ :
n∏
i=1
Zd −→

n∏
i=1
Zd, (i1, . . . , in) 7−→ (iσ−1(1), . . . , iσ−1(n))

and the group homomorphism α : Sn → Aut(∏n
i=1Zd). The wreath product

Zd oNn Sn = (∏n
i=1Zd) oα Sn, which as a set is (∏n

i=1Zd) × Sn, has the
following law of composition:

((i1, . . . , in), σ) ? ((j1, . . . , jn), δ)
= ((i1, . . . , in) + (jσ−1(1), . . . , jσ−1(n)), σ ◦ δ).

2. Group representations
In this section, we collect all group representations necessary to carry out the
work of the following section.

Definition IV.2.1 (Group representation): Let G be a group and V be a
finite-dimensional vector space over the field k. A group homomorphism
ρ : G→ Gl(V ), where by Gl(V ) we mean the invertible linear endomorphisms
of V , is called a group representation of G on V . By abuse of language, if the
homomorphism ρ is clear from context, we refer to V as the representation.
If ρ is injective, the representation is called faithful. We call the dimension of
V the dimension of the representation ρ.
We call

ker ρ := {g ∈ G | ρ(g) = id}

the kernel of the representation ρ. The kernel of ρ is a normal subgroup of G.
If W ⊆ V is a linear subspace that is stable under ρ, i.e., ρ(g)W ⊆ W for

all g ∈ G, the map ρW : G→ Gl(W ) is called a subrepresentation of G on W .
If there is no non-trivial subrepresentation of G on V , ρ is called irreducible.
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2. Group representations

Example IV.2.2 (Some representations): (i) The map

ρ : C −→M2(R), x+ iy 7−→
(
x −y
y x

)

is a ring homomorphism and the restriction ρ′ := ρ|C× is a representation of
the multiplicative group of C on R2.
Since ρ is a ring homomorphism, its kernel ker ρ ⊆ C is an ideal, i.e.,

ker ρ = {0} or ker ρ = C since C is a field. As ρ is not the zero-map, ρ must
be injective. Hence ρ′ is a faithful representation.

Note that ρ is not surjective, which does not come as a surprise: Gl2(R) is
not commutative, but ρ(C) ⊆ Gl2(R) is; Gl2(R) has non-trivial zero-divisors,
but ρ(C) ⊆ Gl2(R) does not. In fact, the image of C under ρ is a sub ring of
Gln(R) that is even a field.

(ii) Let n be a natural number. Then

ρn : Sn −→ Gln(R), σ 7−→ Aσ−1 :=
(Aσ−1)ij = 1, if i = σ−1(j),

(Aσ−1)ij = 0, else,

is a representation of Sn, the so-called fundamental representation. It is a
faithful representation.

(iii) Let n be a natural number. Then

σn : Zn −→ C×, [j] 7−→ exp
(2πij

n

)

is an irreducible faithful representation of Zn. In fact, any of the n-th
roots of unity exp(2πi(j/n)), 1 ≤ j ≤ n, gives rise to an irreducible faithful
representation of Zn.

Lemma IV.2.3: Let G and H be groups, V and W be vector spaces over the
field k and ρ : G→ Gl(V ), σ : H → Gl(W ) be representations. Then

ρ⊗ σ : G×H −→ Gl(V ⊗k W ), (g, h) 7−→ ρ(g)⊗ σ(h)

is a representation of G×H on V ⊗k W .

Proof: Let (g1, h1) and (g2, h2) be elements of the direct product G × H.
Since ρ(gi), σ(hi) are in particular elements of End(V ), End(W ), their tensor
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products ρ(gi) ⊗ σ(hi) are elements of End(V ⊗k W ), which is an algebra.
We have

(ρ⊗ σ)(g1g2, h1h2) = ρ(g1g2)⊗ σ(h1h2)
= (ρ(g1) ◦ ρ(g2))⊗ (σ(h1) ◦ σ(h2))
= (ρ(g1)⊗ σ(h1)) ◦ (ρ(g2)⊗ σ(h2)),

i.e., ρ⊗ σ is a group homomorphism. As mentioned in Remark A.3.10, the
bijectivity of any ρ(g) and any σ(h), where g ∈ G and h ∈ H, enforces the
bijectivity of ρ(g)⊗ σ(h), thus ρ⊗ σ is well-defined. �

Example IV.2.4: Let G = Zd, H = Sn and let ρ, σ be the representations
of said groups from Example IV.2.2. Then

σ ⊗ ρ : G×H −→ Gln(C), (z, δ) 7−→ σ(z) · ρ(δ),

where we used the canonical identification C ⊗C V ∼= V for any C-vector
space V , i.e., images of tuples from G × H are just permutation matrices
multiplied by some d-th root of unity.

We already know the effect of taking the direct product of some matrix
group G and Zd, where d is a natural number. Because we understand the
law of composition of Zd oSn, the following statement is at least plausible:

Lemma IV.2.5: Let n and d be natural numbers. Then,

(Zd oSn) ∼= {A = diag(ξ1, . . . , ξn)ρ(σ) | σ ∈ Sn, ξi ∈ S1, ξdi = 1, 1 ≤ i ≤ d},

where ρ denotes the fundamental representation of Sn.

For a proof of this assertion, see [4], Proposition 2.1. The proof uses group
presentations, which exceeds the scope of this thesis. Lemma IV.2.5 tells us
that we can identify the group Zd oSn with the monomial matrices, whose
non-zero entries are d-th roots of unity.

3. Relations associated to easy groups
Since easy groups come about as commutative compact matrix quantum
groups, the description in terms of categories in [13], Theorem 2.6.13, re-
spectively [20] Section 4 gives rise to a description of the matrices contained
in a given easy group in terms of relations on the entries of these matrices.
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In the following, we will reproduce these relations (see [20], Section 4) and
give a direct proof that the easy groups as equal to the groups recovered via
Tannaka-Krein duality.

In the orthogonal case, the results presented here are no news. They are
already contained in [5], more precisely Proposition 2.4 of this paper. In the
unitary case, these are new considerations that cannot be found in existing
literature.

3.1. Orthogonal easy groups
Let n be a natural number. In the orthogonal case, the occurring relations
are

(R1) “ ”: ∑n
`=1 a

`
j = 1,

(R2) “ ”: aki akj = aika
j
k = 0, if i 6= j,

(R3) “ ⊗ ”: (∑n
`=1 a

`
j1) · (∑n

k=1 a
k
j2) = 1.

Here, indices that are no summation indices are to be understood as viable
choices, i.e., elements of {1, . . . , n}.
A matrix that fulfils (R2) is monomial, that is, contains at most one

non-zero entry per row and column.
As, by definition, and are contained in all categories of partitions, the

matrices considered are elements of On. Furthermore, because the orthogonal
easy groups are recovered via Tannaka-Krein duality, they are indeed groups
and thus contain the transpose (the inverse) of each matrix. Hence, (R1) and
(R3) are actually relations on row and column sums at the same time.

Using the above relations, the orthogonal easy groups can be characterised
as

Sn = {A = (aij) ∈ On |
∑n
`=1 a

`
j = 1, aki akj = aika

j
k = 0 if i 6= j}

Z2 ×Sn = {A = (aij) ∈ On | (
∑n
`=1 a

`
j1) · (∑n

k=1 a
k
j2) = 1,

aki a
k
j = aika

j
k = 0 if i 6= j}

Z2 oSn = {A = (aij) ∈ On | aki akj = aika
j
k = 0 if i 6= j}

Bn = {A = (aij) ∈ On |
∑n
`=1 a

`
j = 1}

Z2 ×Bn = {A = (aij) ∈ On | (
∑n
`=1 a

`
j1) · (∑n

k=1 a
k
j2) = 1}

For each orthogonal easy group that is not a matrix group to begin with,
we have a faithful n-dimensional representation on C and it is obvious that
matrices in the images of these representations fulfil the given relations. Also
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the other inclusions are immediate. Note that for Z2 oSn, the orthogonality
forces the monomial matrices to only have non-zero entries 1 or −1 and that
for Z2 ×Bn, the requirement that the square of each row sum equals one but
also products of pairs of different row sums equal one forces all row sums to
be either 1 or −1.

3.2. Unitary easy groups
Let n be a natural number. In the unitary case, the occurring relations are
the following:

(R1) “ ⊗nest(k/2)”: ai1j1 · · · a
ik/2
jk/2

= (ai1j1)∗ · · · (aik/2
jk/2

)∗,

(R2) “ ⊗ ”: (aij)∗ak` = aij(ak` )∗,
(R3) “ ”: aki (akj )∗ = aik(a

j
k)∗ = 0, if i 6= j,

(R4) “bk”:
∑
` a

i1
` · · · a

ik
` = δi1,i2 · · · δik−1,ik ,

(R5) “bd ⊗ b̃d”:
∑
k δi1,i2 · · · δid−1,ida

k
j1 · · · a

k
jd

= ∑
` δj1,j2 · · · δjd−1,jda

i1
` · · · a

id
` ,

(R6) “ ⊗ ”: (∑k a
k
j ) = (∑` a

i
`),

(R7) “ ⊗k”: (∑`1 a
`1
j1) · · · (∑`k a

`k
jk

) = 1

Here, indices that don’t appear in the name of the partition are to be
understood as viable choices, i.e., elements of {1, . . . , n}. Again, relations
on the rows of a matrix are at the same time relations on the columns
of this matrix, because unitary easy groups are subgroups of Un and thus
stable under inversion; the relations themselves are stable under complex
conjugation. The fact that , and , are contained in each category of
partitions ensures that we the occurring matrices are unital.
In terms of the above relations, we have the characterisations

Ogrp,loc(k) = {A = (aij) ∈ Un | (R1), (R2)},
Hgrp,glob(k) = {A = (aij) ∈ Un | (R2), (R3), (R4)},
Hgrp,loc(k, d) = {A = (aij) ∈ Un | (R3), (R4), (R5)},
Sgrp,glob(k) = {A = (aij) ∈ Un | (R2), (R3), (R6), (R7)},
Bgrp,glob(k) = {A = (aij) ∈ Un | (R2), (R6), (R7)},
Bgrp,loc(k) = {A = (aij) ∈ Un | (R6), (R7)}.

Proposition IV.3.1: Let n be a natural number and let A = (aij) ∈ Un such
that for all i, j, k, ` ∈ {1, . . . , n} it holds (aij)∗ak` = aij(ak` )∗. Then, there are
ζ ∈ S1 and B ∈ On such that A = ζB.
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The proof is due to “user1551” on math.stackexchange, see [1].
Proof: Since AA∗ = A∗A = In, there are some indices i and j such that
aij 6= 0. Put ζ := (aij)∗/|aij|. The property aij(ak` )∗ = (aij)∗ak` enforces
Re(aij) Im(ak` ) = Re(ak` ) Im(aij), thus, for all k, ` ∈ {1, . . . , n},

ζak` =
Re(aij) Re(ak` ) + Im(aij) Im(ak` ) + i[Re(aij) Im(ak` )− Re(ak` ) Im(aij)]

Re(aij)2 + Im(aij)2

is in fact a real number. This means that B := ζA is a real matrix. It holds

BBt = BB† = (ζA)(ζA)† = (ζA)(ζ∗A†) = In,

thus B is orthogonal, A = ζ∗B and ζ ∈ S1. �

Note that matrices in unitary easy groups stemming from globally coloured
partitions, each matrix is just a orthogonal matrix multiplied by some complex
number of absolute value 1.
Theorem IV.3.2: Let n be a natural number. Then, it holds:

(i) On × Zk = Ogrp,glob(k), where k ∈ 2N0,
(ii) (Z2 oSn)× Zk = Hgrp,loc(k), where k ∈ N0,

(iii) (Zd oSn)× Zk = Hgrp,loc(k, d), where d ∈ N0 − {1, 2} and k | d,
(iv) Sn × Zk = Sgrp,glob(k), where k ∈ N0,
(v) Bn × Zk = Bgrp,glob(k), where k ∈ 2N0,

(vi) Cn × Zk = Bgrp,loc(k), where k ∈ N0.

Proof: Throughout the proof, we use the names from Example IV.2.2 for the
representations.

(i) “⊆”: Let A ∈ On × Zk, i.e., there are B ∈ On and ζ ∈ S1 with ζk = 1
such that A = ζB. For i, j, k, ` ∈ {1, . . . , n} it holds

aij(ak` )∗ = ζbijζ
∗bk` = ζ∗bijζb

k
` = (aij)∗ak` ,

furthermore, for indices i1, . . . , ik/2, j1, . . . , jk/2 ∈ {1, . . . , n} it holds

ai1j1 · · · a
ik/2
jk/2

= (ζbi1j1) · · · (ζbik/2
jk/2

) = ζk/2bi1j1 · · · b
ik/2
jk/2

= (ζ∗)k/2bi1j1 · · · b
ik/2
jk/2

= (ai1j1)∗ · · · (aik/2
jk/2

)∗,

i.e., On × Zk ⊆ Ogrp,glob(k).
“⊇”: Since the elements of Ogrp,loc(k) satisfy (R1), we know by Proposi-

tion IV.3.1 that, for each A ∈ Ogrp,loc(k), there is some complex number
ζ ∈ S1 such that ζ∗A ∈ On. Now, (R2) ensures that ζ is a k-th root of unity.
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(ii) It is clear that the matrices in the image of our representation fulfil
the relations given.
Let now A ∈ Hgrp,glob(k). By Proposition IV.3.1, we know that A = ζB

with ζ ∈ S1 and B ∈ On. The relation (R3) yields that A is monomial and
(R4) ensures that every non-zero entry is a k-th root of unity. This shows the
inclusion.

(iii) Again, it is obvious that the matrices in the image of our representation
fulfil the relations.

A matrix A ∈ Hgrp,loc(k, d) is certainly monomial, every non-zero entry of
A is a k-th root of unity and for all i, j, k, ` ∈ {1, . . . , n} we have (aij)d = (ak` )d,
thus every non-zero entry is a product of some m-th root of unity, where
m | d.

(iv) That the matrices in the image of the representation ρn⊗ σn fulfil the
given relations is obvious.
For a matrix A in Sgrp,loc(k), the relation (R3) forces the matrix to be

monomial. Furthermore, (R2) ensures that A is the product of some monomial
orthogonal matrix and a complex number ζ ∈ S1. Now (R6) and (R7) yield
that all row and column sums are equal and k-th roots of unity, i.e., A is a
permutation matrix multiplied by a k-th root of unity.

(v) That the matrices in the image of our representation meet the relations
is clear.
Let now A ∈ Bgrp,glob(k) be given. The relation (R2) ensures that A is a

product ζB with ζ ∈ S1 and B ∈ On. Furthermore all row and column sums
of A are the same and equal a k-th root of unity, our ζ. Thus, multiplying A
with ζ∗ leaves us with a real orthogonal matrix whose row and column sums
are all the same and equal to one, i.e., B is a bistochastic matrix.

(vi) This is clear. �

4. Easy groups as Lie groups
Because (unitary) easy groups are closed subgroups of the orthogonal group
On respectively the unitary group Un, they are in particular Lie groups. A
crucial data for a Lie group is its Lie algebra, that is, its tangent space at the
neutral element. The idea to determine the Lie algebras of the easy groups
originated in the following consideration: Given a natural number n, we have
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the inclusions
Bn Z2 ×Bn On

Sn Z2 ×Sn Z2 oSn

⊆ ⊆

⊆

⊆

⊆

⊆

⊆

of orthogonal easy groups. Since all inclusions are inclusions of closed sub-
groups in Lie groups, all inclusions are inclusions of sub Lie groups in Lie
groups. This also means that the Lie algebras of one of those subgroups
is sub Lie algebras of the Lie algebra of the respective containing group.
Via the exponential map, it is possible to lift a sub Lie algebra of the Lie
algebra of a matrix Lie group to a (sub) Lie group of said matrix Lie group,
thus, the above considerations could have led to other homogenous groups.
Unfortunately, the Lie algebras of the finite easy groups are not particularly
interesting.

Lemma IV.4.1: Let G ⊆ Gln(K) be a finite subgroup. Then, the induced
topology on G is the discrete topology and the Lie algebra Lie(G) of G is the
zero space.

Proof: Since the topology on Gln(K) is Hausdorff, we find suitably small
neighbourhoods for each point of G that don’t contain any other point, i.e., for
every element g ∈ G, the singleton {g} is contained in the induced topology.
It is well known that continuous maps into the discrete topology are locally
constant and since differentiable maps are in particular continuous, any path
to G at the neutral element is locally constant. As the tangent space of G
has the characterisation Theorem B.3.10, it must be the zero space. �

Since matrix Lie groups are smooth embedded submanifolds of Mn(K) and
not Kn, it is worthwhile to think about the characterisation of the tangent
space. A proof that the above characterisation holds can be found in [10],
Corollary 3.46.

