
Saarland University
Faculty of Mathematics and Computer Science

Master’sThesis

Modeling Peano Arithmetic in
Constructive Type Theory

Undecidability and Tennenbaum’s Theorem

Author
Marc Hermes

Advisors
Dominik Kirst

Prof. Dr. Moritz Weber

Reviewers
Prof. Dr. Moritz Weber
Prof. Dr. Gert Smolka

Submitted: 23th November 2021

ii

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 23th November, 2021

Abstract

Gödel’s first incompleteness theorem entails that the first-order theory of Peano arith-
metic (PA) and its consistent extensions admit a wealth of independent statements.
By the completeness theorem then, PA cannot be categorical, meaning it does not
posses a unique model up to isomorphism. A theorem by Stanley Tennenbaum how-
ever tells us that if we restrict our attention to computable models, first-order PA is
categorical with regards to this class of models.

In this thesis we develop the first-order theory of PA inside of a constructive type
theory to revisit and study Tennenbaum’s theorem in this constructive setting. This
approach allows for a synthetic viewpoint of computability and we can furthermore
consistently assume Church’s thesis, making it possible to farther abstract from many
details in computability arguments. As an additional result, we establish the unde-
cidability of PA via a reduction to the solvability of Diophantine equations. Both
parts have been verified in the Coq proof-assistant.

Acknowledgements

I am deeply indebted to Prof. Dr. Moritz Weber who picked up on my interest for
mathematical logic and gave me the opportunity to write a thesis on this topic. He
brought the Programming Systems Lab (PSL) to my attention; a computer science
chair “right across the street” involved with the Coq proof-assistant.

I am particularly grateful for the assistance given by Dominik Kirst, who took the
time to answer the numerous questions I had when I started learning Coq, and was
invaluable as an advisor during this thesis, most notably regarding his guidance and
many helpful comments and discussions.

I would also like to express my special thanks to Prof. Dr. Gert Smolka who crucially
made this interdisciplinary thesis possible and I am very grateful for everything I
learned during his lectures and the time at the PSL.

Finally, I also want to thank Mirko Stappert and Friedrich Günther for their feedback
on earlier drafts and fruitful discussions.

ix

“Immediately after making this statement, Royal realized that it was true.”
—Wes Anderson, The Royal Tenenbaums

Contents

Abstract v

1 Introduction 1

2 On Constructive Type Theory 3
2.1 Constructive Type Theory as a Foundation for Mathematics 3
2.2 A Primer on Type Theory . 8

2.2.1 Simply-typed λ-Calculus . 9
2.2.2 Dependent Type Theory . 12
2.2.3 Base Types . 16
2.2.4 Propositions as Types . 19
2.2.5 The Type of Propositions . 20

2.3 The Coq Proof-Assistant . 24

3 First-Order Logic 27
3.1 Syntax and Natural Deduction . 27
3.2 Semantics . 29
3.3 Peano Arithmetic . 30

4 Synthetic Computability 33

5 Undecidability of Peano Arithmetic 35
5.1 Computing on Numerals . 35
5.2 Undecidability . 37

6 Tennenbaum’s Theorem 41
6.1 Church’s Thesis . 43
6.2 Inseparable r.e. Sets . 45
6.3 Some Number Theory and Finite Coding 46
6.4 Basic Peano Arithmetic . 50
6.5 Standard Models . 53

xii Contents

6.6 Overspill and Infinite Coding . 54
6.7 Tennenbaum’s Theorem . 56
6.8 Variants of Tennenbaum’s Theorem . 57

6.8.1 Circumventing Overspill . 58
6.8.2 Variant by McCarty . 59

7 Conclusion 61
7.1 Discussion . 61
7.2 Coq Mechanization . 63
7.3 Related Work . 64
7.4 Future Work . 64

A Appendix 67

Bibliography 68

Chapter 1

Introduction

The natural numbers are some of the most fundamental objects in mathematics with
well established and time-proven formalizations like Peano arithmetic (PA). It gives a
description of the natural numbers as a first-order theory, with axioms describing the
computational behavior of numbers and how the truth of a property can be shown
for all numbers. Most importantly PA succeeds in its goal to describe the natural
numbers, as witnessed by the fact that N is a model of this first-order theory. But the
success of PA goes much further. All of modern number theory can in principle be
based on PA; integers Z and rational numbers Q can be defined inside of the theory.
Fragments of second-order PA have been used as a basis to study the exact strength
of theorems, by tracing back the necessary axioms to prove them, in a program called
reverse mathematics [18]. Furthermore PA is expressive enough to encode many stan-
dard data structures, as well as recursive functions and computations, allowing the
encoding of proofs about PA “inside of PA”. This idea was developed by Gödel and
used to fruition in his seminal incompleteness theorem (1931), showing that expres-
siveness of this magnitude also comes with drawbacks [20]. He explicitly constructed
a sentence G in the language of PA which is true in N and yet neither G nor ¬G can
be deduced from the axioms; establishing that the theory is incomplete.

Another perspective on incompleteness arose shortly thereafter (1936) in the form of
the then new theory of computation. Church [5] and Turing [51] independently gave
a negative answer to the Entscheidungsproblem, which asked about the possibility
of an algorithm which could decide whether any given mathematical statement was
universally valid or not. Therefore, no matter the proposed algorithm, it must have a
blind spot in the form of a formula ϕ such that it never yields a result upon inputting
ϕ or ¬ϕ.

The incompleteness result has repercussions on the model theory of PA as well. By
the completeness theorem, the unprovability of G entails that there must be a model
M of PA in which G is not true. Since G is true in N, the modelM must therefore
differ from N. This shows that the grasp of PA on what the natural numbers are is

2 Introduction

not quite as firm as maybe hoped for. Since the incompleteness theorem allows the
same construction to be made on any consistent extension of PA, there is no hope
for adding axioms with the goal to sieve out all models except the desired one, i.e.
making the theory categorical.

The situation changes however if we restrict our attention to a subclass of models. In
1959 Stanley Tennenbaum [47] showed that requiring the models to be countable and
computable, in the sense that their arithmetic operations are computable, they can
no longer differ from the standard model. This further underlines the strangeness of
non-standard models.

In this thesis we will look at a proof of this theorem, which is usually carried out in
classical logic with set-theoretic foundations, and will reconsider it in a constructive
type theory. This allows for a synthetic approach to computability [1, 39] and for
consistently assuming anti-classical axioms like Church’s thesis, to further streamline
the treatment of computability. This investigation is accompanied by a mechanization
of the presented proofs, which was realized in the Coq proof assistant.

Contributions: This thesis makes the following contributions:

• To the best of our knowledge it contains the first mechanized proof of Tennen-
baum’s Theorem.

• Mechanization and discussion of two additional variants of Tennenbaum’s the-
orem [23, 32, 33].

• Identifying a finite fragment of PA which is shown undecidable. This entails a
synthetic incompleteness proof of PA, further discussed in [28].

• The undecidability proof was also mechanized and been made part of the Coq
library of undecidability proofs [16].

Structure: The thesis is divided into two parts which can be read independently.

The first part consists of Chapter 2 and gives an introduction into the constructive
type theory (CTT) which serves as the meta-theory for the second part of the thesis.
This is mainly geared towards readers unfamiliar with constructive logic and can
safely be omitted by those familiar with the subject.

The second part starts with Chapter 3, where we define first-order logic inside of the
meta-theory and use this to specify the first-order theory of PA which is then the object
of study for the remaining chapters. Chapter 4 introduces the synthetic approach to
computability theory available in CTT, which is then first used in Chapter 5 to show
the undecidability of a finite fragment of PA. In Chapter 6 we present a constructive
proof of Tennenbaum’s theorem based on [44] followed by variants of the proof and
the theorem based on [23, 32, 33].

Chapter 2

On Constructive Type Theory

2.1 Constructive Type Theory as a Foundation for Mathematics

When considering the foundations of mathematics, there are two main features which
are desireable:

• it should provide a system surveyable enough to trust that it is free of contra-
dictions,

• yet powerful enough to express all of the objects and intuitive notions that a
mathematician might come up with.

Both points ensure that the mathematician is not limited in his practice, and can at
the same time be confident of the correctness of his results. The most commonly used
foundation certainly is Zermelo–Fraenkel set theory (ZF) [25]. The goal of set theory
is to formalize the concept of a set by fixing intuitively appealing axioms about sets
and the relation ∈ on sets. These concepts are taken as primitive 1, all other concepts
being defined in terms of sets and ∈, and new theorems are derived from the axioms
in the logical framework of first-order logic. There are however other foundations for
mathematics. Relevant for this thesis are modern type theories, in which the concept
of functions an types are taken as primitives. Contrary to set theory, where every
object is a set, type theories formalize a way to separate objects into different bins by
assigning them different types. This allows a restriction of functions such that they
can only be applied to elements of one specific type. Maybe surprisingly this is not
the case in set-theory. Here, any function can be applied to any object i.e. set.

To further illustrate the latter point, we look at the definition of functions in set
theory. Intuitively, a function f from A to B is something that relates any object x

1We designate a symbol as primitive if it is part of the language of a theory by definition. This
is in contrast to symbols which are introduced as a shorthand for new constructions / definitions
inside of the theory.

4 On Constructive Type Theory

from A to a unique object y from B, then usually written as fx = y 2. In set theory
this idea of functions is made precise by saying that a function is a total, functional
relation Rf on the sets A and B, where the relation Rf itself is a subset of the product
of sets A×B 3, and fx = y is then notation for (x, y) ∈ Rf . No matter the function
f then, we can always ask the question wether it maps the set {∅} to ∅, since this is
equivalent to ({∅}, ∅) ∈ Rf .

For a second example showcasing that mathematical intuitions are not always met in
set theory, we can look at the natural numbers. In the most common set-theoretic
definition, the natural numbers are recursively defined by 0 := ∅ and the successor
function Sn :=n∪{n}. The existence of the set of natural numbers N is built into set
theory, as it can be derived from the infinity axiom ∃N. 0 ∈ N∧∀n. n ∈ N → Sn ∈ N ,
stating the existence of a set N containing 0 and being closed under S. Sets with
this property are also called inductive. The set N is then defined as the (by virtue
of the axiom, non-empty) intersection of all inductive sets, and its uniqueness can
be shown from the other axioms. By construction, every element of N is itself a set,
which means that 20 ∈ 21 is a perfectly fine (and in in this case provable) statement
of ZF.

This last observation contradicts the intuition that it should not be possible to put
two numbers into relation using ∈; this should only work for sets. The underlying
instinct is that sets and numbers are indeed of different types, and a relation like ∈
should only be defined when the right object has the type set, and not for objects of
type natural number. As mentioned before, this idea of assigning types to objects,
to get the desired restrictions on relations and functions on them, is the fundamental
idea behind type theories of any kind. Setting up a type theory usually means to
start with a universe 4 of types T, define some base types like the type of booleans
B, natural numbers N and function types. These are definitionally made part of T.
One then turns to describe how elements of these types are generated. To indicate
that some object x has the type T the canonical notation is x : T 5. In the case
of N, one would add the axioms expressing that 0 has type N and that there is a
successor function S : N → N, which freely generates elements of N by applying S
repeatedly; S0, SS0, SSS0, . . . Overall, the expressiveness of many type theories is on
a level making them well-suited as a foundation for mathematics.

The foundational language is however not the only part usually going more or less
unnoticed [3]. Another undeniable part of mathematical practice is to use deduction

2The more conventional notation is f(x) = y. We will stick however to the notation fx = y as
used in type theories to express the application of f to x.

3Where the product × is not primitive to set theory but defined using the axioms.
4“universe” is to be read as an intuitive notion, used to express a collection of types.
5Coming from set theory, it is helpful to think of x : T as expressing x ∈ T . The correspondence

is not exact, as illustrated by the arguments mentioned before.

2.1. Constructive Type Theory as a Foundation for Mathematics 5

–or more broadly logic– to get to conclusions and to formulate proofs. This too has
been the subject to formalization and has lead to well studied logical systems [50] with
precise notions of what constitutes a proof. Proofs are often presented in a natural
deduction style, using inference rules of the form

A1 A2 . . . An
C

to build proofs in the form of trees. An inference rule indicates that to infer the goal
C, we need to provide proof trees for every branch A1, A2, . . . , An. We will mark
rules with a double-line if we want to emphasize that they can be used to close a
branch; meaning it needs no further justification. A complete proof is then a tree
where every branch is closed by double-lines.

Example 2.1 Given the following inference rules

Cyan Magenta Yellow

Yellow Magenta

Red
Yellow Red

Orange

Cyan Magenta

Blue

formalizing some color mixing, we can give a proof of Orange:

Yellow

Yellow Magenta

Red
Orange

Using inference rules we can represent a fragment of the first-order deduction rules
by

P ∈ Γ
Γ ` P (A)

Γ, A ` B
Γ ` A→ B

(I→) Γ ` A→ B Γ ` A
Γ ` B (E→) (2.1)

where Γ ` P can be read as “with the information in the context Γ we can prove the
proposition P ”. The assumption rule (A) indicates that given P is already part of
the context Γ, we need not further justification in order to prove the goal P , allowing
us to close this branch. The implication introduction rule (I→) tells us how new
information can get added to the context and introduces an implication into the goal.
The implication elimination rule (E→) is also called modus ponens and eliminates
an implication from a branch. As an example we give a deduction of the proposition
(A → (B → A)) → (A → B) → (A → C) from the empty context. The proof-tree
should be read from the bottom to the top:

6 On Constructive Type Theory

A→ (B → C) ∈ Γ
(A)

Γ ` A→ (B → C)
A ∈ Γ

(A)
Γ ` A

(E→)
Γ ` B → C

A→ B ∈ Γ
(A)

Γ ` A→ B
A ∈ Γ

(A)
Γ ` A

(E→)
Γ ` B

(E→)
Γ ` C

(I→)
A→ (B → C), A→ B ` A→ C

(I→)
A→ (B → C) ` (A→ B)→ (A→ C)

(I→)
` (A→ (B → C))→ (A→ B)→ (A→ C)

where Γ :=A→ (B → C), A→ B, A (2.2)

The full set of deduction rules also includes rules for the other logical connectives plus
quantifiers, and is given in Definition 3.4. Regarding the full rule set of first-order
logic, one is of particular interest, namely double negation elimination:

Γ ` ¬¬A
Γ ` A (DNE)

since it allows us to do proofs by contradiction. If we want to prove the proposition
A in context Γ, we can instead try to prove falsity ⊥ with ¬A added to the context.

Γ,¬A ` ⊥
(I→)

Γ ` ¬¬A
(DNE)

Γ ` A

We can see this strategy in action in the proof of the following lemma:

Lemma 2.2 There are irrational numbers a, b ∈ R such that ab is rational.