Lemma IV.4.2: Let G and H be Lie groups with Lie algebras Lie(G) and
Lie(H).

(i) The product Lie group G×H has the Lie algebra Lie(G)⊕ Lie(H).
(ii) If K ⊆ G is normal and closed, then G/K is a Lie group with Lie

algebra Lie(G/K) ∼= Lie(G)/Lie(H).

For the assertion in (i), see [7] III.§3.8 and for the assertion in (ii), see [11],
III.3.12 Satz.
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Let n be a natural number. Recall that the Lie algebras to the classical
Lie groups On and Un are

so(n) := {A ∈ Gln(R) | −A = At},
u(n) := {A ∈ Gln(C) | −A = A†}.

Note that the special orthogonal group and the orthogonal group have the
same Lie algebra, since the special orthogonal group is the connected compo-
nent of the identity in the orthogonal group.

Remark IV.4.3: The same argument that shows Bn
∼= On−1 also shows

Cn ∼= Un−1.

Proposition IV.4.4 (Lie algebras of easy groups): Let n be a natural num-
ber. In the orthogonal case, the Lie algebras of the easy groups are

(i) Lie(Sn) = {0},
(ii) Lie(S′n) = {0},

(iii) Lie(Hn) = {0},
(iv) Lie(Bn) ∼= so(n− 1),
(v) Lie(B′n) ∼= so(n− 1),

(vi) Lie(On) = so(n).

In the unitary case, the Lie algebras of the easy groups are

(i) Lie(On × Zk) = so(n), where k ∈ 2N0,
(ii) Lie(Un) = u(n),

(iii) Lie(Hn × Zk) = {0}, where k ∈ 2N0,
(iv) Lie((Zd oSn)× Zk) = {0}, where d ∈ N0 − {1, 2} and k ∈ dN,
(v) Lie(Sn × Zk) = {0},

(vi) Lie(Bn × Zk) ∼= so(n− 1), where k ∈ 2N0,
(vii) Lie(Cn × Zk) ∼= u(n− 1), where k ∈ N0.
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Appendix A.

Essentials from abstract algebra

In this chapter, we give a short overview over basic concepts from abstract
algebras such as groups, group actions on sets, vector spaces and linear
maps, transformation matrices, dual spaces, tensor products of vector spaces
and linear maps, euclidean or unitary spaces, isometries, that is, structure
preserving maps of euclidean or unitary spaces, the Riesz Representation
Theorem and the adjoint linear map.

1. Groups, group actions and products
In this section, we recap the concepts of groups, group homomorphisms and
group actions of groups on sets. The given examples are taken from the
content of the thesis.

Definition A.1.1 (Group): Let ∅ 6= G be a set and let ◦ : G×G→ G be a
law of composition on G, where we write g ◦h := ◦(g, h) or briefly gh := g ◦h.
If the axioms

(i) There is e ∈ G with e ◦ g = g = g ◦ e for all g ∈ G,
(ii) For each g ∈ G there is h ∈ G with g ◦ h = e = h ◦ g,

(iii) For all f, g, h ∈ G it holds f ◦ (g ◦ h) = (f ◦ g) ◦ h,

are satisfied, the tuple (G, ◦) is called a group. If no confusion concerning the
law of composition is to be feared, we briefly write G for the group (G, ◦).
The element e is called the neutral element of G. For a given g ∈ G, the
element h from (ii) is called the inverse to g, often denoted by g−1. If in
addition it holds

(iv) For all g, h ∈ G it holds gh = hg,
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the group is called abelian.

Example A.1.2: (i) Let X be a set. Then

Sym(X) := {f : X −→ X | f is bijective}

turns into a group with composition of maps. The identity map is the neutral
element with respect to this law of composition, associativity is a well-known
property of composition of maps and the usual inverse maps are the inverses
with respect to composition of maps.

(ii) Let n be a natural number. Given a field k, denote by Mn(k) := kn×n

the set of square matrices with entries in k. The subset

Gln(k) := {A ∈Mn(k) | det(A) 6= 0}

of invertible matrices turns into a group with the matrix multiplication: Given
matrices A = (aij), B = (bij), the product matrix AB := A · B is defined
entrywise as

(AB)ij :=
n∑
k=1

aikb
k
j .

The neutral element with respect to this law of composition is the identity
matrix In := (δi,j)1≤i,j≤n, associativity of the matrix multiplication can be
checked in a straight foreward calculation and for a given invertible matrix
A, the inverse can (but rarely should) be calculated via A−1 := (detA)−1A#,
where A# denotes the so called adjugate matrix of A, see [12] Section 6.4.

Definition A.1.3 (Subgroup): Let (G, ◦) be a group and let H ⊆ G be subset.
If it holds

(i) H 6= ∅,
(ii) HH−1 = {h′ ◦ h−1 | h′, h ∈ H} ⊆ H,

then (H, ◦|H×H) is called a subgroup (with the restricted law of composition
◦|H×H). H then is a group in its own right.

As for any algebraic structure, structure preserving maps are of interest:

Definition A.1.4 (Group homomorphism): Let (G, ◦) and (H, •) be groups
and let ϕ : G→ H be a map. If for any a, b ∈ G it holds

ϕ(a ◦ b) = ϕ(a) • ϕ(b),
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then ϕ is called homomorphism of groups. By writing ϕ : (G, ◦)→ (H, •) we
indicate that ϕ is a structure preserving map.
A group homomorphism ϕ : G → H is called group isomorphism, if it is

invertible (i.e., bijective) as a map. The inverse map ϕ−1 then is a homomor-
phism of groups as well.

Example A.1.5: Let (G, ◦) be a group. Then

Aut(G) := {ϕ : (G, ◦) −→ (G, ◦) | ϕ is bijective}

is a group with composition of maps.

Definition A.1.6 (Group action): Let X be a set and let (G, ◦) be a group.
A mapping α : G×X → X satisfying the axioms

(i) For all x ∈ X it holds α(e, x) = x,
(ii) For all g, h ∈ G and x ∈ X it holds α(g ◦ h, x) = α(g, α(h, x)),

is called a group action (or more precisely a group left action) on X. We
often abbreviate g.x := α(g, x) to improve readability.

Example A.1.7: Let n be a natural number.

(i) The symmetric group Sn := Sym(Nn) operates canonically on the
set Nn via σ.i := σ(i): Obviously, id(i) = i for all i ∈ Nn and given two
permutations σ and δ, we have

σ.(δ.i) = σ.δ(i) = σ(δ(i)) = (σ ◦ δ).i.

In the same way, Sn acts on an arbitrary set with n elementsX = {x1, . . . , xn}
via σ.xi := xσ(i).

(ii) Given a field k, the group Gln(k) operates on kn via A.ξ := A · ξ for
A ∈ Gln(k) and ξ ∈ kn, since for all vectors ξ ∈ kn and matrices A,B ∈ Gln(k)
we have In.ξ = In · ξ = ξ and A.(B.ξ) = (A · B).ξ, where “·” means usual
matrix multiplication.

(iii) Let V be an n-dimensional k-vector space, B = (b1, . . . , bn) be an
ordered basis of V and ξ = ∑n

i=1 ξ
ibi be an arbitrary element of V . By

defining
σ.ξ :=

n∑
i=1

ξibσ(i),

the action of Sn on B extends to an action on V .
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Lemma A.1.8: Let G be a group and let X be a set. A group homomorphism
π : G→ Sym(X) gives rise to a group action of G on X and vice versa.

Proof: If, on the one hand, G acts on X and we fix g ∈ G, then πg : X → X,
x 7→ g.x is bijective with inverse map πg−1 and the map

π : G −→ Sym(X), g 7−→ πg

is a group homomorphism. If, on the other hand, π : G→ Sym(X), g 7→ πg
is a group homomorphism,

G×X −→ X, (g, x) 7−→ πg(x) =: g.x

defines a group action of G on X. �

Definition A.1.9 (Direct product): Let I be an index set and let (Gi, ◦i)i∈I
be a family of groups. The cartesian product ∏i∈I Gi equipped with the law
of composition

(gi)i∈I ◦ (hi)i∈I := (gi ◦i hi)i∈I
is itself a group, the direct product of the family (Gi, ◦i)i∈I .

Definition A.1.10 (Semidirect product): Let (G, ◦) and (H, •) be groups and
let ϕ : H → AutG be a group homomorphism. The cartesian product G×H
together with the law of composition

(g1, h1) ? (g2, h2) := (g1 ◦ ϕ(h1)(g2), h1 • h2)

is again a group, the semidirect product of G and H with respect to ϕ, denoted
Goϕ H.

The group structure of G oϕ H depends decisively on the choice of ϕ.
Choosing the homomorphism ϕ : H → AutG, h 7→ idG for all h ∈ H
gives back the direct product, so the semidirect product can be seen as a
generalisation of the direct product of groups.

Lemma A.1.11: Let (G, •), (H, ?) be groups, let X be a set and let α : H ×
X → X be a group action of H on X. Then α induces a group homomorphism
α : H → AutGX , which gives rise to a group operation of H on GX .

Proof: First of all, we note that GX becomes a group with the pointwise law
of composition (i.e., for f and g ∈ GX , we define the map f • g ∈ GX via
(f • g)(x) := f(x) • g(x)) and we write (GX , •) for this group, but Aut(GX)
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becomes a group via composition of maps as law of composition and we write
(Aut(GX), ◦) for that group. For h ∈ H we define the map

αh : GX −→ GX , αh(f)(x) := f(α(h−1, x)).

The maps αh are group homomorphisms, since for f, g ∈ GX and for all
x ∈ X it holds

αh(f • g)(x) = (f • g)(α(h−1, x))
= f(α(h−1, x)) • g(α(h−1, x)) = αh(f)(x) •αh(g)(x).

If f and g are functions from X to G with αh(f) = αh(g), for all x ∈ X we
have

αh(f)(x) = f(α(h−1, x)) = g(α(h−1, x)) = αh(g)(x);

in particular for h = eH we have f(x) = g(x) for all x ∈ X, i.e., the maps
αh are injective. Given h ∈ H and a map g : X → G, put f : X → G,
x 7→ g(α(h, x)). Then we have

αh(f)(x) = f(α(h−1, x)) = g(α(h, α(h−1, x)) = g(x),

i.e., g = αh(f) and we established the surjectivity of the maps αh. The maps
αh hence induce a map

α : H −→ Aut(GX),

which induces a group action of H on GX , since we have

(i) (α(eH))(f)(x) = αeH (f)(x) = f(x), i.e., (α(eH))(f) = f ,
(ii) For h1, h2 ∈ H it holds

(α(h1 ? h2))(f)(x) = f(α(h−1
2 ? h−1

1 , x))
= f(α(h−1

2 , α(h−1
1 , x))

= α(h1)(f(α(h−1
2 , ·))(x) = (α(h1))(α(h2)(f))(x),

where f(α(h−1
2 , ·)) means the map X → G, x 7→ f(α(h−1

2 , x)). From the
above calculation we read off α(h1 ? h2) = α(h1) ◦ α(h2), thus, in fact
α : H → Aut(GX) is a group homomorphism which concludes the proof. �
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Definition A.1.12 (Wreath product): Let G and H be groups, let X be a
set and let α be a group action of H on X. Then

G oX H := GX oα H

is called the wreath product of G and H with respect to the group action of
H on X, where α means the group homomorphism from Lemma A.1.11.

From a mathematical standpoint, the wreath product plays a vital role
in the classification of group extensions. In 1953, Krasner and Kaloujnine
proved the universal embedding theorem that states that any group extension
of a group H by a group A is isomorphic to a subgroup of the regular wreath
product A oH H, where H operates on itself by left-multiplication, see [15]. It
also arises naturally in some combinatorial problems.

2. Vector spaces, linear maps and matrices
This section gives a very brief overview over basic facts on vector spaces and
linear maps, the associated structure preserving maps. Many elementary facts
from this section are heavily used in the thesis, e.g., that one can associate
a transformation matrix to a given linear map between finite-dimensional
vector spaces, that linear maps are uniquely determined by their values on a
basis of the domain and the homomorphism theorem.
For the sake of completeness, we recap the definitions of ring and field.

Definition A.2.1 (Ring): Let R be a set and let +: R×R→ R, · : R×R→ R
be two laws of composition. If it holds

(i) (R,+) is an abelian group (with neutral element 0R),
(ii) The law of composition “·” is associative,

(iii) There is an element 0R 6= 1R ∈ R such that for all r ∈ R it holds

1R · r = r · 1R = r,

(iv) For all m, r, s ∈ R it holds

m · (r + s) = m · r +m · s, (r + s) ·m = r ·m+ s ·m,

the tuple (R,+, ·) is called a unital ring. If no confusion is to be feared, we
just call R an unital ring. If in addition it holds
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(v) For all r, s ∈ R it holds r · s = s · r,
R is called a commutative ring. If in addition it holds
(vi) For all r ∈ R there is s ∈ R such that r · s = s · r = 1R,

(R,+, ·) is called a field. We agree that “·” has priority over “+”, e.g., we
write m + s · r := m + (s · r). The inverse of r ∈ R with respect to “+” is
denoted −r, the inverse of r ∈ R with respect to “·” is denoted r−1.
Let (S,+, ·) be another ring and ϕ : R→ S be a map. If it holds

ϕ(r + s) = ϕ(r) + ϕ(s), ϕ(r · s) = ϕ(r) · ϕ(s), ϕ(1) = 1,

we call ϕ a (unital) ring homomorphism. Ring homomorphisms are field
homomorphisms, too.

A principal example of a ring is the so called polynomial ring. The following
standard construction tries to formalise the concept of an “indeterminate”.
Example A.2.2 (Polynomial ring): Let k be a field. The set k[X] := k(N)

turns into a ring with the laws of composition

(an)n∈N + (bn)n∈N := (an + bn)n∈N,

(an)n∈N · (bn)n∈N := (cn)n∈N where cn :=
n∑
j=0

ajbn−j.

We call aX0 := (a, 0, 0, . . . ) the constant polynomial with value a and we call
X := (δ1,j)j∈N the indeterminate polynomial; note that by induction, one can
show that Xn = (δn,j)j∈N. Thus, we can embed k into k[X] via

ι : k −→ k[X], a 7−→ aX0

and write any element (an)n∈N of k[X] as (an)n∈N = ∑
n∈N anX

n. Note that
since (an)n∈N ∈ k[X], there is some natural number N0 such that an = 0 for
all n ≥ N , hence this sum is indeed finite. The elements of k[X] are called
polynomials.

Reminder A.2.3: For the rest of this remark, let k be any field.
(i) Let (V,+) be an abelian group with an exterior operation · : k×V → V .

We call the tuple (V,+, ·) a k-vector space or vector space over k, if for all
x, y ∈ V and λ, µ ∈ k it holds 1 · x = x, (λ + µ) · x = λ · x + µ · x,
λ · (x+ y) = λ · x+ λ · y and λ · (µ · x) = (λµ) · x. The map · : k × V → V is
then called scalar multiplication. We will most of the time omit the “·” and
instead abbreviate λv := λ · v. Furthermore, if no confusion is to be feared,
we just call V a k-vector space.
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(ii) A subset ∅ 6= W ⊆ V is called a linear subspace, if for all v, w ∈ W
and λ, µ ∈ k it holds λv + µw ∈ W .

(iii) Let W be a subset of V . We put

k(W ) := {f : W −→ k | f(w) 6= 0 only for finitely many w ∈ W}.

For λ ∈ k(W ), we call ∑w∈W λ(w)w a linear combination of W . The set

Lin(W ) :=
{ ∑
w∈W

λ(w)w : λ ∈ k(W )
}

is called the linear span of W . The linear span of W is the smallest linear
subspace of V that contains the set W . It holds

Lin(W ) =
⋂
{U ⊆ V | U is a linear subspace of V with W ⊆ U}.

(iv) A subset W ⊆ V is called linearly independent, if for all λ ∈ k(W ) it
holds: If ∑w∈W λ(w)w = 0, then λ ≡ 0. Linear independency is precisely
the requirement that linear combinations are unique, i.e., if v ∈ W and
v = ∑

w∈W λ(w)w = ∑
w∈W µ(w)w for λ, µ ∈ k(W ), then λ = µ, since

0 =
∑
w∈W

λ(w)w −
∑
w∈W

µ(w)w =
∑
w∈W

(λ(w)− µ(w))w.