Proof For the purpose of a contradiction assume that for all irrational numbers a, b
we have that ab is irrational. Since

√
2 is irrational this implies that

√
2
√

2 must be
irrational. But then (

√
2
√

2
)
√

2 must also be irrational, leading to a contradiction,

since (
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
=
√

2
2

= 2. �

There is something peculiar about the proof of Lemma 2.2; in the end, it does not
explicitly construct any irrational numbers a, b ∈ R such that ab is rational. Philo-
sophically this can be regarded as unsatisfying; apparently there is no guarantee that
we can extract numbers with a certain property from a proof that such numbers must
exist. The conclusion to draw here is that the proofs, treated as objects by themselves,
can be non-informative in the above sense. The reason that the presented proof is
non-informative lies in the usage of DNE. The general correctness of this observation
is best justified by the fact that removing DNE from the list of deduction rules, we

2.1. Constructive Type Theory as a Foundation for Mathematics 7

get the so called intuitionistic logic where all proofs do remain informative. This
is due to the informative nature of the remaining deduction rules. As we will see
in Section 2.2, the word “informative” here is not condemned to remain only an in-
tuitive notion. We can make the information-content of proofs explicit: from every
intuitionistic proof we can extract an algorithm (in the form of a λ-term) solving a
corresponding problem.

It is now important to stress that by removing DNE as a logical rule, one leaves the
confines of conventional mathematics, whose background logic is classical. This also
means to leave behind equivalent principles such as the law of excluded middle (LEM)
and proofs by contradiction. At first glance this seems like a heavy price to pay for
the benefit of having informative proofs, since there can now be statements that no
longer have any proof at all, whenever they unavoidably depend on DNE. But it also
comes with an unexpected advantage, as now, there are also less formulas ϕ who’s
negation ¬ϕ can be shown, opening the door for new mathematical theories with
axioms that would have been inconsistent beforehand.

To make this concrete we give a few examples. Consider the set ∆ := {x | x2 = 0} as
the set of infinitesimal values around 0. If we assume the principle of microaffine-
ness

∀(f : ∆→ R) ∃!a ∈ R ∀x ∈ ∆. fx = a · x+ f 0

as an axiom, it becomes possible to define the derivative of f : ∆→ R to be the unique
value a that the axiom provides and to easily extend this definition to functions
R → R. There is of course an obvious catch. Using classical reasoning we could
immediately show that x2 = 0 → x = 0 i.e. ∆ = {0}, contradicting the uniqueness
claim for a. The axiom is therefore incompatible with classical logic. In intuitionistic
logic however this problem does not appear. The same proof implying ∆ = {0}
is no longer possible, and no other proofs can possibly be found, as is entailed by
the existence of models showing the consistency of theories with the principle of
microaffineness in intuitionistic logic. This opens up the intriguing theory of synthetic
differential geometry [42], where infinitesimals are a valid concept and all functions
R→ R are smooth.

An example of crucial importance for this thesis comes in the form of Church’s
thesis, which makes the assertion that all functions N → N are computable, for
any reasonable interpretation of computable. This statement is not compatible with
classical logic, as by using LEM, it is relatively easy to construct a function N → N
which solves the halting problem and can therefore not be computable. Using an
intuitionistic logic however gives us the freedom to assume this as an axiom. We will
come back to this and elaborate on the axiom in Chapter 6.

Maybe surprisingly, we find a similar example in analysis. Taking the simplest case

8 On Constructive Type Theory

of a discontinuous function

fx :=

{
1 x = 0

0 x 6= 0

and unfolding the set-theoretic definition of this function, we get that it is the relation
Rf = {(0, 1)} ∪ {(x, 0) | x 6= 0} on R × R. In intuitionistic logic one can still easily
verify that this relation is functional and indeed discontinuous. But it is impossible
to prove that Rf is total on the domain R. Strictly speaking, it is therefore not a
function. The conventional, classical proof of its totality would start with the case
distinction x = 0 ∨ x 6= 0, which is however not available since we cannot prove
∀x ∈ R. x = 0 ∨ x 6= 0 constructively. From a constructive proof of this statement,
we could extract an algorithm which could be used to solve the halting problem [3].
Intuitionistically we will not be able to prove that any of the usual discontinuous
functional relations are functions. Since it is also not possible to disprove that all
functions are continuous, we can consistently assume this assertion as an axiom,
similar in spirit to Church’s thesis.

This thesis will part from the conventional mathematical framework in both of the
aspects that we have now mentioned: The foundational language and the logic. The
change in logic will be the most noticeable as proofs will only be able to use instances
of LEM that we have proven beforehand and we will frequently come across statements
of the form ¬¬A, where we can no longer simply conclude A. When it comes to the
foundational language, we will part from set theory and instead use a dependent type
theory, in which, instead of sets, functions become the primitive notion. There are
three main reasons for this:

• One goal of this thesis is to work in a constructive meta-theory, and (as we will
see in Section 2.2.1) type theories come with a built-in intuitionistic logic.

• The constructive logic enables the usage of the aforementioned Church’s Thesis,
greatly simplifying the treatment of computability.

• All major parts of this thesis have been mechanized and checked in the Coq
proof assistant, which is based on the type theory called Calculus of Inductive
Constructions (CIC) [7, 35].

We will introduce the type-theoretic foundations in the coming sections. It should be
stressed that when it comes to the readability of mathematical statements throughout
this text, there will not be many noticeable differences compared to set-theoretic
foundations.

2.2 A Primer on Type Theory

In the case of first-order ZF, the axioms are intended to describe the concept of a
set, which is then taken as the primitive notion of discourse. In modern type theory

2.2. A Primer on Type Theory 9

however the primitive notion is that of a function and is based on the λ-calculus that
was developed by Church [4]. Our presentation of the type theory will be relatively
short and will only represent the shadow of what would be CIC; outlining its essential
features, without detailing every part. For more complete descriptions of simply-typed
and dependent type theory, we refer to [21, 27, 40, 45, 50].

2.2.1 Simply-typed λ-Calculus

The simply-typed λ-calculus first introduces an enumerable list of type variables
A,B,C... and the following rules to build types:

• Every type variable A,B,C, . . . is a type and we write A : T to express that A
is a type.

• For all types α, β we have the function type α→ β : T.

Next one specifies syntactic rules for inductively building terms based on an infinite
set of variables x, y, z, . . . as follows:

• Every variable x, y, z, . . . is a λ-term.

• If s and t are λ-terms, then (s t) is a λ-term.

• If x is a variable, A a type and s is a λ-term, then λx : A. s is a λ-term.

The expression x : A is called a type annotation and expresses that the λ-term x

has the type A. A list x1 : A1, . . . , xn : An of type annotations is called a context
iff every appearing variable xi appears at most once in the list. A term of the form
(s t) is to be read as an application of the term s to t and a term λx : A. s is an
abstraction, intended to represent a function which can only be applied to terms of
type A. In the application (λx : A.s)a, where the abstraction is applied to another
term a : A, the term a gets substituted into every occurrence of x in the body s. We
denote a substitution like this with s[x/a]. For example, applying the abstraction
λx : A. (x(yx)) to a : A will result in (a(ya)).

We will use the convention that parentheses in applications are left-associative, mean-
ing xyzw is to be understood as (((xy)z)w). For convenience we will use the notation
xA for x : A, especially when writing abstractions, and we will often leave out the
type annotations, when the type can be inferred from the context. If there are several
abstractions in a row like in λxA.λyB.λzC . s we will use the notation λxAyBzC .s.

The intended semantics making λ-terms behave like functions is formalized by the β-
reduction relation �β on the terms. We already described the most important rule
which is up to some details (λxA.s)a �β s[x/a]. We will only illustrate conversions
by giving an example.

10 On Constructive Type Theory

Example 2.3 Given the following two λ-terms:

K := λxy. x S := λxyz. xz(yz) (2.3)

we can compute the result of the application SKK:

SKK =
((
λxyz. xz(yz)

)
K
)
K

�β
(
λyz.Kz(yz)

)
K

�β λz.Kz(Kz)
= λz. (λxy. x)z

(
Kz
)

�β λz. (λy. z)(Kz)
�β λz. z

The resulting term is often denoted I and has the behavior expected by an identity
function; if applied to any term a, it returns it unchanged: I a �β a.

I is also said to have a normal form as no further reductions can take place. We also
include a second kind of reduction, called η-reduction which allows the reduction
(λx. fx) �η f . This is again motivated by the semantical understanding of λ-terms
as functions: it should make no difference whether we apply f or λx. fx to some term.
These reduction rules can be combined into a relation �βη, for which we simply write
�. We can then introduce an equivalence relation on terms ≡ such that s ≡ t holds
when both terms s, t reduce to the same normal form. It’s crucial to note that every
term reduces to a unique normal form, making the equivalence relation behave as
expected [21].

That a certain term t has the type A under a context Γ will be called a typing
judgment and is expressed by a ternary relation Γ ` t : A 6. We give inference rules
specifying how typing judgments can be deduced:

(x : A) ∈ Γ

Γ ` x : A
(T)

Γ, (x : A) ` s : B

Γ ` λxA.s : A→ B
(Iλ)

Γ ` s : (A→ B) Γ ` t : A
Γ ` s t : B (Eλ)

A term t can be typed if there is a type A such that ` t : A, and a type A is
called inhabited if there is a term t such that ` t : A. The typing relation is non-
trivial as there are λ-terms t (e.g. λx. xx) which cannot be typed, and types (e.g.
((A→ B)→ A)→ A) which are not inhabited.

6We therefore use the notation Γ ` in two separate instances here: one for writing deductive
proofs in first-order logic and the second is for typing judgments. If desired, one could use a different
symbol like to better differentiate between these two use-cases.

2.2. A Primer on Type Theory 11

At this point we have to raise awareness about the extreme similarities between the
above rules and the rules for the implicational fragment of natural deduction that we
saw in Equation (2.1):

A ∈ Γ
Γ ` A (A)

Γ, A ` B
Γ ` A→ B

(I→) Γ ` A→ B Γ ` A
Γ ` B (E→)

The observation that the rules for typing judgments and the deduction rules of
intuitionistic logic are in direct correspondence is known as the Curry-Howard-
deBruijn isomorphism (CHdBI) [46, 50] and underlines how the implicational frag-
ment of propositional logic can be found as part of the type theory we have presented
so far:

(A)↔ (T) (I→)↔ (Iλ) (E→)↔ (Eλ) (2.4)

We will soon add rules to the type theory which will then allow us to extend this
isomorphism, prompting a viewpoint called propositions as types (PAT). The iso-
morphism states that a proposition P has a deduction in intuitionistic logic precisely
when P , treated as a type, is inhabited. Syntactically, any typing judgement of P
immediately yields a deductive proof of P simply by reducing any appearing annota-
tion t : A in the deduction to only A. But the other direction also works out. From
every intuitionistic proof of a proposition P we can extract an inhabitant of the type
P . We will exemplify this by looking the deduction Equation (2.2) of the proposition
(A → (B → C)) → (B → C) → (A → C), and show how we can extract an inhab-
itant. We start by replacing all of the deduction rules by typing rules, as indicated
by Equation (2.4). Since we do not know any of the terms that should appear in the
deduction, we initially just leave them blank.

(_ : A→ (B → C)) ∈ Γ
(T)

Γ ` _ : A→ (B → C)

(_ : A) ∈ Γ
(T)

Γ ` _ : A
(Eλ)

Γ ` _ : B → C

(_ : A→ B) ∈ Γ
(T)

Γ ` _ : A→ B

(z : A) ∈ Γ
(T)

Γ ` _ : A
(Eλ)

Γ ` _ : B
(Eλ)

Γ ` _ : C
(Iλ)

(_ : A→ (B → C)), (_ : A→ B) ` _ : A→ C
(Iλ)

(_ : A→ (B → C)) ` _ : (A→ B)→ (A→ C)
(Iλ)

` _ : (A→ (B → C))→ (A→ B)→ (A→ C)

where Γ := (_ : A→ (B → C)), (_ : A→ B), (_ : A)

Next we simply assign names to the terms that are in the context Γ:

where Γ := (x : A→ (B → C)), (y : A→ B), (z : A)

12 On Constructive Type Theory

Focusing on the left part of the deduction, we can see that this enforces how the
blanks in the (T) rule applications must be filled:

(x : A→ (B → C)) ∈ Γ
(T)

Γ ` x : A→ (B → C)

(y : A) ∈ Γ
(T)

Γ ` y : A
(Eλ)

Γ ` _ : B → C

The (Eλ) rule then also dictates how the blank at the very bottom has to be filled:

(x : A→ (B → C)) ∈ Γ
(T)

Γ ` x : A→ (B → C)

(y : A) ∈ Γ
(T)

Γ ` y : A
(Eλ)

Γ ` xy : B → C

Traversing the whole tree in this fashion, from top to bottom, the rules enforce how
every blank space must be filled, producing a completely annotated tree.

(x : A→ (B → C)) ∈ Γ
(T)

Γ ` x : A→ (B → C)

(z : A) ∈ Γ
(T)

Γ ` z : A
(Eλ)

Γ ` xz : B → C

(y : A→ B) ∈ Γ
(T)

Γ ` y : A→ B

(z : A) ∈ Γ
(T)

Γ ` z : A
(Eλ)

Γ ` yz : B
(Eλ)

Γ ` xz(yz) : C
(Iλ)

(x : A→ (B → C)), (y : A→ B) ` λz. xz(yz) : A→ C
(Iλ)

(x : A→ (B → C)) ` λyz. xz(yz) : (A→ B)→ (A→ C)
(Iλ)

` λxyz. xz(yz) : (A→ (B → C))→ (A→ B)→ (A→ C)

We can recognize the constructed term λxyz. xz(yz) as the term S defined in Equa-
tion (2.3). By the above judgment we have therefore shown that S can be typed, and
more specifically, that it is an inhabitant of the type (A→ (B → C))→ (B → C)→
(A→ C). Terms of type P which are extracted from intuitionistic proofs of P in the
above fashion will be called proof-terms. Recalling that every λ-term is a function,
this makes precise in which sense every intuitionistic proof contains the construction
of an algorithm.

Whenever we want to show that a type is inhabited, we will usually leave out terms
t in any Γ ` t : A during the judgment; therefore essentially just giving intuitionistic
proofs of P . For some time, we will list the extracted proof-terms at the end of the
proofs, to make the reader aware of the computational content of the given proof.