If W is an infinite set, W is linearly independent if and only if every finite
subset of W is linearly independent.

(v) If W ⊆ V is linearly independent and Lin(W ) = V , then W is called
a basis of V . The cardinality of W is called the dimension of V , where “the”
is justified, as every basis of V has the same cardinality. Believing Zorns
lemma, every k-vector space has a basis.

(vi) If V is a k-vector space and W1, . . . ,Wn ⊆ V are linear subspaces,∑n
i=1Wi := {∑n

i=1wi | wi ∈ Wi} is a linear subspace of V . The sum ∑n
i=1Wi

is called direct, if it holds: If ∑n
i=1 wi = 0, then wi = 0 for 1 ≤ i ≤ n. We

then write ⊕n
i=1Wi for the direct sum of the Wi. An immediate consequence

of the definition is that Wi ∩Wj = {0} for i 6= j. This direct sum sometimes
is also called inner direct sum, because the Wi are linear subspaces of V and
thus the whole process takes place inside some vector space.

For any k-vector spaces (Wi)i∈I , the exterior direct sum just is the subspace⊕
i∈I

Wi = {(wi)i∈I | Only finitely many wi are non-zero} ⊆
∏
i∈I
Wi.
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(vii) A map ϕ : V → W between k-vector spaces is called a k-vector
space homomorphism or linear map if for all λ, µ ∈ k and x, y ∈ V it holds
ϕ(λx+ µy) = λϕ(x) + µϕ(y). The subsets kerϕ := {v ∈ V | ϕ(v) = 0} ⊆ V
and ϕ(V ) = {ϕ(v) | v ∈ V } ⊆ W are linear subspaces of V respectively W .
If ϕ is bijective as a map, its inverse map is a linear map as well; ϕ is then
called a k-vector space isomorphism.

(viii) Linear maps and linear independency interact in the following way:
If ϕ : V → W is a linear map and U ⊆ ϕ(V ) is linearly independent, then
ϕ−1(U) ⊆ V is linearly independent; if ϕ is injective and U ′ ⊆ V is linearly
independent, then ϕ(U ′) is linearly independent; ϕ is surjective if and only if
ϕ(V ) contains a basis of W and finally ϕ is bijective if and only if for any
basis B ⊆ V is holds that ϕ(B) ⊆ W is a basis.

(ix) If ϕ : V → W is a linear map and B ⊆ V is a basis, ϕ is already
uniquely determined by ϕ|B : B → W . Furthermore if ψ : B → W is a map,
there is one and only one linear map ϕ : V → W with ϕ|B = ψ. This allows
us to define linear maps by prescribing values on a basis of the domain.

(x) The set

Homk(V,W ) := {ϕ : (V,+, ·) −→ (W,+, ·)} ⊆ W V

becomes a k-vector space itself with the pointwise laws of composition, i.e.,
f + g : V → W is defined pointwise via (f + g)(v) := f(v) + g(v), likewise for
αf : V → W , where α ∈ k.

For later use, we state the important theorem from linear algebra, that any
linearly independent set can be extended to a basis.

Theorem A.2.4: Let k be a field and let V be a k-vector space. If M ⊆ V is
a linearly independent set, there is a basis B ⊆ V with M ⊆ B.

Again, the general proof needs Zorns lemma. For finite-dimensional vector
spaces, the Steinitz exchange lemma does the trick.

Remark A.2.5 (Matrices and linear maps): When talking about finite-di-
mensional vector spaces, we are in the extraordinary situation that we can
identify the homomorphisms between two vector spaces with suitably sized
matrices. This can be seen in the following way:

(i) Given a matrix A = (aij) ∈Mn×m(k), the map ϕA : km → kn defined by
ϕA(v) := Av is a linear map. Applying A to ei gives the vector (a1

i , . . . , a
n
i )t,

i.e., the i-th column of A.

57



Appendix A. Essentials from abstract algebra

(ii) Let ψ : kn → km be a linear map. Then, motivated by the previous
thoughts, for the matrix A := (ψ(e1), . . . , ψ(en)) ∈Mm×n(k) it holds ψ = ϕA,
since we have ϕA(ei) = Aei = ψ(ei).

(iii) If V and W are k-vector spaces with dim V = n, dimW = m and
ordered bases B = (b1, . . . , bn) ⊆ V , (c1, . . . , cm) ⊆ W , then the maps

DB : V −→ kn,
n∑
i=1

vibi 7−→
n∑
i=1

viei,

DC : W −→ km,
m∑
i=1

wici 7−→
m∑
i=1

wiei,

are k-vector space isomorphisms. For a linear map ϕ : V → W , we express
the vectors ϕ(bj), 1 ≤ j ≤ n, in terms of the basis C, i.e., ϕ(bj) = ∑m

i=1 α
i
jci,

and thus get a matrix A = (αij) ∈ km×n. This matrix renders commutative
the diagram

V W

kn km

ϕ

DB DC

v 7→Av

The matrix DC,B(ϕ) := A is called the transformation matrix of ϕ with
respect to the bases B and C.
This means we can identify Homk(kn, km) ∼= Mm×n(k). Under this identifica-
tion, composition of linear maps corresponds to multiplication of matrices.
Note that this identification is not canonical, since we need to fix bases in kn
and km. In fact, it will break for infinite-dimensional vector spaces.

Given a set X, a relation R on X is a subset R ⊆ X ×X. The relation
R is called reflexive, if (x, x) ∈ R for all x ∈ X; it is called symmetric, if it
holds: If (x, y) ∈ R, then (y, x) ∈ R; it is called antisymmetric, if it holds: If
(x, y) ∈ R and (y, x) ∈ R, then x = y and finally, it is called transitive, if it
holds: If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.
A reflexive, symmetric, transitive relation is called equivalence relation, a

reflexive, antisymmetric, transitive relation is called a partial order.
Let R be an equivalence relation on X. If (x, y) ∈ R, we write x ∼ y. By

[x] := {y ∈ X | x ∼ y} we denote the equivalence class of x ∈ X. By X/∼
we denote the set of equivalence classes of the relation R. An equivalence
relation on the set X provides a partition of X, i.e., a decomposition of X
into disjoint subsets of X, namely the equivalence classes of the relation R.
If X has enough structure and we take the right equivalence relation, we

can make X/∼ into an interesting object itself.
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Example A.2.6: Let k be a field, let V be a k-vector space and let U ⊆ V be
a linear subspace. For x, y ∈ V , x ∼ y :⇔ x− y ∈ U declares an equivalence
relation on V . We denote by V/U := V/∼ the set of equivalence classes with
respect to this equivalence relation. Now, we can equip V/U with a k-vector
space structure via the well-defined maps

+: V/U × V/U −→ V/U, [v]∼ + [w]∼ := [v + w]∼,
· : k × V/U −→ V/U, α[v]∼ := [αv]∼.

The map π : V → V/U , v 7→ [v]∼ is called the canoncial projection. The
k-vector space V/U is called quotient vector space (of V by U), it’s neutral
element is [0]∼ = U .

Proposition A.2.7 (Homomorphism theorem): Let k be a field, let V and
W be k-vector spaces, let U ⊆ V be a linear subspace and let Φ: V → W be a
linear map. If U ⊆ ker Φ, there is one and only one linear map φ : V/U → W
rendering commutative the diagram

V W

V/U

Φ

π
φ

If U = ker Φ, the map φ is injective.

Proposition A.2.7 can be understood like this: Whenever we have a linear
map Φ: V → W , we have an injective linear map φ : V/ ker Φ→ W . To this
end, we can define linear maps φ : V/ ker Φ → W without having to worry
about well-definedness, i.e., without checking that the prescription for our
map does not depend on the chosen representative of [x]∼, which we usually
would have to, since we otherwise directly declared a map on equivalence
classes. Given a vector space V/U , the work usually amounts to finding a
suitable linear map ϕ : V → W with ker Φ = U .

In practice, Proposition A.2.7 is used to get rid of “inessential data” or to
force certain properties.

Example A.2.8: Let k be a field, let V be a finite-dimensional k-vector space
with basis B = (b1, . . . , bn), let U be the subspace generated by b1, . . . , bi−1
for some fixed i ∈ Nn and let ϕ : V → V be declared by

ϕ(bj) :=
0, if 1 ≤ j < i,

bj, otherwise.
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Then kerϕ = U and by Proposition A.2.7, there is an injective linear
map φ : V/U → V with φ(V/U) = ϕ(V ), i.e., V/U ∼= ϕ(V ). The subset
{bi, . . . , bn} ⊆ B is linearly independent, thus

dimϕ(V ) = dim V − dimU = dimV/U. (A.1)

This means that for a linear map ϕ : V → W between finite-dimensional
k-vector spaces, it holds dimϕ(V ) = dim V − dim kerϕ. Thus, if it holds
dim V = dimW and dim kerϕ = 0, then dimϕ(V ) = dimW and hence ϕ is
surjective.
Since we can canonically identify V and V/{0}, Proposition A.2.7 also

gives that ϕ : V → W is injective if and only if kerϕ = {0}.

3. Multilinear algebra
In this section, we deal with dual spaces and multilinear maps, i.e., maps from
direct products of vector spaces that are linear in each argument, such as the
determinant; one of the most important multilinear maps. Furthermore, we
introduce the tensor products of finitely many vector spaces and linear maps.

Definition A.3.1 (Dual vector space): Let k be a field and let V be a k-
vector space. Then V ∗ := Homk(V, k) is called the dual vector space to V .
Elements of V are called functionals.

If V is finite-dimensional with basis B = (b1, . . . , bn), denote by B∗ the set
of linear maps βi : V → k with βi(bj) = δi,j. This set B∗ then is a basis of
V ∗, the dual basis of B.

Note that those maps βi : V → k exist in the first place: because of
Reminder A.2.3 (viii), the requirement βi(bj) = δi,j allows us to prescribe
them on a basis, which extends uniquely. Furthermore, βi depends on all
vectors b1, . . . , bn.

Remark A.3.2: Let V be a k-vector space and let V ∗ be its dual space. For
a given v ∈ V , the map ιv : V ∗ → k, ϕ 7→ ϕ(v) is linear. This gives rise to a
map

ι : V −→ V ∗∗, v 7−→ ιv

which is again linear but injective in addition (where in the infinite-dimensional
case, we need Zorns lemma to prove this), i.e., we can naturally embed V
into V ∗∗. If V is finite-dimensional, then ι even is an isomorphism of k-vector
spaces, since dim V = dimV ∗ = dim V ∗∗.
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Definition A.3.3 (Dual pair): Let V be a k-vector space and let V ∗ be its
dual vector space. Then the map

〈·, ·〉 : V ∗ × V −→ k, (ϕ, v) 7−→ ϕ(v),

is bilinear. This map is a dual pairing of V and V ∗. The tuple (V, V ∗, 〈·, ·〉)
is called a dual pair.

Definition A.3.4 (Dual map): Let k be a field, let V and W be a k-vector
spaces and let f : V → W be a linear map. Then

f ∗ : W ∗ −→ V ∗, ϕ 7−→ ϕ ◦ f

is called the dual map or transpose of f .

In terms of the dual pairing, for all ϕ ∈ W ∗ and v ∈ V it holds

〈ϕ, f(v)〉W ∗×W = 〈f ∗(ϕ), y〉V ∗×V .

The map f ∗∗ : V ∗∗ → W ∗∗ naturally extends f , i.e., the follwoing diagram is
commutative:

V W

V ∗∗ W ∗∗

f

ιV ιW

f∗∗

Definition A.3.5: Let n be a natural number, let k be a field, let V1, . . . , Vn
and U be k-vector spaces and let β : ∏n

i=1 Vi → U be a map. The map β is
called n-times multilinear, if for fixed i and fixed vj ∈ Vj, where 1 ≤ j ≤ n
and i 6= j, the maps

βi : Vi −→ U, v 7−→ β(v1, . . . , vi−1, v, vi+1, . . . , vn)

are linear. If U = k, then β is called an n-times multilinear form. By
m(V1, . . . , Vn;U) we denote the set of n-times multilinear maps from ∏n

i=1 Vi
to U . For n = 2, we speak of bilinear maps or bilinear forms respectively.

Example A.3.6 (Determinant): Let n be a natural number, let k be a field
with char(k) 6= 2, and let V be a k-vector space of dimension n with basis
{b1, . . . , bn}. A set {v1, . . . , vn} ⊆ V of vectors vi = ∑n

j=1 v
j
i bi is a basis of V

if and only if

det({v1, . . . , vn}) :=
∑
σ∈Sn

sgn(σ)vσ(1)
1 · · · vσ(n)

n 6= 0.
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Even though it doesn’t look like it, det : ∏n
i=1 V → k is indeed an n-times

mulitlinear form. One way of deriving this formula is by starting with an
n-times multilinear form D : ∏n

i=1 V → k that vanishes, if two arguments
coincide, and fulfills D(b1, . . . , bn) = 1 and then expand D(v1, . . . , vn) multi-
linearly.
Identifying a matrix A ∈ Mn(k) with the set {A1, . . . , An} of its column

vectors allows the definition of a map

det : Mn(k) −→ k, A 7−→ det({A1, . . . , An}).

Because of Reminder A.2.3 (viii), det(A) is a decisive number for the matrix
A: If det(A) is non-zero, the linear map v 7→ Av is invertible since then
{A1, . . . , An} = {Ae1, . . . , Aen} forms a basis of kn. If det(A) = 0, A can’t
be injective due to the linear independency of {e1, . . . , en}.

Given a matrix A, we denote by Aij the matrix that results from cancelling
the i-th row and the j-th column of A.
Given a linear map ϕ : V → V , the number det({ϕ(b1), . . . , ϕ(bn)}) tells

us, if ϕ is a vector space isomorphism. As it turns out, this number doesn’t
depend on the basis chosen in V .

Let k be a field, let V1, . . . , Vn be finite-dimensional k-vector spaces and
let U be a k-vector space. Furthermore, let Bi = {bij | 1 ≤ j ≤ ni} ⊆ Vi
for 1 ≤ i ≤ n be bases. As for linear maps, a map β ∈ m(V1, . . . , Vn;U) is
uniquely determined by its values on n-tuples (b1

j1 , . . . , b
n
jn) with ji ∈ Nni .

Now everything is in place to talk about tensor products of vector spaces.

Proposition A.3.7 (Tensor product of k-vector spaces): Let k be a field and
let V and W be k-vector spaces. A pair (T, τ) consisting of a k-vector space
T and a bilinear map τ : V ×W → T is called tensor product of V and W ,
if it holds: For any bilinear map β : V ×W → U , there is one and only one
linear map φ : T → U rendering commutative the diagram

V ×W T

U

τ

β
φ

This property of the tensor product (T, τ) is called universal property or
universal mapping property.

A short train of thought yields that if V and W are k-vector spaces and
have a tensor product (T, τ), it is unique up to unique isomorphism — this
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is granted by the universal mapping property. It is thus justified, to talk of
the tensor product of V and W .

We now have to give a reason why such a tensor product should exist in
general. One way of answering this question is to construct a tensor product
of two given vector spaces explicitly.

The following proof, which I find quite instructive, stems from my teacher
Gabriela Weitze-Schmithüsen.