2.2.2 Dependent Type Theory

The type theory sketched so far is a system that is quite open in the sense that
it can easily be extended by new types. This is achieved by adding new primitive
symbols for types and terms, rules specifying how terms of the type are formed and

2.2. A Primer on Type Theory 13

how they can be used. The latter is achieved by giving elimination rules. We start
by introducing primitives for binary product-types × and sum-types + :

Γ ` A : T Γ ` B : T
Γ ` A×B : T

Γ ` A : T Γ ` B : T
Γ ` A+B : T

Whenever we introduce new rules like in the above, the context Γ is implicitly assumed
to be quantified over. Next we add primitives for terms of the respective types, as
well as their eliminators π1, π2 and E+:

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A×B

Γ ` f1 : A→ C Γ ` f2 : B → C

Γ ` E+ f1 f2 : A+B → C

Γ ` p : A×B
Γ ` π1 p : A

Γ ` a : A
Γ ` i1a : A+B

Γ ` p : A×B
Γ ` π2 p : B

Γ ` b : B
Γ ` i2b : A+B

On the left, we first have the introduction rule for the product ×, followed by two
elimination rules, and on the right we first have the elimination rule for the sum +,
followed by the two introduction rules 7 . This order puts a highlight on the duality
of the two constructs. We also add conversion rules

π1 (a, b) � a E+ f1 f2 (i1a) � f1 a

π2 (a, b) � b E+ f1 f2 (i2b) � f2 b

which tell us that π1, π2 can be used to project out entries form a pair (a, b) and that
E+ f1 f2 t becomes an application of either f1 or f2, depending on wether the term
t : A + B was produced by the injection i1 : A → A + B or i2 : B → A + B. These
types further extend the CHdBI. This can be seen by comparing the rules for × and
+ with with the corresponding rules for ∧ and ∨ respectively. Using the product type
we then define the usual shorthand A↔ B := (A → B) × (B → A). We can now
represent propositional statements like (A ∧ B → C)↔ (A → (B → C)) and show
that the corresponding type is inhabited.

Lemma 2.4 The type (A×B → C)↔ (A→ (B → C)) is inhabited.

Proof We start by showing that the left part of the product in the ↔ type is inhab-
ited, where we use Γ := (f : A×B → C), (a : A), (b : B):

7One can loosely draw a parallel to category theory here. Product-types correspond to the product
A × B of two objects A,B in some category C, with the usual projections π1 : A × B → A and
π2 : A×B → B. Just like in the case for products in a category, the indicated rules for the product-
types tell us that from a pair p : A×B we can project out the terms π1 p : A and π2 p : B. Similarly,
sum-types correspond to coproducts A

∐
B with injections i1 : A→ A

∐
B and i2 : B → A

∐
B.

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#Currying

14 On Constructive Type Theory

Γ ` A×B → C
Γ ` A Γ ` B

Γ ` A×B
Γ ` C

` (A×B → C)→ A→ (B → C)

All of the branches can now be closed with the information in Γ and we get the
proof-term L := λfA×B→CaAbB. f(a, b).

For the right part we set Γ := (f : A→ (B → C)), (p : A×B) and get

Γ ` A→ (B → C)
Γ ` A×B

Γ ` A
Γ ` B → C

Γ ` A×B
Γ ` B

Γ ` C
` (A→ (B → C))→ A×B → C

where all branches can again be closed and we get the proof-term

R := λfA→(B→C)pA×B.f(π1 p)(π2 p).

The type in question is then inhabited by the term (L,R). �

The functions R and L constructed in Lemma 2.4 can be used to transform a cas-
caded function f : A → B → C into its curried counterpart Rf : A × B → C and
vice versa.

Next we make a major addition in the form of dependent product types (also
called Π-types), which can be formed according to the rule

Γ ` A : T Γ, (x : A) ` B : T
Γ ` ΠxA. B : T

We give a rule specifying which terms are to be annotated as Π-types as well as the
elimination rule

Γ, (x : A) ` s : B

Γ ` λxA.s : ΠxA. B

Γ ` f : ΠxA. B Γ ` a : A

Γ ` fa : B[a/x]

In a dependent product type ΠxA. B, the type B is now allowed to depend on the
term x : A. A Π-type should therefore be thought of as a generalized function type,
where the type B of the output can now depend on the input element x of type
A. To emphasize this we could also write ΠxA. B(x) but it also becomes visible in
the elimination rule, where we do a substitution B[a/x]. This is in contrast to the
previously encountered function types A → B, where the output was always of type
B, no matter the input. The elimination rule tells us how a term of type ΠxA. B can
be used.

2.2. A Primer on Type Theory 15

The added Π-types also have their corresponding representative in logic via the CHdBI:
They correspond to the ∀ quantified statements. Again one can compare the respec-
tive deduction rules too see this connection. This leads to a further extension of the
internal logic of the type theory, now also encompassing higher-order intuitionistic
logic. The connection justifies the reading of a type like ΠxA.B(x) 8 as “for every
term x of type A we have B(x)”.

Apart from the Π-types we have just seen, we also introduce dependent sum types
(also called Σ-types). Here the introduction rules are

Γ ` A : T Γ, (x : A) ` B : T
Γ ` Σ(x : A). B : T

Γ ` a : A Γ ` b : B[a/x]

Γ ` 〈a, b〉 : ΣxA. B

with elimination rule
Γ ` f : ΠxA. (B → C)

Γ ` EΣf : (ΣxA. B)→ C

By the construction rule, to get a term 〈a, b〉 of type ΣxA. B we need to provide a
term a : A, referred to as a witness, and a verification that B[a/x] is inhabited. This
is analogous to giving existence proofs, establishing the existence of some element
a having the property expressed by the predicate B(x). A Σ-type like ΣxA. B(x)

therefore can be read as an existence statement: “there is a term x of type A with
the property B(x)”.

From this point onwards, we also want to relax typing in the sense that

• convertible terms should be considered equal during typing judgments:

Γ ` t : A t ≡ t′ Γ ` t′ : A
Γ ` t′ : A

• and this should hold analogously for convertible types:

Γ ` t : A A ≡ A′ Γ ` A′ : T
Γ ` t : A′

This allows us to exchange convertible terms or types during a typing judgement, and
we will freely make use of this without making the use of the rules explicit.

8This corresponds to the notation ∀x ∈ A : B(x) in set theory.

16 On Constructive Type Theory

2.2.3 Base Types

We now want to add some base types to the type theory, similarly to how the natural
numbers are axiomatically added to ZF. Indeed we will also start by adding the type
of natural numbers. The formation rules introducing the primitive symbols N, 0
and S together with their typing judgments are:

Γ ` N : T Γ ` 0: N Γ ` S : N→ N

We further add a primitive symbol EN with typing rule:

Γ ` P : N→ T Γ ` p0 : P 0 Γ ` R : ΠnN. P n→ P (Sn)

Γ ` EN P p0R : ΠnN. P n

We will often write EN_ p0R instead of EN P p0R, when P can be inferred, and will
do so for all other eliminators to come.

The elimination rule of EN should be reminiscent of the induction principle for
natural numbers. To show that for all n : N we have P n, we need to provide a
term of P 0 (i.e. the base case), and a term for ΠnN. P n → P (Sn) (the inductive
step). Further adding the conversion rules EN P p0R 0 � 0 and EN P p0R (Sn) �
Rn (EN P p0Rn) for the eliminator –describing its computational behavior– we have
now implemented induction and recursion on natural numbers. To give an example
of its use, we show how addition on the natural numbers can now be defined, which
ought to satisfy the following two equations:

Add 0m ≡ m
Add (Sn)m ≡ S(Addnm)

We can abstract over m in these equations to get:

Add 0 ≡ λy. y
Add (Sn) ≡ λy. S((Addn) y) = (λxAy. S(Ay))n (Addn)

where we can read off that with P := λnN.N→ N, p0 := λy. y and R := λxAy. S(Ay)

the term Add := EN P p0R has the desired computational behavior of addition, and
with the elimination principle one can check that the term indeed has the desired
type N→ N→ N.

We can now prove that 2 := SS0 is of type N

` S : N→ N
` S : N→ N ` 0: N

` S0: N
` SS0: N

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#Add

2.2. A Primer on Type Theory 17

and that Add 2 2 reduces to 4 := SSSS0 :

Add 2 2 = Add(SS0)(SS0) � S Add(S0)(SS0) � SS Add 0 (SS0) � SSSS0 = 4.

Following natural numbers, we introduce the type of booleans:

Γ ` B : T Γ ` tt : B Γ ` ff : B
Γ ` P : B→ T Γ ` ptt : P tt Γ ` pff : P ff

Γ ` EB P ptt pff : ΠbB. P b

(2.5)

with conversion rules EB P ptt pff tt � ptt and EB P ptt pff ff � pff , which make the
eliminator behave like “ if b then ptt else pff ”. We can easily define negation on booleans
by ¬B := (EB_ff tt) and can further use ¬B to define a term eqdB : B → B → B
satisfying the equations

eqdB tt tt ≡ tt eqdB ff ff ≡ tt

eqdB tt ff ≡ ff eqdB ff tt ≡ ff

therefore telling us whether two booleans are equal or not. The four equations from
above are summarized by the following two:

eqdB tt ≡ λx. x eqdB ff ≡ ¬B

leading to the conclusion that we should define

eqdB := EB_ (λx.x)(¬B). (2.6)

Next we introduce the empty type:

Γ ` 0 : T
Γ ` P : 0→ T

Γ ` E0 P : Πf0. P f

This type has no rules introducing any term and plays a similar role as the empty
set in set theory and falsity in logic. This is by virtue of its elimination rule, which
allows the construction of a term for any type, provided we ever have a term of the
empty type.

Lemma 2.5 Given a term f : 0 we can construct a term of any type A.

Proof We show that E0(λx.A)f is a term of type A:

x : 0 ` A : T
` (λx.A) : 0→ T

` E0 (λx.A) : Πz0. (λx.A)f

` E0 (λx.A) : Πz0. A ` f : 0

` E0 (λx.A)f : A[f/z]

` E0 (λx.A)f : A

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#negb
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#eqd_bool

18 On Constructive Type Theory

Where both branches are now closed by the assumptions. �

Disregarding the left branch, which essentially only checks for correct typing, the
deduction in Lemma 2.5 establishes

` f : 0
` E0 (λx.A)f : A

which is the CHdBI equivalent to the explosion rule in Definition 3.4.

Next we introduce two data-types, starting with the list type over a given X : T:

Γ ` L(X) : T Γ ` [] : L(X) Γ ` Cons : X → L(X)→ L(X)

where [] is to be understood as the empty list and we write x :: ` for Consx `, which
stands for appending an element x to the list `. The eliminator for lists over X is

Γ ` P : L(X)→ T Γ ` p0 : P [] Γ ` C : Πx `. P `→ P (x :: `)

Γ ` EL(X) P p0C : Π`. P `

Lists are generally useful whenever we want to store finitely many elements of some
type. They can also be used to give a definition of finite sets and finiteness for
types. We will adapt the conventional notation and write lists as [23, 11, 21] instead
of 23 :: 11 :: 21 :: [].

The next type we introduce will allow the definition of partial functions, meaning
functions which are allowed to return no value on some inputs. For example, we
might want to define a function give : N→ L(X)→ X which takes a natural number
n as well as a list ` : L(X) and returns the element at position n of the list. Problems
arise however if n exceeds the number of elements in the list, or even worse, if the list
is empty; given [] cannot be defined for any n. We therefore define an option type
over X with the possibility to return the empty value ∅.

Γ ` O(X) : T Γ ` ∅ : O(X) Γ ` Some : X → O(X)

Γ ` P : O(X)→ T Γ ` p0 : P ∅ Γ ` f : Πx. P (Some x)

Γ ` EO(X) P p0 f : Πs. P s

These rules state that any term of O(X) is either the empty value ∅ (also called
none) or is carrying some term x : X packaged in Somex. This allows us to define
a function give : N → L(X) → O(X) by recursion, returning ∅ in the case where the
list is empty:

given [] := ∅
give 0 (x :: `) := Somex

give (Sn) (x :: `) := given `

2.2. A Primer on Type Theory 19

The above definition of the function can be turned into one that in defined in terms
of the eliminators EL(X) and EN.

We do want to implement one last feature to the type theory, and it is best illustrated
by pointing out an inconvenience about the function give. The function we have
presented above only works on lists of type L(X), meaning for a fixed type X. We
cannot apply it to a list of type L(N). So we should have written giveX to be precise,
and we would need to define giveN in the other case as well. Of course it is also clear
that the definitions will not differ much, apart from the type that the list runs over.
So what we really want to define is a version of give where the type of the list can
also be indicated at the start:

give : Π(X : T).N→ L(X)→ O(X)

But once we check whether this type of give is well typed, we run into a problem:

` T : T (X : T) ` N→ L(X)→ O(X)

` Π(X : T).N→ L(X)→ O(X)

For the left branch we need to show ` T : T, which at the present moment is not
possible. The question whether it is a good idea to assume ` T : T (i.e. that “the
type of all types is a type”) should be reminiscent of the –known to be problematic–
question about the “set of all sets”. Indeed it turns out that naively adding ` T : T
introduces an inconsistency into the theory [19, 24]. There are however resolutions
to this problem. In the CIC, an infinite, cumulative hierarchy of type universes Ti
satisfying Ti : Tj for i ≤ j is used, together with a necessary adaption of the typing
rule for Π-types. It is then however possible to hide these details from any user of the
theory. From a practical standpoint therefore, this allows us to simply use ` T : T as
a typing judgment.

The final version of give is then a polymorphic function, meaning a function which
can also take inputs of type T. Apart from a whole range of new function definitions,
this also allows us to formulate statements involving all list types, by starting with
∀XT`L(X) . . ., and instead of adding rules to define list and option types for every
type, we can formulate rules incorporating this quantification, here illustrated for
option types:

Γ ` O : T→ T Γ ` ∅ : ΠXT.O(X) Γ ` Some : ΠXT. X → O(X)

2.2.4 Propositions as Types

With the types we have introduced up to this point, we can finally complete our
PAT viewpoint between type theory and higher order intuitionistic logic. Due to the
similarity of respective inference rules we have the following correspondences:

20 On Constructive Type Theory

Type Theory → × + 0 O(0) Π Σ

Intuitionistic Logic → ∧ ∨ ⊥ > ∀ ∃

We can therefore represent any mathematical proposition by some type, using the
translation of symbols indicated above 9. We will now start to take the freedom
to only give the usual text-style mathematical proofs for propositions and typing
judgments; outlining only the most important parts which could then be fleshed out
to full constructions. We will still give detailed deductions whenever we feel that they
should be instructive, but will start fanning them out over time. Similarly, because
of the close connection of the Π-types and ∀ quantification from the PAT viewpoint,
we will use them interchangeably, and will only use ∀ starting Chapter 3.

2.2.5 The Type of Propositions

We could try to reintroduce classical reasoning into the type theory by adding the
law of excluded middle in the form of a new rule:

Γ ` D : ∀AT. A+ (A→ 0) (2.7)

which claims that there is a term D which can yield, for every type A, a term of type
A or a term of type A → 0. Contrary to the other principles we have added, there
is however no computational justification for this. A λ-term of this type would yield
a solution for some version of the halting problem. Adding this non-computational
principle would therefore destroy the computational interpretation of the whole type
theory, as there is no more guarantee that every proof only employs informative
reasoning principles. There is however a different and safer way to enable the inclusion
of non-computational principles. For this, we introduce a new type universe P10 of
propositions at the very bottom of the hierarchy, which is used to tag propositions
which do not admit a computational interpretation. The inference rules for this type
are then controlling in which way non-computational statements can still be used in
conjunction with the rest of the type theory. This separates terms of type P from
other types, leaving the type theory as a whole intact. Concerning the inference rules,
we introduce the symbols ∨ and ∃ as primitives into the type theory 11, with the rules:

Γ ` A : P Γ ` B : P
Γ ` A ∨B : P

Γ ` a : A
Γ ` o1a : A ∨B

Γ ` h1 : A→ Q Γ ` h2 : B → Q Γ ` Q : P
Γ ` E∨ h1 h2 : A ∨B → Q

Γ ` b : B
Γ ` o2b : A ∨B

9Negations ¬A are defined as A→ ⊥ in the logic and correspond to the types A→ 0 in the type
theory.