Proof (of Proposition A.3.7): Let V and W be k-vector spaces. If we put
T ′ := k(V×W ) (which can be understood as the vector space of formal linear
combinations of any elements of V ×W ) and τ ′ : V ×W , (v, w) 7−→ f(v,w),
where

f(v,w) : V ×W −→ k, f(v,w)(x, y) :=
1, if x = v and y = w,

0, else,

we already are in the situation that for any bilinear map β : V ×W → U ,
we have one and only one linear map Φ: k(V×W ) → U such that Φ ◦ τ ′ = β,
since {f(v,w) | v ∈ V,w ∈ W} is a basis for k(V×W ). However, τ ′ is far from
bilinear, which we want to forcibly correct in the following. Denote by D the
linear subspace of k(V×W ) spanned by the elements

{f(αv1+v2,βw1+w2) − αβf(v1,w1) − αf(v1,w2) − βf(v2,w1) − f(v2,w2) :
f ∈ k(V×W ), v1, v2 ∈ V,w1, w2 ∈ W,α, β ∈ k} (A.2)

and put T := T ′/D. Essentially, dividing out D makes every element of the
form Eq. (A.2) a representant of the zero class, i.e., for every element of said
form it now holds

[f(αv1+v2,βw1+w2)] = [αβf(v1,w1)] + [αf(v1,w2)] + [βf(v2,w1)] + [f(v2,w2)],

rendering τ := π◦τ ′ bilinear. Now one can check using Proposition A.2.7 that
for any bilinear map β : V ×W → U , the map φ = π ◦Φ renders commutative
the diagram

V ×W k(V×W ) k(V×W )/D

U

τ ′

β

π

Φ
φ

i.e., (T, τ) has the universal mapping property and thus is a tensor product
of V and W . �
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To work with tensor products, the construction is not essential. It even is
probably best to not think of the tensor product as a set but in terms of the
property mentioned in Proposition A.3.7 when making first contact with it.
As for notation, the tensor product of V and W is denoted by V ⊗k W and
the map τ is “forgotten”. The image of (v, w) ∈ V ×W under τ is denoted by
v⊗w ∈ V ⊗kW . One can show that if B = {bi}i∈I ⊆ V and C = {ci}i∈I ⊆ W
are bases of V respectivelyW , then {bi⊗ci | i ∈ I} ⊆ V ⊗kW is a basis. Thus,
if V and W are finite-dimensional, it holds dim V ⊗k W = dimV · dimW .
It is crucial to remember that any element t of V ⊗k W has a (highly

non-unique) representation t = ∑n
i=1 vi ⊗ wi with some integer n, vi ∈ V and

wi ∈ W for 1 ≤ i ≤ n, but that in general one won’t find v ∈ V and w ∈ W
such that t = v ⊗ w. Elements t of V ⊗k W for which there are v ∈ V and
w ∈ W with t = v ⊗ w are called pure tensors.

Having seen there is a tensor product of two k-vector spaces, we know the
analogue statement for finitely many k-vector spaces as well.
Corollary A.3.8: Let n be a natural number and let V1, . . . , Vn and U be k-
vector spaces. There is a tuple (T, τ) consisting of a k-vector space T and
an n-times multilinear map τ : ∏n

i=1 Vi → T such that it holds: For any
n-times multilinear map β : ∏n

i=1 Vi → U , there is one and only one linear
map Φ: T → U rendering commutative the diagram∏n

i=1 Vi T

U

τ

β
Φ

A tensor product (T, τ) of V1, . . . , Vn is uniquely determined up to unique
isomorphism and therefore called the tensor product of V1, . . . , Vn, denoted
by ⊗n

i=1 Vi. In the special case that V1 = · · · = Vn = V , we also write
T n(V ) := ⊗n

i=1 V .

Note that it holds Φ(⊗n
i=1 Vi) = Lin(β(∏n

i=1 Vi)) for the map Φ from
Corollary A.3.8, thus it can be understood as an extension of β.
Remembering the construction of the tensor product, we can (almost

immediately) read off the following calculation rules for tensors: For vectors
v1, . . . , vn, v ∈ V and α ∈ k it holds v1 ⊗ · · · ⊗ vn = 0 if and only if vi = 0 for
some i ∈ Nn, α(v1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ αvi ⊗ · · · ⊗ vn for all i ∈ Nn, and

v1 ⊗ · · · ⊗ vi+1 ⊗ vi + v ⊗ vi+1 ⊗ · · · ⊗ vn
= v1 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn

+ v1 ⊗ · · · ⊗ vi−1 ⊗ v ⊗ vi+1 ⊗ · · · ⊗ vn.
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The last two properties are obvious when remembering that we defined
v1⊗ · · · ⊗ vn := τ(v1, . . . , vn). The first one is a bit more tricky: If one of the
vectors is zero, then so is the tensor v1 ⊗ · · · ⊗ vn. If we assume vi 6= 0 for
i ∈ Nn, there were bases Bi of Vi with vi ∈ Bi and thus linear maps βi : Vi → k
with βi(vi) = 1. The map β : ∏n

i=1 Vi → k, (w1, . . . , wn) 7→ ∏n
i=1 βi(wi) were

n-times multilinear with β(v1, . . . , vn) = 1 and by the universal property of
the tensor product, there was a linear map Φ: ⊗n

i=1 Vi → k with Φ ◦ τ = β,
i.e., Φ(v1 ⊗ · · · ⊗ vn) = 1, thus v1 ⊗ · · · ⊗ vn 6= 0.
What follows is a motivation, what tensor products are really good for.

Remark A.3.9: Using the universal mapping property from Proposition A.3.7,
we can immediately see that for k-vector spaces V,W and U , we have the
canonical identification m(V,W ;U) ∼= Homk(V ⊗k W,U).
On the other hand, we can establish a canonical identification between

m(V,W ;U) and Homk(V,Homk(W,U)): If we take β ∈ m(V,W ;U), by defi-
nition for every v ∈ V , we get linear maps βv : W → U , w 7→ β(v, w), i.e, β
gives rise to a linear maping β : V → Hom(W,U), v 7→ βv.
Given φ ∈ Homk(V,Homk(W,U)), we get a bilinear map β ∈ m(V,W ;U)

via (v, w) 7→ [φ(v)](w). In total we thus have

m(V,W ;U) ∼= Homk(V ⊗k W,U) ∼= Homk(V,Homk(W,U)).

Analogously, it holds

m(V1, . . . , Vn;U) ∼= Homk(V1 ⊗k · · · ⊗k Vn, U)
∼= Homk(V1,Homk(V2, . . . ,Homk(Vn, U) · · · )).

This is an outstanding property of the tensor product.

The universal mapping property of the tensor product also allows for the
construction of certain linear maps of tensor products from linear maps of
“regular” vector spaces.

Remark A.3.10: Let V1, V2,W1,W2 be k-vector spaces and let ϕ : V1 → W1
and ψ : V2 → W2 be k-vector space homomorphisms. Then

ϕ× ψ : V1 × V2 −→ W1 ×W2, (v1, v2) 7−→ (ϕ(v1), ψ(v2))

is a bilinear map. This gives us the commutative diagram

V1 × V2 V1 ⊗k V2

W1 ×W2 W1 ⊗k W2

τ1

ϕ×ψ τ2◦(ϕ×ψ) ∃! Φ

τ2
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with Φ: V1 ⊗k V2 → W1 ⊗k W2 being linear and satisfying

Φ(v1 ⊗ v2) = ϕ(v1)⊗ ψ(v2).

This map Φ we call ϕ⊗ψ. If the involved vector spaces are finite-dimensional,
ϕ⊗ ψ is injective (surjective) if and only if ϕ and ψ are injective (surjective).

Completely analogously, if we take k-vector spaces V1, . . . , Vn; W1, . . . ,Wn

and linear maps ϕi : Vi → Wi for 1 ≤ i ≤ n, we get a linear map

ϕ1 ⊗ · · · ⊗ ϕn :
n⊗
i=1

Vi −→
n⊗
i=1

Wi

with (ϕ1 ⊗ · · · ⊗ ϕn)(v1 ⊗ · · · ⊗ vn) = ϕ1(v1)⊗ · · · ⊗ ϕn(vn).

Given a map ϕ : V → W and a natural number m, we denote by Tm(ϕ) the
map declared via

Tm(ϕ) := ϕ⊗ · · · ⊗ ϕ : Tm(V ) −→ Tm(W ),
v1 ⊗ · · · ⊗ vm 7−→ ϕ(v1)⊗ · · · ⊗ ϕ(vn).

We want to finish this section with some useful facts regarding tensor
products of vector spaces that involve dual spaces.

Remark A.3.11: For this remark, let k be a field.

(i) Let V and W be two k-vector spaces. Then

β : V ∗ ⊗W −→ Homk(V,W ), ϕ⊗ w 7−→ (v 7→ ϕ(v)w)

defines an injective vector space homomorphism. It is bijective if and only if
V or W is finite-dimensional.

(ii) Let V1, . . . , Vn be k-vector spaces. Then

ι :
n⊗
i=1

V ∗i −→
( n⊗
i=1

Vi

)∗
, ι(ϕ1 ⊗ · · · ⊗ ϕn)(v1 ⊗ · · · ⊗ vn) :=

n∏
i=1

ϕi(vi)

defines an injective vector space homomorphism. It is an isomorphism if the
vector spaces V1, . . . , Vn are finite-dimensional.

Lemma A.3.12: Let n be a natural number and let ϕi : Vi → Wi, 1 ≤ i ≤ n
be linear maps between finite-dimensional k-vector spaces. Furthermore, let
ιV : ⊗n

i=1 V
∗
i → (⊗n

i=1 Vi)∗ and ιW : ⊗n
i=1W

∗
i → (⊗n

i=1Wi)∗ be the isomor-
phisms from Remark A.3.11(ii). Then, it holds

(ϕ1 ⊗ · · · ⊗ ϕn)∗ = ι−1
V ◦ (ϕ∗1 ⊗ · · · ⊗ ϕ∗n) ◦ ιW .
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Proof: We have to show that the square

⊗n
i=1W

∗
i

⊗n
i=1 V

∗
i

(⊗n
i=1 Wi)∗ (⊗n

i=1W
∗
i )∗

ιW

ϕ∗1⊗···⊗ϕ
∗
n

ιV

(ϕ1⊗···⊗ϕn)∗

commutes. Let therefore ψ1 ⊗ · · · ⊗ ψn ∈⊗n
i=1W

∗
i . We want to show that

(ϕ1 ⊗ · · · ⊗ ϕn)∗ ◦ (ιW (ψ1 ⊗ · · · ⊗ ψn))
= (ϕ∗1 ⊗ · · · ⊗ ϕ∗n) ◦ ιV (ψ1 ⊗ · · · ⊗ ψn)).

Let thus v1 ⊗ · · · ⊗ vn ∈
⊗n
i=1 Vi. Then

[(ϕ1 ⊗ · · · ⊗ ϕn)∗ ◦ (ιW (ψ1 ⊗ · · · ⊗ ψn))](v1 ⊗ · · · ⊗ vn)
= [(ιV (ψ1 ⊗ · · · ⊗ ψn)) ◦ (ϕ1 ⊗ ϕn)](v1 ⊗ · · · ⊗ vn)
= (ιV (ψ1 ⊗ · · · ⊗ ψn))(ϕ1(v1)⊗ · · · ⊗ ϕn(vn))
= ψ1(ϕ1(v1)) · · ·ψn(ϕn(vn))
= ιV ((ψ1 ◦ ϕ1)⊗ · · · ⊗ (ψn ◦ ϕn))(v1 ⊗ · · · ⊗ vn)
= [(ιV ◦ (ϕ∗1 ⊗ . . . ϕ∗n))(ψ1 ⊗ · · · ⊗ ψn)](v1 ⊗ · · · ⊗ vn).

Since ιV and ιW are isomorphisms, this shows the claim. �

4. Euclidean and unitary spaces
This section deals with pre-Hilbert spaces, i.e., vector spaces over K in which
we have a concept of angles between vectors and lengths of vectors, what
makes them interesting for analysis as well, and in particular with finite-
dimensional pre-Hilbert spaces which are called euclidean respectively unitary
spaces depending on the underlying field.
Many of the facts presented here hold more generally for Hilbert spaces,

which is why the presentation is made in a way that allows for an easy
transfer.
The main goals of this section are the introduction of the associated

structure preserving maps, a description of their transformation matrices, the
concept of orthogonal systems, the Riesz Representation Theorem and as a
consequence, the existence of the adjoint map.
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Definition A.4.1 (Inner product): Let V be a K-vector space and let

(·|·) : V × V −→ K

be a map. If for all v, w ∈ V and α, β ∈ K it holds

(i) (v|v) ≥ 0 and (v|v) = 0 if and only if v = 0,
(ii) (v|w) = (w|v)∗,

(iii) For fixed w ∈ V , the map v 7→ (v|w) is linear,

the map (·|·) is called an inner product. The tuple (V, (·|·)) is then called
inner product space or pre-Hilbert space. If V is finite-dimensional and K = R,
V is called an euclidean space, if V is finite-dimensional and K = C, V is
called unitary space.

Note that (v|w) = (w|v)∗ ensures that (v|v) ∈ R for all v ∈ V , so that
condition (i) of Definition A.4.1 can make sense. A direct consequence of the
definition is that for all v, w1, w2 ∈ V and α, β ∈ K it holds

(v|αw1 + βw2) = (αw1 + βw2|v)∗

= [α(w1|v) + β(w2|v)]∗

= α∗(w1|v)∗ + β∗(w2|v)∗ = α∗(v|w1) + β∗(v|w2),

i.e., for fixed v ∈ V , the map w 7→ (v|w) is antilinear or conjugate-linear.

Remark A.4.2: Let (V, (·|·)) be a pre-Hilbert space and let v1, v2 ∈ V be two
vectors. If it holds (v1|v) = (v2|v) (and thus (v|v1) = (v|v2)) for all v ∈ V ,
then v1 = v2. Indeed, since by assumption we have (v1|v1− v2) = (v2|v1− v2),
it holds 0 = (v1 − v2|v1 − v2) and thus v1 = v2.

Example A.4.3: The vector space Kn becomes an euclidean respectively
unitary space via the inner product

(·|·) : Kn ×Kn −→ K,
( n∑
i=1

ξiei,
n∑
j=1

ηjej

)
7−→

n∑
i=1

ξi(ηj)∗.

This inner product is called the standard inner product on Kn.

Definition A.4.4 (Normed vector space): Let V be a K-vector space and let

‖·‖ : V × V −→ K

be a map. If for all v, w ∈ V and α ∈ K it holds
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(i) ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0,

(ii) ‖αv‖ = |α|‖v‖,

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖,

the map ‖·‖ is called a norm. The tuple (V, ‖·‖) is then called a normed
K-vector space. Without the second part of (i), ‖·‖ is called a seminorm.

Remark A.4.5 (Cauchy-Schwarz inequality): Let V be a pre-Hilbert space
over K. Then for all v, w ∈ V , it holds

(v|w)2 ≤ (v|v)(w|w). (A.3)

A proof can be found in any book on functional analysis or in any good linear
algebra book.

The Cauchy-Schwarz inequality is essential to see that pre-Hilbert spaces
are special normed vector spaces: Let (V, (·|·)) be a pre-Hilbert space over K.
Since (v|v) ≥ 0 for all v ∈ V ,

‖·‖ : V −→ K, v 7−→ (v|v)1/2

is well defined. Conditions (i) and (ii) from Definition A.4.4 are obviously
met and with Eq. (A.3), it is easy to see that (iii) holds for ‖·‖ as well, thus
‖·‖ makes V into a normed K-vector space.

Additionally, the Cauchy-Schwarz inequality allows for a definition of angles
in pre-Hilbert spaces over K: Since for all v, w ∈ V it holds

−1 ≤ (v|w)
‖v‖‖w‖

≤ 1,

there is one and only one α ∈ [0, π] with cos(α) = (v|w)/(‖v‖‖w‖). This α
we call the measured angle between v and w, sometimes denoted ](v, w).

Definition A.4.6 (Orthogonality): Let (V, (·|·)) be a pre-Hilbert space over
K and let v, w ∈ V . If (v|w) = 0, the vectors v and w are called orthogonal.

Let S, T ⊆ V be subsets. If it holds: For any s ∈ S, (s|t) = 0 for all t ∈ T ,
the sets S and T are called orthogonal.
The set S⊥ := {v ∈ V | (v|s) = 0 for all s ∈ S} is called orthogonal

complement of S.
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Note that for any set S ⊆ V , the set S⊥ ⊆ V is a linear subspace. We
will later see that even for a linear subspace S ⊆ V , S⊥⊥ := (S⊥)⊥ 6= S in
general — we only have S ⊆ S⊥⊥.

As pre-Hilbert spaces are special cases of normed vector spaces, one might
ask if one can determine, when a normed vector space (V, ‖·‖) is in fact a
pre-Hilbert space, i.e., if it’s norm was induced by an inner product. Indeed,
one can determine if this is the case: If for all v, w ∈ V it holds

‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2),

the norm is induced by an inner product. The above equation is called
parallelogram identity.

In case the norm is induced by an inner product, one even can recover the
inner product from the norm via the so-called polarisation identity:

(v|w) =


1
4(‖v + w‖2 + ‖v − w‖2), if K = R,
1
4(‖v + w‖2 + ‖v − w‖2 + i‖v − iw‖2 − i‖v + iw‖2), if K = C.

Definition A.4.7 (Orthonormal system): Let (V, (·|·)) be a K pre-Hilbert
space, let I be an index set and let S = {si | i ∈ I} ⊆ V be a subset. If for
i, j ∈ I with i 6= j it holds (si|sj) = 0 and (si|si) > 0 for i ∈ I, the set S is
called an orthogonal system. The set S is called orthonormal system, if for
i, j ∈ I it holds (si|sj) = δi,j.

Remark A.4.8: Orthogonal systems are linearly independent. Indeed, let
S = {si | i ∈ I} ⊆ V be an orthogonal system and 0 = ∑n

i=1 α
isi. Then it

holds

0 =
( n∑
i=1

αisi

∣∣∣∣ n∑
j=1

αjsj

)
=

n∑
i=1

n∑
j=1

αi(αj)∗(si|sj) =
n∑
i=1
|αi|2(si|si),

i.e., α1 = · · · = αn = 0.

Definition A.4.9: Let V be an euclidean respectively unitary space with
dim V = n. An orthogonal system B = {b1, . . . , bn} ⊆ V is called orthogonal
basis, an orthonormal system B = {b1, . . . , bn} is called an orthonormal basis.

Remark A.4.10 (Fourier expansion): If (V, (·|·)) is an euclidean or unitary
space with orthonormal basis {b1, . . . , bn}, it holds v = ∑n

i=1(v|bi)bi for all
v ∈ V . To see this, let v = ∑n

i=1 λ
ibi ∈ V . Then we have

(v|bi) =
( n∑
j=1

λjbj

∣∣∣∣bi) =
n∑
j=1

λj(bj|bi) = λi.
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Definition A.4.11 (Isometry): Let (V, (·|·)) be a pre-Hilbert space over K
and let ‖·‖ be the induced norm. A linear map ϕ : V → V that for all v ∈ V
satisfies ‖ϕ(v)‖ = ‖v‖ is called an isometry. If ϕ is in addition surjective, it
is called unitary.
If V is finite-dimensional, isometries are also called orthogonal if K = R

respectively unitary, if K = C.

Isometries are the structure preserving maps for pre-Hilbert spaces. Note
that in the setting of Definition A.4.11, the seemingly weaker condition “For
all v ∈ V it holds ‖ϕ(v)‖ = ‖v‖” is equivalent to “For all v, w ∈ V it holds
(ϕ(v)|ϕ(w)) = (v|w)”. This follows from the polarisation identity. To this
end, isometries preserve the linear structure, norms as well as angles and thus
all structure of inner product spaces.

Remark A.4.12: Let (V, (·|·)) be a pre-Hilbert space and let ϕ : V → V be
an isometry. Then ϕ is injective. Indeed, let v, w ∈ V with ϕ(v) = ϕ(w).
Then

0 = ‖ϕ(v)− ϕ(w)‖ = ‖ϕ(v − w)‖ = ‖v − w‖,

i.e., v = w.
If V is euclidean or unitary, ϕ is thus automatically bijective (by Exam-

ple A.2.8) and one can check that ϕ−1 is an isometry as well. For general
pre-Hilbert spaces, one can give counterexamples so that the requirement for
surjectivity is indeed necessary.

Example A.4.13: Denote by (Kn, (·|·)Kn) the coordinate vector space equipped
with the canonical inner product and let A ∈Mn(K) be a matrix. Denote by
A† defined via (A†)ij := (Aji )∗ the so called hermitian transpose or conjugate
transpose of A and by A∗ defined via (A∗)ij := (Aij)∗ the conjugate of A.

The linear map ξ 7→ Aξ is orthogonal respectively unitary if and only if for
all ξ = ∑n

i=1 ξ
iei, η = ∑n

j=1 η
jej it holds

(ξ|η) = ξtη∗ = ξtAtA∗η∗ = (Aξ)t(Aη)∗ = (Aξ|Aη).

This is the case if and only if AtA∗ = In, which is the case if and only if
A†A = In.

Lemma A.4.14: Let (V, (·|·)V ) be a euclidean or unitary space with orthonor-
mal basis B = (b1, . . . , bn) and let ϕ : V → V be orthogonal respectively uni-
tary. Then, for the transformation matrix A := DB,B(ϕ) it holds A†A = In,
i.e., the map ξ 7→ Aξ is orthogonal respectively unitary.
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Proof: Again, denote by (Kn, (·|·)Kn) the coordinate vector space equipped
with the canonical inner product. Note that since B is an orthonormal basis
of V , for v = ∑n

i=1 v
ibi and w = ∑n

j=1w
jbj ∈ V it holds

(v|w)V =
( n∑
i=1

vibi

∣∣∣∣ n∑
j=1

wjbj

)
V

=
n∑
i=1

vi(wi)∗ = (DB(v)|DB(w))Kn ,

i.e., DB is an isometry. Thus, also D−1
B is an isometry. Using the commutative

diagram
V V

Kn Kn

ϕ

DB DB

A

we can check that ξ 7→ Aξ is orthogonal respectively unitary. For 1 ≤ i, j ≤ n
it holds

(Aei|Aej)Kn = (DB[ϕD−1
B (ei)]|DB[ϕD−1

B (ej)])Kn
= (DB[ϕ(bi)]|DB[ϕ(bj)])Kn = (ϕ(bi)|ϕ(bj))V = δi,j = (ei|ej)Kn ,

which we wanted to see. �

Corollary A.4.15 (on spotting isometries): Let A ∈ Mn(K). The matrix A
corresponds to a structure preserving map of euclidean respectively unitary
spaces if and only if one of the following holds:

(i) A†A = In,
(ii) The columns of A form an orthonormal basis of Kn,

(iii) The rows of A form an orthonormal basis of Kn.

Definition A.4.16: Let n be a natural number. The sets

On := {A ∈Mn(R) | AtA = In} ⊆ Gln(R),
Un := {A ∈Mn(C) | A†A = In} ⊆ Gln(C)

are called orthogonal group respectively unitary group. Both sets are indeed
groups with matrix multiplication as law of composition.

We now turn to dual spaces of euclidean or unitary spaces.
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Definition A.4.17: Let (V, (·|·)) be a pre-Hilbert space over K and let v ∈ V .
Then, the map

fv : V −→ K, w 7−→ (w|v)
is linear. We call fv the functional associated to v.

As it turns out, for euclidean and unitary spaces as well as Hilbert spaces
over K, all functionals on those spaces are of this form, i.e., there is an
isomorphism from V to V ∗. This is the famous Riesz representation theorem.

Theorem A.4.18 (Riesz representation theorem): Let (V, (·|·)) be a finite-
dimensional pre-Hilbert space over K. Then the map

j : V −→ V ∗, v 7−→ fv

is an anti-linear isomorphism, i.e., V ∼= V ∗ canonically.

To see this, we only have to convince ourselves that j is injective, the rest
is down to dimension. Let thus v, w ∈ V with fv = fw, i.e., for all u ∈ V
it holds fv(u) = (u|v) = (u|w) = fw(u). Then Remark A.4.2 ensures that
v = w and thus j is injective. Anti-linearity is easily checked.

The Riesz representation theorem provides the means for the definition of
a very important linear map to a given linear map, the so called adjoint map.

Definition A.4.19 (Adjoint map): Let V and W be euclidean or unitary
spaces and let ϕ : V → W be a linear map. Then there is one and only
one linear map ϕ† : W → V such that for all v ∈ V and w ∈ W it holds

(ϕ(v)|w) = (v|ϕ†(w)).

Fix w ∈ W and define

α : V −→ K, v 7−→ (ϕ(v)|w).

The map α is linear, since the inner product of W is linear in the first
component and ϕ is linear. By Theorem A.4.18, there is some vector uw ∈ V
such that α = fuw , i.e., (ϕ(v)|w) = (v|uw) for all v ∈ V . We now define
ϕ†(w) := uw. The assignment w 7→ ϕ†(w) is linear, since for all λ, µ ∈ K,
v ∈ V and w1, w2 ∈ W we have

(v|ϕ†(λw1 + µw2)) = (ϕ(v)|λw1 + µw2)
= λ∗(ϕ(v)|w1) + µ∗(ϕ(v)|w2) = (v, λϕ†(w1) + µϕ†(w2)).
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Since we use Theorem A.4.18 to define ϕ†, the uniqueness is clear.
For a given linear map ϕ : V → W between euclidean or unitary spaces,

we now have the maps ϕ∗ : W ∗ → V ∗ and ϕ† : W → V , who are linked in the
following way: The diagram

W V

W ∗ V ∗

ϕ†

jW jV

ϕ∗

commutes, since for all v ∈ V and w ∈ W we have

(ϕ∗(jW (w))(v) = (ϕ∗(fw))(v)
= fw(ϕ(v))
= (ϕ(v)|w) = (v|ϕ†(w)) = fϕ†(w)(v) = (jV (ϕ†(w))(v),

i.e., we have ϕ† = j−1
V ◦ ϕ∗ ◦ jW respectively ϕ∗ = jV ◦ ϕ† ◦ j−1

W .

Remark A.4.20 (Tensor product of adjoint maps): Let ϕ1 : V1 → W1 and
ϕ2 : V2 → W2 be linear maps between finite-dimensional Hilbert spaces over
K. Then, for all v1 ⊗ v2 ∈ V1 ⊗K V2 and w1 ⊗ w2 ∈ W1 ⊗KW2, it holds

((ϕ1 ⊗ ϕ2)(v1 ⊗ v2)|w1 ⊗ w2) = (ϕ1(v1)⊗ ϕ2(v2)|w1 ⊗ w2)
= (ϕ1(v1)|w1)(ϕ2(v2)|w2)
= (v1|ϕ†1(w1))(v2|ϕ†2(w2))
= (v1 ⊗ v2|ϕ†1(w1)⊗ ϕ†2(w2))
= (v1 ⊗ v2|(ϕ†1 ⊗ ϕ†2(w2)),

i.e., (ϕ1 ⊗ ϕ2)† = ϕ†1 ⊗ ϕ
†
2.
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Essentials from analysis

In this chapter, we want to recap some fundamental concepts from analysis,
in particular spaces in which we can practice analysis, convergence and
continuity, differentiability, submainfolds of Rn for some natural number
n, basics on Hilbert spaces and operators on Hilbert spaces, Hilbert space
tensor products, basics on C∗-algebras and some types of tensor products of
C∗-algebras.

1. Convergence and continuity
In this section, we deal with the concept of convergence, a concept of approx-
imation, and continuity, a property of maps between spaces in which we can
practice analysis that behaves well with continuity.
As for the spaces, the most specific setting is the setting of pre-Hilbert

spaces over K (refer to Definition A.4.1), which we already have seen to
be a special case of the setting of normed vector spaces over K (refer to
Definition A.4.4). Linear subspaces of pre-Hilbert spaces or normed vector
spaces are themselves pre-Hilbert spaces respectively normed vector spaces
with the restriction of the inner product respectively the norm to the linear
subspace.
Normed vector spaces over K are easily identified as a special case of so

called metric spaces:

Definition B.1.1 (Metric space): Let X be a set and let

d : X ×X −→ R+, (x, y) 7−→ d(x, y)

be a map. If for all x, y, z ∈ X it holds

(i) d(x, x) = 0 and d(x, y) = 0 if and only if x = y,
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(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y) + d(y, z),

the tuple (X, d) is called a metric space, the map d is called metric on X.

Note that there is no special structure presupposed on the set X. If we
take a normed vector space (V, ‖·‖) over K, we can make it into a metric
space by defining

d : V × V −→ R+, (x, y) 7−→ ‖x− y‖.

In metric spaces, we can give a quite intuitive introduction to the concepts
of convergence and continuity.

Definition B.1.2 (Convergence, Continuity): Let (X, d) be a metric space
and x be a point in X. A map x : N → X is identified with the family
(xn)n∈N ∈ XN, where xn := x(n), and is called sequence. The image x(n) for
n ∈ N is called term of the sequence.
The sequence (xn)n∈N converges to x, if for all errors ε > 0 there is some

natural number N such that d(xn, x) < ε for all natural numbers n ≥ N .
The point x is then called limit and we write xn → x or limn→∞ xn = x.

The sequence (xn)n∈N in X is convergent, if there is some limit for this
sequence.
The sequence (xn)n∈N is called a Cauchy sequence, if for all errors ε > 0

there is some natural number N such that d(xn, xm) < ε for all natural
numbers n,m ≥ N .
Let (Y, d′) be another metric space. A map f : X → Y is said to be

sequentially continuous in x, if for any convergent sequence (xn)n∈N in X
with limit x it holds: f(x) is the limit of the sequence (f(xn))n∈N in Y .

If f is sequentially continuous in every point in X, f is called sequentially
continuous.

A convergent sequence “approximates” a certain point in our metric space,
since we can undercut any “error”, i.e., distance to said point: For any error,
we find an index such that any term with index at least as high is closer to
said point. The properties of the metric grant that limits of sequences are
unique, i.e., if (xn)n∈N is a sequence in X and xn → x and xn → y, then
x = y. Note that convergent sequences are always Cauchy sequences.
Cauchy sequences are significant sequences when talking about a metric

space: The definition looks like Cauchy sequences should always converge but
in fact, they do not in general and it is a property of the metric space, if they
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always do. If Cauchy sequences always converge in a given metric space, the
space is called complete. To give an example, Q becomes a metric space with
d(x, y) := |x−y|, where |·| denotes the usual absolute value on Q, and one can
construct Cauchy sequences with rational terms that converge to irrational
numbers, namely certain roots of rational numbers (look up “Babylonian
method”). Since the limits are not contained in Q, the constructed sequences
do not converge in Q, but they do in a “bigger” metric space, namely R (with
distance d(x, y) := |x− y|).

Definition B.1.3 (Complete metric spaces): Let (X, d) be a metric space. If
every Cauchy sequence in X converges, X is called complete.
If (V, ‖·‖) is a normed vector space that is complete as metric space with

the induced metric d(x, y) := ‖x− y‖, V is called a Banach space.
If (V, (·|·)) is a pre-Hilbert space that is complete as metric space with the

metric induced by the induced norm ‖v‖ := (v|v)1/2, V is called a Hilbert
space.

Sequentially continuous maps between metric spaces behave well with
convergence. We can express the definition of sequential continuity in the
following terms: If (xn)n∈N is a convergent sequence in (X, d) with limit x,
then

f(lim
n∈N

xn) = f(x) = lim
n∈N

f(xn),

i.e., taking the limit and applying f interchange.
The reader might be more acquainted with the definition of continuity due

to Weierstraß:

Definition B.1.4 (Continuity): Let (X, d) and (Y, d′) be metric spaces, let
x be a point in X and let f : X → Y be a map. The map f is called
continuous in x, if for every ε > 0 there is δ > 0 such that if d(x, y) < δ, then
d′(f(x), f(y)) < ε.
If f is continuous in every point in X, f is called continuous.

Luckily, continuity due to Weierstraß and sequential continuity are equiva-
lent concepts in metric spaces.

Lemma B.1.5: Let (X, d) and (Y, d′) be metric spaces, let f : X → Y be a
map and let x be a point in X. Then f is continuous in x if and only if f is
sequentially continuous in x.
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Definition B.1.6 (Metric subspace): Let (X, d) be a metric space and Y be
a subset of X. Then Y turns into a metric space itself with the restriction

d|Y×Y : Y × Y −→ R+.

The restriction d|Y×Y is called induced metric and the tuple (Y, d|Y×Y ) is
called metric subspace of (X, d).

For the sake of completeness, we include the definition of structure preserv-
ing maps of metric spaces.

Definition B.1.7 (Isometry): Let (X, d) and (Y, d′) be metric spaces and let
f : X → Y be a map. If for all x, y ∈ X it holds

d′(f(x), f(y)) = d(x, y),

f is called an isometry.

We already had an encounter with (special) isometries (see Definition A.4.11)
that in fact are isometries as maps between the underlying metric spaces as
well. With a similar argument to the one used in Remark A.4.12 we see that
isometries are injective. Obviously, isometries are sequentially continuous.
If we have an isometry ι : X → Y , we can identify X with ι(X) ⊆ Y and

thus regard X as a metric subspace of Y . Often we hence write X ⊆ Y in
this case, which is clear abuse of notation. The reader might have done so
himself at some point when writing “Q ⊆ R”.
With a bit of effort, we can identify metric spaces to be a special case of

so called topological spaces:

Definition B.1.8 (Topological space): Let X be a set and let T be a subset
of the powerset of X, i.e., T ⊆ P(X) := {Y ⊆ X}. If it holds

(i) ∅ ∈ T, X ∈ T,
(ii) For two sets U, V ∈ T it holds U ∩ V ∈ T,

(iii) For a family of subsets (Ui)i∈I ∈ TI it holds ⋃i∈I Ui ∈ T,

T is called a topology on X and the tuple (X,T) is called a topological space.
The sets in T are called open, the relative complements of open sets in X are
called closed. Elements of topological spaces are often refered to as points.
For any x ∈ X, a set V ⊆ X is called a neighbourhood of x, if there is

an open set U with x ∈ U ⊆ V . If V is open itself, V is called an open
neighbourhood of x. By U(x) we denote the set of neighbourhoods of x.
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A topological space (X,T) is called Hausdorff topological space, if for any
two x, y ∈ X with x 6= y there are neighbourhoods U ∈ U(x), Y ∈ U(y) with
U ∩ V = ∅.
A subset Y ⊆ X turns into a topological space with the topology

T′ := {U | U = U ′ ∩ Y with U ′ ∈ T},

the so called relative topology. The tuple (Y,T′) is called subspace of (X,T).