10This is not the historical reason for the introduction of P.
11We highlighted earlier that + and Σ on the level of the type theory correspond to ∨ and ∃

respectively in intuitionistic logic. We are now reusing the same symbols ∨ and ∃, but for new
constructs on the level of the type theory, which do not correspond to anything in the logic.

2.2. A Primer on Type Theory 21

Γ ` A : T Γ, (x : A) ` P : P
Γ ` ∃xA. P : P

Γ ` a : A Γ ` h : P [a/x]

Γ ` (a, h) : ∃xA. P

Γ ` f : ΠxA. (P → Q) Γ ` Q : P
Γ ` E∃f : (∃xA. P)→ Q

where, in contrast to the very similar rules for + and Σ-types, the elimination rules for
∨ and ∃ make sure that, since A∨B and ∃x. P x are tagged by P and therefore to be
considered as non-informative, they can only be used to prove other non-informative
propositions Q : P. We can still prove non-informative statements from their infor-
mative counterpart. For example, given A,B : P we have a proof of A+B → A ∨B:

(a : A) ` a : A

(a : A) ` o1a : A ∨B
` λa. o1a : A→ A ∨B

(b : B) ` b : B

(b : B) ` o2b : A ∨B
` λb. o2b : B → A ∨B

` E+(λa. o1a)(λb. o2b) : A+B → A ∨B

But we will not be able to prove A ∨B → A+B, since we cannot show ` A+B : P.
This is just as intended: A ∨ B : P is not supposed to have computational content,
contrary to A+B which is supposed to carry a construction of either A or B.

We can now use P to formulate the law of excluded middle as well as other conventional
logical notions and principles of classical and intuitionistic logic:

Definition 2.6

• definite (P : P) := P ∨ ¬P

• stable (P : P) := ¬¬P → P

• Definite (X : T)(p : X → P) := ∀x. definite (p x)

• Stable (X : T)(p : X → P) := ∀x. stable (p x)

• LEM := ∀P : P. definite P (Law of Excluded Middle)

• DNE := ∀P : P. stable P (Double Negation Elimination)

• MP := ∀(f : N→ N). stable (∃n. fn = 0) (Markov’s Principle)

LEM as stated above cannot be proven inside of our type theory and neither can its
negation [53]. Therefore if we desire to use classical reasoning, we can now do so,
since

Γ ` ` : LEM

can consistently be added as a rule. Note that LEM differs from Equation (2.7) as
it only claims to have a decision of P or ¬P for every proposition P : P instead of

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#stable
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Stable

22 On Constructive Type Theory

every type P : T. The fact that LEM is not provable does not entail that there are
no definite propositions; we will soon encounter some examples. Constructively ¬¬P
does not yield a proof of P ; it only states that it is impossible for P to be false,
assuring that it is in the realm of the possible to find a proof of P . We will therefore
also read ¬¬P as “potentially P ” [2].

We can make use of the constructive framework to study how classical reasoning
principles relate to one another. For example we have:

Fact 2.7 Every definite proposition is stable.

Proof Let P : P be definite. Assuming ¬¬P we need to show P . Using that P is
definite, we get two cases:

• If P , then we are done.

• If ¬P then combined with ¬¬P we get ⊥ and therefore P by the explosion rule.
�

Fact 2.8 LEM is equivalent to DNE.

Proof The implication from left to right follows by Fact 2.7. For the converse assume
some P : P, then using D := P ∨ ¬P we have a proof of ¬¬(P ∨ ¬P):

¬D ` D → ⊥

¬D ` D → ⊥
¬D,P ` P

¬D,P ` P ∨ ¬P
¬D,P ` ⊥
¬D ` ¬P
¬D ` P ∨ ¬P

¬D ` ⊥
` ¬¬(P ∨ ¬P)

and therefore P ∨ ¬P by DNE. �

To finish of this section, we will use P to introduce a notion of equality for every type.
For every A : T and a : A we add rules

Γ ` eqA a : A→ P Γ ` reflA a : eqA a a

Γ ` P : A→ T Γ ` h : P a

Γ ` Eeq aP h : ΠxA. eqA a x→ P x

where we will usually write x =A y instead of eqA x y and x = y if the type A can
be inferred. The elimination rule Eeq realizes substitution under equality: Given a
proof of P a and given a proof of the equality x = a, it allows us to conclude P x.
With the equality type we can now express a whole range of interesting mathematical
statements. To illustrate this, we start by showing the disjointness of the terms in B
and finish by showing the agreement of =B and eqdB.

2.2. A Primer on Type Theory 23

Lemma 2.9 (Disjointness) The term tt is not equal to the term ff.

Proof This is shown by verifying that the type ff = tt → 0 is inhabited. The idea
of the proof is that if we have ff = tt, then 0 ≡ (EB_0N) tt ≡ (EB_0N) ff ≡ N
showing that under this particular assumption, 0 is inhabited.

` P : B→ T ` 0 : P tt ` N : P ff

` ΠbB. P b

` (EB P 0N) : ΠbB.T
` (EB P 0N) : B→ T

` N
` (EB P 0N) ff

` ΠxB.ff = x→ (EB P 0N)x ` tt : B
` ff = tt→ (EB P 0N) tt

` ff = tt→ 0

The right branch ` N can be finished by providing any natural number e.g. 23: N.
For the left branch to work out, we simply choose P := λxB.T. The final proof-term
is Eeq ff

(
EB(λxB.T) 0N

)
23 tt. �

Before we can show the agreement of the two equalities on B, we need to verify that
equality = satisfies the expected symmetry and transitivity laws.

Lemma 2.10 For any type A and x, y, z : A we have

1. x = y → y = x (Symmetry)

2. x = y → y = z → x = z (Transitivity)

Proof 1. For this we need to show that there is a term of type ΠxAyA. x = y →
y = x. By choosing P := λaA. eqA a x we get:

(x : A) ` P : A→ P
(x : A) ` eqA xx

(x : A) ` P x
(x : A) ` ΠyA. eqA x y → P y

` ΠxAyA. eqA x y → eqA y x

where both branches can now be closed by making use of the rules for equality.
The resulting proof-term is Eeq x (λaA. eqA a x)(reflA x).

2. We show that the type ΠxAyAzA. x = y → y = z → x = z is inhabited. Using
P := λaA. a = z → x = z we have

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#bool_disjoint
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#eq_sym
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#eq_trans

24 On Constructive Type Theory

(x, y, z : A) ` P : A→ T
(x, y, z : A) ` x = z → x = z

(x, y, z : A) ` P x
(x, y, z : A) ` ΠaA. x = a→ P a (x, y, z : A) ` y : A

(x, y, z : A)` (ΠaA. x = a→ P a) y

(x, y, z : A)` x = y → P y

` ΠxAyAzA. x = y → y = z → x = z

where all branches can now be closed easily.
This yields the proof-term λxAyAzA. Eeq x (λaA. a = z → x = z)(λex=z.e) y. �

Fact 2.11 (Case Analysis) For every b : B either b = tt or b = ff.

Proof We show that ΠbB. (b = tt) + (b = ff) is inhabited. This follows immediately
by using the elimination rule for B:

` _ : B→ T
` ff = ff

` (ff = tt) + (ff = ff)
` tt = tt

` (tt = tt) + (tt = ff)

` ΠbB. (b = tt) + (b = ff)

Lemma 2.12 For any x, y : B, we have x = y if and only if eqdB x y returns tt.