To see this, we first need to define special neighbourhoods in metric spaces.

Definition B.1.9 (Balls): Let (X, d) be a metric space, let x ∈ X be a point
and let r > 0. We define the sets

B(x, r) := {y ∈ X | d(x, y) < r} ⊆ X,

cl(B(x, r)) := {y ∈ X | d(x, y) ≤ r}.

The set B(x, r) is called the open ball around x with radius r, cl(B(x, r)) is
called the closed ball around x with radius r.

Proposition B.1.10: Let (X, d) be a metric space. Then

T := {U ⊆ X | For all u ∈ U there is ε > 0 with B(u, ε) ⊆ U} ⊆ P(X)

is topology on X, and (X,T) even is a Hausdorff topological space.

Proof: First of all, we check that T is a topology.

(i) It holds ∅ ∈ T, as the statement is trivially true. We have X ∈ T,
since by definition B(x, ε) ⊆ X for all x ∈ X.

(ii) If U, V ∈ T, then U ∩ V ∈ T even more so.
(iii) Let (Ui)i∈I ∈ TI and U := ⋃

i∈I Ui. For u ∈ U , by definition there is
some i ∈ I with u ∈ Ui. As Ui ∈ T, there is some ε > 0 with B(u, ε) ⊆ Ui ⊆ U ,
i.e., U ∈ T.

For the Hausdorffness of (X,T), take points x, y ∈ X with x 6= y. Then
ε := d(x, y) > 0, B(x, ε/2) ∩ B(y, ε/2) = ∅ and obviously B(x, ε/2) and
B(y, ε/2) are non-empty open neighbourhoods of x respectively y. �

The properties “open” and “closed” can be transfered to metric spaces
using the topological definition of the terms.

We are now able to give a third definition of continuity that conincides on
metric spaces with the concepts defined beforehand, but is also applicable to
the more general setting of topological spaces.
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Definition B.1.11 (Continuity): Let (X,TX), (Y,TY ) be topological spaces,
let f : X → Y be a map and let x ∈ X be a point. The map f is continuous
in x, if for all V ∈ U(f(x)) it holds f−1(V ) ∈ U(x). If f is continuous in
every point x ∈ X, f is called continuous.

Lemma B.1.12: Let (X, d) and (Y, d′) be metric spaces and let f : X → Y be
a map. Then f is continuous as defined in Definition B.1.4 if and only if
it is continuous as defined in Definition B.1.11 (with respect to the induced
topologies on X and Y ).

Furthermore, for topological spaces we have the following characterisations
of continuous maps:

Lemma B.1.13 (Characterisation of continuous maps): Let (X,TX) as well
as (Y,TY ) be topological spaces and let f : X → Y be a map. Then f is
continuous if and only if for all V ∈ TV it holds f−1(V ) ∈ T.

Equivalently, f is continuous if and only if the preimage of any closed set
in Y is closed in X.

Continuous maps entered the scene as maps that behave well with conver-
gence, and indeed, there is a generalisation of the concept of convergence that
makes sense in topological spaces and that allows for an analogue statement
about continuous maps.

Definition B.1.14 (Filtration): Let ∅ 6= Λ be a set and let “6” be a partial
order on Λ. If for all λ, µ ∈ Λ there is ν ∈ Λ with λ 6 ν and µ 6 ν, the set Λ
is called a filtration.

Note that any two elements in a filtration are not comparable in general.

Definition B.1.15 (Net): Let (X,T) be a topogical space, let x be a point in
X and let (Λ,6) be a filtration. A family (xλ)λ∈Λ ∈ XΛ is called a net. The
net (xλ)λ∈Λ converges to x, if for every U ∈ U(x) there is λ0 ∈ Λ such that
xλ ∈ U for all λ > λ0. In this case, we write xλ → x.

Nets are often called Moore-Smith sequences in literature. There is an
equivalent concept for convergence in topological spaces (namely the concept
of filters), which we do not treat here.

Choosing (Λ,6) = (N,≤) gives back the well-known concept of sequences,
i.e., we can regard nets as a generalisation of sequences.
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Lemma B.1.16 (Continuity and convergence revised): Let (X,T), (Y,T′) be
topological spaces, let (Λ,6) be a filtration, let f : X → Y be a map and let
x be a point in X. Then f is continuous in x if and only if for every net
(xλ)λ∈Λ with xλ → x it holds f(xλ)→ f(x).

Nets and sequences also play a crucial role in the characterisation of specific
sets that are associated to subsets of topological spaces, their so called closure.

Definition B.1.17 (Interior and closure): Let (X,T) be a topological space
and let Y be a subset of X. We define

Int(Y ) :=
⋃
{U ⊆ X | U is open and U ⊆ Y },

cl(Y ) :=
⋂
{A ⊆ X | A is closed and Y ⊆ A}.

The set Int(Y ) is called the interior of Y and it is the biggest open subset
of X contained in Y , the set cl(Y ) is called the closure of Y and it is the
smallest closed set in X that contains Y .

It is easy to see that Int(Int(Y )) = Int(Y ) and cl(cl(Y )) = cl(Y ) for
all Y ⊆ X, furthermore Y ⊆ X is open respectively closed if and only if
Y = Int(Y ) respectively Y = cl(Y ). It is also useful to remember that if
A,B ⊆ X with A ⊆ B, then Int(A) ⊆ Int(B) and cl(A) ⊆ cl(B).

Lemma B.1.18 (Characterisation of closure via convergence): Let (X, d) be
a metric space and let Y be a subset of X. Then we have

cl(Y ) = {y ∈ X | There is (yn)n∈N ∈ Y N with yn → y}.

Let (X,T) be a topological space and Y be a subset of X. Then we have

cl(Y ) = {y ∈ X | Λ is a filtration and there is (yλ)λ∈Λ ∈ Y Λ with yλ → y}.

That we can make due with sequences in metric spaces and have to sidestep
to nets in topological spaces is on grounds of the fact that metric spaces
are “first countable”, while general topological spaces are not. If they are,
sequences are enough — for closures as well as continuity.
Now that we have the analogies out of the way, its time to pay attention

to the differences. In general topological spaces, there is no reason why
nets should have unique limits. In fact, it can happen that a net converges
to every point of the topological space; take for instance X to be any set
and T = {∅, X}. We do however have unique limits of nets in Hausdorff
topological spaces:
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Remark B.1.19: Let (X,T) be a Hausdorff topological space and let Λ be
a filtration. If (xλ)λ∈Λ is a net in X such that xλ → x and xλ → y with
x, y ∈ X, then x = y.

An outstanding topological concept is the concept of compactness.

Definition B.1.20 (Compactness): Let (X,T) be a topological space and let
K ⊆ X be a set. A family (Ui)i∈I with Ui ∈ T for i ∈ I and K ⊆ ⋃i∈I Ui is
called an open cover for K. If for every open cover (Ui)i∈I for K there are
indices i1, . . . , in ∈ I, where n is a natural number, such that K ⊆ ⋃nj=1 Uij ,
K is called compact. The family (Uij)1≤j≤n is called finite subcover for K.

As a generalisation of the extreme value theorem in general topological
spaces we have the following theorem:

Theorem B.1.21: Let f : X → Y be a continuous map between topological
spaces. If K ⊆ X is compact, then so is f(X) ⊆ Y .

In finite-dimensional normed vector spaces, we have a useful characterisation
of compact sets:

Theorem B.1.22 (Heine-Borel): Let (V, ‖·‖) be a finite-dimensional normed
vector space over K. A subset K ⊆ V is compact if and only if K is closed
and bounded, i.e., if there is r > 0 such that K ⊆ B(0, r).

Finally, a crucial result for the continuous functions on a compact Hausdorff
topological space is the Stone-Weierstraß theorem.

Definition B.1.23 (Unital ∗-algebra): Let K be a compact Hausdorff topo-
logical space and let A ⊆ C(K) = {f : K → C is continuous} be a subset. If
it holds

(i) If f and g are functions in A, then fg ∈ A,
(ii) If f and g are functions in A and µ and λ are complex numbers, then

λf + µg ∈ A,
(iii) If f is a function in A, then so is f ∗1.
(iv) The constant function f : K → C, a 7→ 1 is in A,

A is called a unital ∗-algebra. If for all a, b ∈ K there is f ∈ A such that
f(a) 6= f(b), A is said to separate points.

1For a function f : A→ C, the function f∗ is the point-wise complex conjugation of f ,
i.e., f∗(a) = f(a)∗ for all a ∈ K.
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With this definition, we are able to formulate the Stone-Weierstraß theorem.

Theorem B.1.24 (Stone-Weierstraß): Let K be a compact topological Haus-
dorff space and let A ⊆ C(K) be a unital ∗-algebra separating points. Then A
is dense in C(K). In particular: If A is closed, then A = C(K).

As a corollary, we get the classical theorem due to Weierstraß:

Corollary B.1.25: The algebra of real valued polynomial functions P on [0, 1],
i.e.,

P :=
{
f : [0, 1]→ R : z 7→

n∑
i=0

αiz
i, n ∈ N, αi ∈ R

}
,

is dense in CR([0, 1]).

For the sake of completeness, we mention two other types of topological
spaces that are often encountered in practice:

Definition B.1.26 (Topological groups and vector spaces): LetG be a group
and let T be a topology on G. If the maps ◦ : G × G → G and i : G → G,
g 7→ g−1 are continuous (with respect to T), the tuple (G,T) is called a
topological group.

Let V be a K-vector space and let T be a topology on V . If the maps
+: V × V → V and · : K× V → V are continuous (with respect to T), the
tuple (V,T) is called topological vector space.

Definition B.1.27 (Locally convex vector space): Let V be aK-vector space,
let P be a family of seminorms on V and let T be a topology on V . If the
topology T is generated by the seminorms, i.e., if a set U ⊆ V is open if and
only if

∀u ∈ U ∃n ∈ N ∃ p1, . . . , pn ∈ P ∃ ε1, . . . , εn > 0 :
n⋂
i=1

Bpi(u, εi) ⊆ U,

the tuple (V,T, P ) is called a locally convex vector space (over K). Here,
Bp(u, ε) := {v ∈ V | p(u, v) < ε} means the open ball with radius ε around
u with respect to the seminorm p.

Remark B.1.28: As another exception, linear maps between finite-dimensional
normed vector spaces are automatically continuous: Using Remark A.2.5, we
can retreat to matrices and for a matrix A ∈Mn×m(K),

‖A‖op := sup{‖Ax‖Kn | v ∈ Km, ‖v‖Km = 1},
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defines a norm on Mn×m(K), the so called operator norm, see Lemma I.1.2.
For a convergent sequence (xn)n∈N in Km with xn → x we have that

‖Axn − Ax‖ = ‖xn − x‖
∥∥∥∥∥A

(
xn − x
‖xn − x‖

)∥∥∥∥∥ ≤ ‖A‖op‖xn − x‖,

i.e., Axn → Ax and A is thus sequentially continuous.
However, for linear maps (then called linear operators) between infinite-

dimensional vector spaces, this does not hold true. Using Zorns lemma, one
can construct counterexamples.

To decide if a linear operator is continuous, it is enough to know if it is
continuous in one point:
Proposition B.1.29: Let (V,T) and (W,T′) be topological vector spaces and
let T : V → W be a linear map. Then the following are equivalent:

(i) T is continuous,
(ii) T is continuous in some point,

(iii) T is continuous in 0.

Here, the two implications “(i) ⇒ (iii)” and “(iii) ⇒ (ii)” are trivial. For
“(ii) ⇒ (i)” one uses the linearity of T to shift any point back to the point
where T is continuous.

And in the second step, we can give a characterisation of continuous linear
operators between normed spaces:
Theorem B.1.30: Let (V, ‖·‖) and (W, ‖·‖′) be normed vector spaces over K
and let T : V → W be a linear map. Then the following are equivalent:

(i) T is continuous,
(ii) There is a constant C > 0 such that for all v ∈ V it holds ‖Tv‖′ ≤ C‖v‖.

This motivates the following definition:
Definition B.1.31: Let (V, ‖·‖) and (W, ‖·‖′) be normed vector spaces over K
and let T : V → W be a continuous linear map. We call

‖T‖ := inf{C ≥ 0 | ‖Tv‖′ ≤ C‖v‖ for all v ∈ V }

the operator norm of T and B(V,W ) := {T : V → W | T linear, bounded}
the space of linear and bounded operators from V to W . The operator norm
turns B(V,W ) into a normed vector space over K.

In the special case V = W , we write B(V ) := B(V, V ), in the special case
W = K, we write V ′ := B(V,K).
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As a side note: It is due to historical development that continuous operators
are called bounded, since they are not really bounded but bounded on bounded
sets. If V and W are normed vector spaces and W is complete, then so is
B(V,W ) with the operator norm.

2. Differentiablity
This section deals with the concept of differentiability. We give the definition
for differentiability of functions fromK to a normed vector space overK, which
includes the well-known notion of differentiability for functions from R to R
and functions from C to C as well as the notion of differentiability for curves.
In this setting, we see two equivalent characterisations of differentiability
that separate, when we generalise to functions from normed vector spaces to
normed vector spaces.
The main goals for this section are understanding the different concepts

of differentiability that arise when generalising to maps from normed vector
spaces to normed vector spaces, the chain rule and the differentiability
criterion.

Definition B.2.1 (Limit for functions): Let ∅ 6= U ⊆ K be a subset, let
(V, ‖·‖) be a normed vector space over K, let u0 ∈ U be a contact point, i.e.,
there is a sequence (un)n∈N in U with un → u0, let f : U → V be a map and
let v ∈ V be given. If for every ε > 0 there is δ > 0 such that whenever
0 < |u− u0| < δ it holds ‖f(u)− v‖ < ε, we write

lim
u→u0

f(u) = v.

Note that if limu→u0 f(u) exists, f is continuous in u0.

Definition B.2.2 (Differentiability): Let ∅ 6= U ⊆ K be open, let (V, ‖·‖) be
a normed vector space over K, let x0 be a point in X and let f : X → V be
a map. If the limit

df

dx

∣∣∣∣∣
x=0

:= f ′(x0) := ḟ(x0) := lim
x→x0

f(x)− f(x0)
x− x0

exists, f is called differentiable at x0. We call f ′(x0) ∈ V the derivative of f
at x0. If f is differentiable in every point of X, we call f differentiable and
call the map f ′ : U → V , x 7→ f ′(x) the derivative of f .

The above definition is probably the most famous one. As it turns out,
there is another equivalent characterisation for differentiability:
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Theorem B.2.3: Let ∅ 6= U ⊆ K be open, let (V, ‖·‖) be a normed vector
space over K, let x0 be a point in U and let f : U → V be a map. The
following are equivalent:

(i) f is differentiable in x0,
(ii) There are c ∈ K and ϕ : B(0, ε)→ V such that limξ→0

1
ξ
ϕ(ξ) = 0 and

f(x0 + ξ) = f(x0) + cξ + ϕ(ξ).

In this case c = f ′(x0) and ξ 7→ cξ (respectively ξ 7→ f(x0) + cξ) is a
linear approximation of f at x0.

The property from part (ii) of Theorem B.2.3 is called linear approximablitly.
If a function from a field to a normed vector space is differentiable in a point,
the “tangent line” through that point is a good approximation for the function
in a small region around that point.
What is the same for functions from a field to a normed vector space

becomes different yet related concepts if we generalise differentiability to
functions from normed vector spaces to normed vector spaces.
The following definition stems from [2], Definition 2.3.1.

Definition B.2.4: Let E,F be normed vector spaces, let U be an open subset
of E and let f : U ⊂ E → F be a given mapping. Let u0 ∈ U . We say
that f is differentiable at the point u0 provided there is a bounded linear
map Df(u0) : E → F such that for every ε > 0, there is a δ > 0 such that
whenever 0 < ‖u− u0‖ < δ, we have

‖f(u)− f(u0)−Df(u0) · (u− u0)‖
‖u− u0‖

< ε.

Here we need a bounded linear map Df(u0) : E → F , because we need to
have sequential continuity for the definition to make sense.

The content of Definition B.2.4 embodies part (ii) of Theorem B.2.3. There
is an analogous notion to part (i) of Theorem B.2.3, namely the notion of
the directional derivative:

Definition B.2.5: Let f : U ⊂ E → F and let u ∈ U . We say f has a
derivative in the direction e ∈ E at u if

d

dt
f(u+ te)

∣∣∣∣∣
t=0

exists. We call this element of F the directional derivative of f in the direction
e in u.
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The relation between both is the following (see [2], Proposition 2.4.6):

Proposition B.2.6: If f is differentiable in u, then the directional derivatives
of f exist in u and are given by

d

dt
f(u+ te)

∣∣∣∣∣
t=0

= Df(u) · e.

The converse does not hold: If all directional derivatives of f exist in a
given point, f need not be differentiable in that point. It is easy to give
counterexamples; even in the finite-dimensional case, this is wrong.
As for nomenclature: A function whose directional derivatives in a point

exist is called Gâteaux-differentiable in said point, a function that is differen-
tiable in a point in the sense of Definition B.2.4 is called Fréchet-differentiable
in said point.
We will only deal with maps between finite-dimensional normed vector

spaces here, in fact only with maps between open sets of euclidean spaces
even. In this situation, there are particulary favourable directional derivatives,
namely those with respect to the elements of the canonical basis; and the
linear map from Definition B.2.4 can be represented via a matrix, the so-called
Jacobian.

Definition B.2.7 (Partial derivatives): Let n ∈ N, let U ⊆ Rn be open, let
(V, ‖·‖) be a normed R-vector space, let u ∈ U be a point and let f : U → V
be a function. If they exist, we call the directional derivatives

∂if(u) := ∂f

∂xi
(u) := d

dt
f(u+ tei)

∣∣∣∣∣
t=0

= lim
t→0

f(u+ tei)− f(u)
t

the partial derivatives of f in u. The function f is said to be partially
differentiable in u, if the partial derivatives ∂if(u) exist for 1 ≤ i ≤ n, f is
said to be partially differentiable, if f is partially differentiable in every point
in U and f is said to be continuously partially differentiable, if the maps
u 7→ ∂if(u) are continuous for 1 ≤ i ≤ n.

Note that if the partial derivatives in u = (u1, . . . , un) exist, they are, for
1 ≤ i ≤ n, given by

∂if(u) = lim
h→0

f(u1, . . . , ui−1, ui + h, ui+1, . . . , un)− f(u1, . . . , un)
h

,

i.e., the function f is partially differentiable in u if and only if the maps
t 7→ f(u1, . . . , ui−1, t, ui+1, . . . , un) are differentiable in ui as functions of a
real variable for 1 ≤ i ≤ n.
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For a function f : U → V from an open subset of Rn, where n is a natural
number, to a normed R-vector space (V, ‖·‖) that is differentiable in u ∈ U ,
it is easy to see that the directional derivative of f in a point u in direction
h = (h1, . . . , hn) due to Proposition B.2.6 is given by

Df(u) · h =
n∑
i=1

hiDf(u) · ei =
n∑
i=1

hi∂if(u).

Definition B.2.8 (Coordinate functions): Let n and m be natural numbers,
let U ⊆ Rn be open and let f : U → Rm be a map. For 1 ≤ j ≤ m, the map

f j := f ◦ prj : U −→ R, (x1, . . . , xn) 7−→ prj(f(x1, . . . , xn))

is called the j-th coordinate function of f .

Using the coordinate functions, a function f : U → Rm, where U ⊆ Rn is
open, can be identified with the m-tuple (f 1, . . . , fm) ∈ ∏m

i=1R
U .

Theorem B.2.9: Let n and m be natural numbers, let U ⊆ Rn be open, let u
be a point in U and f = (f 1, . . . , fm) : U → Rm be a function that is partially
differentiable in u. The matrix

∂f1

∂x1 (u) · · · ∂f1

∂xn
(u)

... . . . ...
∂fm

∂x1 (u) · · · ∂fm

∂xn
(u)

 ∈Mm×n(R)

is called the Jacobian of f in u. If f is differentiable in u, then the Jacobian
is the transformation matrix of Df(u) with respect to the standard bases in
Rn and Rm.

Just as for functions of a real variable, there is a chain rule for functions
between open sets of euclidean spaces:

Proposition B.2.10 (Chain rule): Let m, n and ` be natural numbers, let
X ⊆ Rn, Y ⊆ Rm and Z ⊆ R` be open sets. Furthermore, let f : X → Rm,
g : Y → R` be maps with f(X) ⊆ Y and let f be differentiable in x0 ∈ X,
let g be differentiable in f(x0) ∈ Y . Then the composition g ◦ f : X → R` is
differentiable in x0 as well and it holds

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0).

For the Jacobians, this means: The Jacobian of g ◦ f in x0 is the product of
the Jacobian of g in f(x0) and the Jacobian of f in x0.
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We want to finish with a crucial differentiability criterion:

Theorem B.2.11: Let n be a natural number, let U ⊆ Rn be open, let (V, ‖·‖)
be a normed R-vector space and let f : U → V be a function. Then f is con-
tinuously differentiable if and only if f is continuously partially differentiable.

This generalises to higher derivatives, but we will omit discussion of what
those are exactly.
If f : U → V is q-times continously partially differentiable, we say “f is

Cq” and write f ∈ Cq(U, V ).

3. Embedded submanifolds
This section aims at presenting a very brief overview over the main definitions
of embedded submanifolds of Rn with the main goal being Theorem B.3.10
that characterises the tangent space of an embedded submanifold at a given
point using tangent vectors of smooth curves through that point. It follows
closely the presentation of this topic from [3].

Definition B.3.1 (Immersion): Let m and n be natural numbers and let
U ⊆ Rn be open. If f : U → Rm is differentiable such that, for every u ∈ U ,
Df(u) ∈ HomR(Rn,Rm) is injective, f is called an immersion.

Note that being an immersion is a weaker requirement than being injective.
For U , the map ιU : U → Rn, x 7→ x is the canoncial embedding; obviously

ιU is an immersion.

Definition B.3.2 (Cq-chart): Let m and n be natural numbers, let U ⊆ Rn

be open, let V ⊆ U be open in U and let u0 be a point in V . Let ϕ : V → Rm

be a map. If ϕ(V ) ⊆ Rm is open, ϕ : V → ϕ(V ) is a homeomorphism, i.e., a
bijective continuous map whose inverse map is continuous as well, and the
composition g := ιU ◦ ϕ−1 is a Cq-immersion, we call ϕ an m-dimensional
(local) Cq-chart of U around u0.

We call V the chart domain, ϕ(V ) the parameter domain and g the
parametrisation of V with respect to ϕ. Sometimes we write (ϕ, V ) for
the chart and (g, ϕ(V )) for the associated parametrisation.

Definition B.3.3 (Embedded submanifold): Let m, n and q be natural num-
bers and let M ⊆ Rn be a set. If for every point x0 ∈ M there is an open
neighbourhood U (which is open inM) and an m-dimensional Cq-chart (ϕ,U)
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of M around x0, we call M an m-dimensional embedded Cq-submanifold of
Rn. A collection

A := {(ϕi, Ui)i∈I | I is an index set, ϕi is a Cq-chart of M for all i ∈ I}

of charts with M ⊆ ⋃i∈I Ui is called a Cq-atlas of M .

Definition B.3.4 (Change of charts): Let m and n be natural numbers, let
M be anm-dimensional embedded Cq-submanifold of Rn, where q ∈ N∪{∞}.
Furthermore let A = {(ϕi, Ui)i∈I} be a Cq-atlas of M . Then, for i, j ∈ I, the
maps

ϕi ◦ ϕ−1
j : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

are called changes of charts.

Proposition B.3.5: Let m and n be natural numbers, M be an m-dimensional
embedded Cq-submanifold of Rn, where q ∈ N ∪ {∞} and A = {(ϕi, Ui)i∈I}
be a Cq-atlas of M . Then, for i, j ∈ I, the change of charts ϕi ◦ ϕ−1

j is
a Cq-diffeomorphism, i.e., q-times differentiable bijective map with q-times
differentiable inverse, whose inverse is ϕj ◦ ϕ−1

i .

Definition B.3.6 (Ad-hoc definitions for Rn): Let n and ` be natural num-
bers, let X ⊆ Rn be open, let Y ⊆ R` be open, let f ∈ C1(X, Y ) be a map
and let p be a point in X. Then we call the set TpX := {p} ×Rn, equipped
with the euclidean structure

(p, v) + λ(p, w) := (p, v + λw), ((p, v)|(p, w)) := (v|w)Rn

induced by Rn, the tangent space of X at p. An element (p, v) of TpX is
called a tangent vector, sometimes denoted (v)p, and v is called the main part
of the tangent vector. The linear map

Tpf : TpX −→ Tf(p)Y, (p, v) 7−→ (p,Df(p) · v)

is called the differential of f at p.

The image of the differential Tpf can be understood as a linear approxima-
tion of f(X) at f(p).

If in the situation of Definition B.3.6, s is another natural number, Z ⊆ Rs

is another open set and g ∈ C1(Y, Z) is another map, we have the chain rule

Tp(g ◦ f) = Tf(p)g ◦ Tpf.

This follows immediately from Proposition B.2.10.
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Definition B.3.7 (Tangent space and tangent bundle): Let n and m be nat-
ural numbers, let M be an embedded m-dimensional Cq-submanifold of Rn

where q ∈ N∪{∞}, let p be a point in M , let (ϕ,U) be a chart of M around
p and (g, V ) be the associated parametrisation. Then

TpM := im(Tϕ(p)g) = Tϕ(p)(g)(Tϕ(p)V )

is called the tangent space of M at p. The elements of TpM are called tangent
vectors at M in p and the disjoint union TM := ⋃

p∈M TpM ⊆ M × Rn is
called the tangent bundle of M .

The chain rule grants that the definition of TpM is independent of the
choice of the chart (ϕ,U) of M around p: If we consider another chart (ϕ′, U ′)
of M around p, we have the diagram

TpR
n

Tϕ(p)V Tϕ′(p)V

Tϕ(p)g

Tϕ(p)(ϕ′◦ϕ−1)

Tϕ′(p)g
′

which is commutative.
For open sets M ⊆ Rn, the definitions of tangent space in Definition B.3.6

and Definition B.3.7 coincide.
Due to our requirements for charts and parametrisations, dimTpM = m

holds for all p ∈M .

Definition B.3.8: Letm and n be natural numbers, letM be anm-dimensional
embedded Cq-submanifold of Rn, where q ∈ N ∪ {∞}, let p be a point in
M , let (ϕ,U) be a Cq-chart of M around p and let (g, V ) be the associated
parametrisation. For 1 ≤ j ≤ m, let ε > 0 be such that ϕ(p) + tej ∈ V for
|t| < ε. Then the path

γj : (−ε, ε) −→M, t 7−→ g(ϕ(p) + tej)

is called the j-th coordinate path.

Proposition B.3.9: Let m and n be natural numbers, let M be an m-dimen-
sional embedded Cq-submanifold of Rn, where q ∈ N ∪ {∞}, let p be a point
in M , let (ϕ,U) be a Cq-chart of M around p and let (g, V ) be the associated
parametrisation. Then {γ̇j(0) | 1 ≤ j ≤ m} ⊆ TpM is linearly independent
with

Lin({γ̇j(0) | 1 ≤ j ≤ m}) = TpM,

i.e., the set {γ̇j(0) | 1 ≤ j ≤ m} is a basis of TpM .
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This is true, since dimTpM = m and the derivative of the j-th coor-
dinate path in 0 is the j-th column of the Jacobian of Tϕ(p)g — due to
our requirements to charts, the set of columns of this Jacobian is linearly
independent.
We even can give the following (more general) characterisation of the

tangent space in a point p ∈M , which justifies the name “tangent space”:

Theorem B.3.10: Letm and n be natural numbers, letM be anm-dimensional
embedded Cq-submanifold of Rn, where q ∈ N ∪ {∞}, let p be a point in
M , let (ϕ,U) be a Cq-chart of M around p and let (g, V ) be the associated
parametrisation. Then we have the following characterisation of TpM :

TpM = {(v)p ∈ TpRn | There are ε > 0 and γ ∈ C1((−ε, ε),M)
such that γ(−ε, ε) ⊆M , γ(0) = p, γ̇(0) = v}.

A more general notion, in contrast with that of an embedded submanifold
of Rn, is the notion of a differentiable manifold. Basically all the ideas
presented here transfer to these objects, one just has to pay more attention
when defining things like the tangent space, because there is no surrounding
vector space anymore and thus, one has to use intrinsic data of the manifold
to define these notions.

Definition B.3.11 (Smooth manifold): An n-dimensional topological mani-
fold is a Hausdorff topological space M which is locally euclidean, i.e., each
point x ∈M has an open neighbourhood that is homeomorphic to an open
subset of Rn.
A (local) chart (U,ϕ) of M consists of an open subset U ⊆ M and a

homeomorphism ϕ : U → ϕ(U) ⊆ Rn.
A family A = {(Ui, ϕi) | i ∈ I} of charts satisfying M = ⋃

i∈I Ui is called
an atlas of M . The homeomorphisms ψi,j : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) given
by ψi,j := ϕj ◦ ϕ−1

i |ϕi(Ui∩Uj) are called changes of chart.
An atlas A of M is called smooth if all its transition maps are smooth,

i.e., arbitrarily often differentiable. A chart (U,ϕ) is said to be smooth with
respect to a smooth atlas A, if A∪{(U,ϕ)} is again a smooth atlas. A smooth
atlas A is called maximal, if every chart (U,ϕ) that is smooth with respect
to A already belongs to A. Every smooth atlas A induces a maximal one by

Amax := {(U,ϕ) | (U,ϕ) is a chart smooth with respect to A}.

An n-dimensional smooth manifold is an n-dimensional topological manifold
M with a maximal smooth atlas A.
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4. Hilbert spaces
In analysis, often times one works with normed vector spaces that are infinite-
dimensional, e.g., function spaces. Most often, Banach and Hilbert spaces
are encountered. To develop a similar theory as in the finite-dimensional
setting, one has to consider topological aspects. As it turns out, many results
transfer because the maps behave nicely with the topology – for example, the
canonical embedding of a normed vector space into its dual space (equipped
with the dual norm) is isometric and thus continuous. Many central theorems
rely on the important Hahn-Banach type theorems that grant extensions
of linear maps defined on subspaces of normed vector spaces under certain
circumstances and separations of certain subsets of locally convex vector
spaces in terms of continuous functionals under certain circumstances.
Infinite-dimensional Hilbert spaces behave similarly to finite-dimensional

Hilbert spaces, i.e., euclidean and unitary spaces. Just like for euclidean and
unitary spaces, Hilbert spaces are canonically isomorphic to their (in this case
topological) dual spaces and many constructions like the adjoint operator
(see Definition A.4.19) carry over to the infinite-dimensional setting.

Due to Baire’s theorem, there is no infinite-dimensional Banach space (and
thus in particular, no infinite-dimensional Hilbert space) with a countable
vector space basis, meaning vector space bases in this case are quite useless. To
end up with a more useful notion of “basis”, one has to soften the requirements
a bit to end up with the more useful notion of “orthonormal basis”.

Hilbert spaces are of vital importance for the understanding of C∗-algebras,
which is what we need them for.

Remark B.4.1: Let M ⊆ H be a subset of the Hilbert space H over K. We
already established that M⊥ is a linear subspaces of H. In addition, M⊥

also is closed: For a sequence (xn)n∈N in M⊥ with xn → x we have for all
m ∈M that

(x|m) = ( lim
n→∞

xn|m) = lim
n→∞

(xn|m) = 0,

i.e., x ∈M⊥. Hence it holds cl(M) ⊆M⊥⊥.
In fact, one can show that ifM is a linear subspace, then alsoM⊥⊥ ⊆ cl(M)

holds, i.e., M⊥⊥ = cl(M).

In Hilbert spaces, the distance to a closed convex subset always is realised,
i.e., if A ⊆ H is a convex subset and x ∈ H − A is some vector, there is
x0 ∈ A such that dist(x,A) = inf{‖x− a‖ | a ∈ A} = ‖x−x0‖. Furthermore,
if A is a linear subspace as well, it holds x − x0 = dist(x,A) if and only if
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x−x0 ∈ A⊥. Those are the ingredients we need for the proof of the projection
theorem:

Theorem B.4.2 (Projection Theorem): Let H be a Hilbert space over K and
let K ⊆ H be a closed linear subspace. Then we have H = K ⊕ K⊥, i.e.,
every element x ∈ H has a unique decomposition x = x1 + x2 with x1 ∈ K
and x2 ∈ K⊥. The parts xi are called best approximations of x in Ki for
i ∈ {1, 2}.

We remind of Definition B.1.31, where we defined the normed space of
bounded linear operators between two normed spaces.
To transfer the Riesz Representation Theorem, we need to think about

the topological part of the statements Definition A.4.17 and Theorem A.4.18:
The associated functional fv to v ∈ H is linear, as we already know, but due
to the Cauchy-Schwarz inequality it is also bounded with ‖fv‖ = ‖v‖, i.e.,
an element of the topological dual space of H ′. This makes j an isometry (it
holds ‖j(v)‖ = ‖fv‖ = ‖v‖ for all v ∈ H).

Theorem B.4.3 (Riesz representation theorem): Let H be a Hilbert space
over K. Then the map

j : H −→ H ′, v 7−→ fv := (w 7→ (w|v))

is an isometric anti-linear isomorphism, i.e., H ∼= H ′ canonically.

For the proof, we only have to take care of surjectivity, which we got for
free in the finite-dimensional setting. Therefore we take f ∈ H ′, decompose
H = ker f ⊕ ker f⊥ and construct a vector v ∈ H such that fv(w) = f(w) for
all w ∈ H.

We note that the proof for the existence of the adjoint map, in this setting
called adjoint operator, goes through word-for-word for Hilbert spaces, too,
since we only needed the Riesz representation theorem that also holds for
Hilbert spaces. Some easy properties of the adjoint are collected the following
lemma, which can be found in [23], Satz V.5.2:

Lemma B.4.4: Let H1, H2, H3 be Hilbert spaces over K, let λ ∈ K, let
S, T ∈ B(H1, H2) and let R ∈ B(H2, H3). Then it holds

(i) (S + T )∗ = S∗ + T ∗,
(ii) (λS)∗ = λ∗S∗,

(iii) (RS)∗ = S∗R∗,
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(iv) S∗ is continuous, i.e., S ∈ B(H2, H1), with ‖S∗‖ = ‖S‖,
(v) S∗∗ = S,

(vi) ‖SS∗‖ = ‖S∗S‖ = ‖S‖2,
(vii) kerS = imS∗⊥, imS = kerS∗⊥; in particular S is injective if and only

if imS∗⊥ is dense in H1.

In the special case H1 = H2, the properties of the adjoint mean that the
map

∗ : B(H,H) −→ B(H,H), S 7−→ S∗

is an anti-linear isometry, i.e., continuous in particular.

Definition B.4.5: Let H be a Hilbert space over K and let A ∈ B(H).

(i) A is called selfadjoint (sometimes hermitian), if A = A∗,
(ii) A is called normal, if AA∗ = A∗A,

(iii) A is called isometry, if A∗A = idH ,
(iv) A is called unitary, if A∗A = AA∗ = idH , i.e., A−1 = A,
(v) A is called orthogonal projection, if A = A∗ = A2,

(vi) A is called partial isometry, if A = AA∗A.

Compared to the finite-dimensional setting, we now have to distinguish
between unitaries and isometries (see Definition A.4.11).

A partial isometry P can be characterised in the following way: There is a
subspace K ⊆ H such that P |K : K → P (K) is an isometry and P |K⊥ ≡ 0.
The compositions P ∗P and PP ∗ both are orthogonal projections, P ∗P is
called the initial projection, PP ∗ is called the final projection.

The relation between orthogonal projections and closed linear subspaces K
of a Hilbert space H is the following: If K is a closed linear subspace, then
there is an orthogonal projection P ∈ B(H) such that imP = K, kerP = K⊥.
If P ∈ B(H) is an orthogonal projection, it is easy to see that imP is closed
and we know from Lemma B.4.4 that kerP = imP⊥, i.e., H = kerP ⊕ imP .

On the bounded linear operators, there are different notions for convergence.

Definition B.4.6: Let H be a Hilbert space over K, let (Tn)n∈N be a sequence
in B(H) and let T be a bounded linear operator on H. By ‖·‖ denote the
operator norm on B(H).

(i) The sequence converges uniformly to T , if ‖Tn − T‖ → 0.
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(ii) The sequence converges strongly to T , if Tnξ → Tξ for all ξ ∈ H.
(iii) The sequence converges weakly to T , if (Tnξ|η)→ (Tξ|η) for all ξ, η ∈ H.

Note that (iii) from Definition B.4.6 can be rephrased to “(Tnξ|ξ)→ (Tξ|ξ)
for all ξ ∈ H” due to the polarisation identity.

Remark B.4.7 (Operator topologies in finite dimension): If a sequence of
operators (Tn)n∈N converges uniformly to an operator T , then (Tn)n∈N con-
verges strongly to T and if (Tn)n∈N converges strongly to T , then (Tn)n∈N
converges weakly to T .
If the Hilbert space H is finite-dimensional, all notions for convergence

from Definition B.4.6 coincide, since weak convergence then implies uniform
convergence. This can be seen like this: If n is a natural number and H is
an n-dimensional Hilbert space over K equipped with an orthonormal basis
(b1, . . . , bn), any operator T on H can be identified with its transformation
matrix D(T ) := DB,B(T ) in Mn(K).
If now (Tn)n∈N converges weakly to T , for i, j ∈ Nn we in particular have

(Tnbi|bj) = (D(Tn)ei|ej) = D(Tn)ij → D(T )ij = (D(T )ei|ej) = (Tbi|bj),

i.e., we have componentwise convergence for the transformation matrices and
thus ‖D(Tn)−D(T )‖op → 0, which means Tn → T .

The strong and weak convergence allow for the definition of locally convex
topologies (see Definition B.1.27) on B(H): For ξ ∈ H, the maps

pξ : B(H) −→ [0,∞), T 7−→ ‖Tξ‖,
qξ : B(H) −→ [0,∞), T 7−→ |(Tξ|ξ)|

are seminorms on B(H) (see Definition A.4.4). The topologies declared by
the families (pξ)ξ∈H , (qξ)ξ∈H are called strong operator topology respectively
weak operator topology.

In the finite-dimensional setting, since all notions for convergence coincide,
they induce the same topologies. In the infinite-dimensional setting, the weak
operator topology is finer than the strong operator topology which is finer
than the topology induced by the operator norm.

Definition B.4.8 (Orthonormal basis): Let (H, (·|·)) be a Hilbert space, let
I be an index set and let {ei | i ∈ I} be an orthonormal system. If it holds
cl(Lin({ei | i ∈ I})) = H, we call the orthonormal system {ei | i ∈ I} an
orthonormal basis of H. If the index set I is countable, H is called separable
Hilbert space.
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With this new notion of orthonormal bases, we have a handy generalisation
of Remark A.4.10:

Proposition B.4.9: Let (H, (·|·)) be a Hilbert space, let {ei | i ∈ I} be an
orthonormal basis of H and let v ∈ H be a vector. Then it holds

v =
∑
i∈I

(v|ei)ei, ‖v‖2 =
∑
i∈I
|(v|ei)|2.

Since we made no assumptions on the index set in Definition B.4.8, we
could end up having to consider not only series, but summable families even.
Luckily, in a summable summable family, only countably many terms are non-
zero, so series are sufficient. More precisely: For each element v of H, there is
a countable subset J of our index set I such that ∑i∈I(v|ei)ei = ∑

j∈J(v|ej)ej .
If a Hilbert space has an orthonormal basis, every other orthonormal basis

of said Hilbert space has the same cardinality. This cardinality is then called
the Hilbert space dimension. Two Hilbert spaces are isomorphic if and only if
they have the same Hilbert space dimension.

On the other hand, each Hilbert space allows for an orthonormal basis; this
statement is proven using Zorns lemma. For each separable Hilbert space,
one can construct an orthonormal basis using the Gram-Schmidt algorithm.

5. Hilbert space tensor products
Remark B.5.1: (i) Let (H1, (·|·)1) and (H2, (·|·)2) be (complex) Hilbert
spaces. On their algebraic tensor product (over C)

H1 ⊗H2 =
{ n∑
i=1

ξi ⊗ ηi : n ∈ N, ξi ∈ H, ηi ∈ H
}

we may introduce an inner product (·|·), which is uniquely determined by

(ξ1 ⊗ η1|ξ2 ⊗ η2) := (ξ1|ξ2)1(η1|η2)2

for all ξ1, ξ2 ∈ H1; η1, η2 ∈ H2. This yields a pre-Hilbert space, whose
completion will be denoted by H1 ⊗̂H2 and is called the Hilbert space tensor
product of H1 and H2.

(ii) If (ξi)i∈I and (ηj)j∈J are orthonormal bases of H1 and H2 respectively,
then (ξi ⊗ ηj)(i,j)∈I×J is an orthonormal basis of H1 ⊗̂H2.
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(iii) If x ∈ B(H1) and y ∈ B(H2) are given, then there is a linear operator
x⊗ y : H1 ⊗K H2 → H1 ⊗K H2 such that for all ξ ∈ H1, η ∈ H2 it holds

(x⊗ y)(ξ ⊗ η) := (xξ)⊗ (yη).

This operator extends uniquely to an operator x ⊗̂ y ∈ B(H1 ⊗̂ H2) with
‖x ⊗̂ y‖ = ‖x‖‖y‖.

6. Operator algebras
In this section, we will introduce the concept of C∗-algebras, discuss how
C∗-algebras can be understood, define what universal C∗-algebras are and
talk about tensor products of C∗-algebras.

There are two (as it turns out, but this requires work) equivalent definitions
for C∗-algebras.

Definition B.6.1 (C∗-algebra): Let (A, ‖·‖) be a Banach algebra over K, i.e.,
an algebra over K that as a K-vector space is a complete normed space such
that for all a, b ∈ A it holds ‖ab‖ ≤ ‖a‖‖b‖. If there is an anti-linear map
∗ : A→ A that, for all a, b ∈ A, satisfies

a∗∗ = a, (ab)∗ = b∗a∗, ‖a∗a‖ = ‖aa∗‖ = ‖a‖2,

A is called a C∗-algebra. If A is unital as algebra, A is called a unital
C∗-algebra.
If A and B are C∗-algebras and ϕ : A→ B is a linear map that respects

the algebra structure and the involution, i.e., for all a, b ∈ A it holds

ϕ(ab) = ϕ(a)ϕ(b), ϕ(a∗) = ϕ(a)∗,

ϕ is called a ∗-homomorphism.

Definition B.6.2 (C∗-algebra): Let H be a Hilbert space over K and let
A ⊆ H be a subalgebra. If A is closed with respect to the topology on B(H)
induced by the operator norm and if ∗(A) ⊆ A, then A is called a C∗-algebra.

Remark B.6.3: One standard example of a C∗-algebra is the algebra of
bounded linear operators on a Hilbert space (see Lemma B.4.4). The Gelfand-
Naimark-Segal construction grants that any C∗-algebra can be embedded
into the bounded linear operators on some Hilbert space H. This theorem is
the reason, why Definition B.6.1 and Definition B.6.2 coincide. It is useful
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however, to have the abstract definition at hand. Firstly because a C∗-algebra
doesn’t travel with a Hilbert space in whose bounded linear operators it can
be embedded into and secondly, because it allows for interesting constructions.
Important for what we want to do with C∗-algebras is the theorem of

Gelfand-Naimark that characterises commutative C∗-algebras: If A is a
commutative unital C∗-algebra, then there is some compact Hausdorff space
K such that A ∼= C(K), i.e., commutative unital C∗-algebras arise as algebras
of continuous functions on some compact Hausdorff space.

Definition B.6.4 (Ideal): Let A be a C∗-algebra and let I ⊆ A be a linear
subspace. If I is closed under multiplication with elements from A from
the left respectively from the right, i.e., AI = {ai | a ∈ A, i ∈ I} ⊆ I,
IA = {ia | i ∈ I, a ∈ A} ⊆ I respectively, then I is called a left ideal in A
respectively a right ideal in A. If I is both a left- and a right ideal, then I is
called a two-sided ideal in A. If I is a closed two-sided ideal in A, we write
I / A.

If A is a C∗-algebra and M ⊆ A is any subset, then

〈M〉 :=
⋂
{I ⊆ A | I is a two-sided ideal with M ⊆ I}

is the smallest two-sided ideal in A that contains M , the so-called ideal
generated by M .
Construction B.6.5 (Universal C∗-algebra): Let I be an arbitrary index set,
let E := {xi | i ∈ I} be a set of generators, let E∗ := {x∗i | i ∈ I} be the set
of adjoints and

P (E) := 〈{xα1
i1 · · ·x

αk
ik
| i1, . . . , ik ∈ I, αi ∈ {1, ∗}, xi ∈ E for i ∈ I}〉

be the involutive C-algebra of non-commutative polynomials in E∪E∗, where
(λxi1 · · ·xik)∗ := λ∗x∗i1 · · ·x

∗
ik
.

For a subset R ⊆ P (E), denote by J(R) the two-sided ideal in P (E)
generated by R and put A(E,R) := P (E)/J(R), the so-called universal
involutive algebra with generators E and relations R. For x ∈ A(E,R), put

‖x‖ := sup{p(x) | p is a C∗-seminorm on A(E,R)},

where p : A(E,R) −→ [0,∞) is a C∗-seminorm, if for all x, y ∈ A(E,R) and
λ ∈ C it holds p(λx) = |λ|p(x), p(x+ y) ≤ p(x) + p(y), p(xy) ≤ p(x)p(y) and
p(x∗x) = p(x)2. If for all x ∈ A(E,R) it holds ‖x‖ ≤ ∞, the completion

C∗(E|R) := cl‖·‖({A(E,R)/{x ∈ A(E,R) | ‖x‖ = 0}})

is called the universal C∗-algebra with generators E relations R.
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As opposed to the tensor product of vector spaces, the universal C∗-algebra
with generators E and relations R does not always exist. But there is a useful
criterion to determine, if it does:

Lemma B.6.6: Let E = {xi | i ∈ I} be a set of generators and let R ⊆ P (E)
be the involutive C-algebra of non-commutative polynomials in E∪E∗. If there
is a constant C > 0 such that p(xi) < C for all i ∈ E and all C∗-seminorms
on A(E,R), then C∗(E|R) exists, i.e., for all x ∈ A(E,R) it holds ‖x‖ <∞.

The universal C∗-algebra with generators E and relations R has the fol-
lowing universal property:

Theorem B.6.7: Let E = {xi | i ∈ I} be a set of generators, let R ⊆ P (E)
be the involutive C-algebra of non-commutative polynomials in E ∪ E∗ and
assume that C∗(E|R) exists. If B is another C∗-algebra and E ′ := {yi | i ∈ I}
is a subset of B such that E ′ satisfies the relations R, there is a unique ∗-
homomorphism ϕ : C∗(E|R)→ B with ϕ(xi) = yi.

Finally, one can “build” new C∗-algebras from old ones via tensor products.
As for Hilbert space tensor products, C∗-algebra tensor products are certain
completions of the algebraic tensor product of C∗-algebras. However, for
C∗-algebras, there are far more norms available, with respect to which one
can complete the algebraic tensor product.

Definition B.6.8: Let A and B be C∗-algebras, let H and K be Hilbert spaces
and let π1 : A→ B(K), π2 : H → B(K) be two faithful representations, which
in this context means injective ∗-homomorphisms.

The algebraic tensor product A1 ⊗K A2 has a unique involution such that
a∗ ⊗ b∗ = (a⊗ b)∗ for all elementary tensors, making A⊗K B an involutive
algebra.
The following declares norms on A⊗K B:

(i) ‖∑n
i=1 ai ⊗ bi‖min := ‖∑n

i=1 π1(a)⊗ π2(b)‖,
(ii) ‖x‖max := sup{‖π(x)‖ | π : A⊗K B −→ B(H) is a ∗-homomorphism}.

The completions A⊗min B := cl‖·‖min(A⊗K B), A⊗max B := cl‖·‖max(A⊗K B)
are called the minimal tensor product (sometimes spatial tensor product)
respectively maximal tensor product of A and B.

It is noteworthy that the definition of the norm in (i) does not depend on
the representations π1, π2, see [8], Remark 3.3.6.
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