Proof To construct a term of type ΠxByB. eqdB x y = tt↔x = y we use case analysis
on both x and y giving us the four cases seen in Equation (2.5). For every case it is
easy to check that the equivalence holds. �

2.3 The Coq Proof-Assistant

In the previous sections, we sketched out major parts of the calculus of inductive con-
structions (CIC), a type theory which makes up the foundation of the proof-assistant
Coq. Coq is an open-source software, first released in 1989, and is based on CIC which
was most notably developed by Thierry Coquand, Gérard Huet and Christine Pauline-
Mohring [7, 35]. The majority is implemented in the programming language OCaml
and Coq itself constitutes a dependently typed functional programming language with
the feature that it has the strong normalization property; meaning every definable
function terminates. The main focus of Coq however lies in its use as a logical system.
It allows the definition of mathematical objects, formulation of statements and most
importantly proofs. The user can use commands and tactics to execute proof steps,
while the proof assistant keeps track of these actions and displays the current proof
goal as well as the available assumptions. Since Coq comes with an extensive stan-
dard library covering basic results on natural numbers, rationals, reals and various

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#bool_cases
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.CTT.html#eq_bool_agree

2.3. The Coq Proof-Assistant 25

data types, it is often possible to finish proof steps with the use of these included
results or some basic automation. For example, boolean formulas and some intuition-
istic propositions can automatically be proven by respective automation tactics. A
finished proof can then be checked for correctness and the user will be informed about
possible mistakes and their location in the proof.

Chapter 3

First-Order Logic

In Chapter 2 we have described a constructive type theory (CTT), which we will
now use as the meta-theory for all further mathematical work. The goal is to study
some results about the first-order theory of Peano arithmetic (PA) and also more
specifically Heyting arithmetic (HA), which has the same axiomatization, but uses
intuitionistic first-order logic. We describe first-order logic inside of CTT, by induc-
tively defining formulas, terms and the deduction system. We then define a semantics
for this logic, which uses Tarski-models and interprets given formulas over the respec-
tive domain of the model. The type of natural numbers N will then naturally be a
model of HA. Having finished this setup, we can then use our meta-theory to reason
about proofs and semantic entailment of first-order logic, which will be important for
both results that we want to investigate: The undecidability of PA in Chapter 5 and
Tennenbaum’s theorem in Chapter 6.

Before specializing to one theory, we keep the definition of first-order logic general
and fix some arbitrary signature Σ = (F ;P).

3.1 Syntax and Natural Deduction

Definition 3.1 We define terms t : tm and formulas ϕ : fm inductively.

s, t : tm ::= xn | f v (f : F , n : N, v : tm|f |)

α, β : fm ::= P v | α →̇ β | α ∧̇ β | α ∨̇ β | ∀̇α | ∃̇β (P : P, v : tm|P |).

Where |f | and |P | are the arities of the function symbol f and predicate symbol P
respectively.

Remark 3.2 If we assume that the signature contains a unary function symbol f
and a predicate for equality =̇ , one of the formulas we can form is

∀̇ ∀̇ fx1 =̇ fx0 →̇ x1 =̇ x0

Here, we are using the so called de Bruijn [10] indices to realize the binding of variables
to quantifiers. For the reader who is not accustomed to this notation, we will now

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.FOL.html#form
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.FOL.html#term
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.FOL.html#form

28 First-Order Logic

illustrate how this binding works by showing how to recover the more conventional
notation which uses named quantifiers ∀̇ y, ∃̇ y:

• Choose a variable xk which still has an index k and replace it by a variable
name y which is not yet in the formula.

• Move up the structure of the formula until k quantifiers have been passed; y
will now be bound to the next quantifier.

• If the next quantifier is already named Qz, go back and change y to z.

• If the next quantifier Q is unnamed, change it to Qy.

• If there is no next quantifier nothing needs to be done.

• Repeat until no indexed variable remains in the formula.

If we start with the first x0 in our example from above and use y as the new variable
name, we get

∀̇ ∀̇ y. fx1 =̇ fy →̇ x1 =̇ x0.

Continuing with the second x0 we get

∀̇ ∀̇ y. fx1 =̇ fy →̇ x1 =̇ y.

and repeating the procedure on the remaining x1’s with new name x we get the more
familiar looking

∀̇x ∀̇ y. fx =̇ fy →̇ x =̇ y.

For the rest of the text we will use both notations interchangeably, with a preference
for the conventional one.

Definition 3.3 Given a variable assignment σ : N→ tm we recursively define sub-
stitution on terms by xk[σ]:=σ k, f v :=f(v[σ]) and extend this definition to formulas
by

⊥[σ] :=⊥ (α �̇ β)[σ] := α[σ] � β[σ]

(P v)[σ] := P (v[σ]) (∇̇ϕ)[σ] :=∇(ϕ[σ])

where �̇ is any logical connective and ∇̇ any quantifier from the signature. By ↑ we
designate the substitution λk. xSk shifting all variable indices up by one.

Definition 3.4 (Natural Deduction) We define intuitionistic natural deduction
` : Lfm→ fm→ P inductively by the rules

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.FOL.html#subst_form
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Deduction.html#prv

3.2. Semantics 29

φ ∈ Γ

Γ ` φ
Γ ` ⊥
Γ ` φ

Γ, φ ` ψ
Γ ` φ →̇ ψ

Γ ` φ →̇ ψ Γ ` φ
Γ ` φ

Γ ` φ Γ ` ψ
Γ ` φ ∧̇ ψ

Γ ` φ ∧̇ ψ
Γ ` φ

Γ ` φ ∧̇ ψ
Γ ` ψ

Γ ` φ
Γ ` φ ∨̇ ψ

Γ ` ψ
Γ ` φ ∨̇ ψ

Γ ` φ ∨̇ ψ Γ, φ ` θ Γ, ψ ` θ
Γ ` θ

Γ[↑] ` φ
Γ ` ∀̇φ

Γ ` ∀̇φ
Γ ` φ[t]

Γ ` φ[t]

Γ ` ∃̇φ
Γ ` ∃̇φ Γ[↑], φ ` ψ[↑]

Γ ` ψ

where we get the classical variant by adding the rule

Γ ` ¬̇¬̇φ
Γ ` φ

To clarify the distinction between the two, we write `i for intuitionistic natural de-
duction and `c for the classical one. In situations where we can be agnostic about
what deduction we are using, we will simply write `.

Fact 3.5 If the signature Σ is enumerable, then so are the type of formulas fm and
the type of deductions Γ ` ϕ.

Definition 3.6 A formula ϕ is said to be bounded by N : N if for the highest
unbound variable xn we have n ≤ N , and closed if it is bounded by 0; meaning all
variables are bound by quantifiers.

Fact 3.7 If ϕ : fm is bound by N : N and there is a substitution σ : N→ tm such that
Γ ` ϕ[σ], then Γ ` ∃Nϕ.

3.2 Semantics

We will use the standard Tarski semantics for first-order logic. This means we use
models which consist of a type D designating a domain, and interpret the functions
and predicates symbols of the signature (F ,P) as functions and predicates on the
domain type. We can then extend this interpretation to formulas by also specifying
how the logical symbols are supposed to be interpreted in the meta-logic. Here we
make a first important choice. We will place all interpretations of logical symbols on
the level of P. Let’s contrast this with one other choice we have available: Namely
placing everything on type level. This means instead of interpreting e.g. the formula
α ∨̇ β as the proposition “M � α or M � β” we interpret it as a sum type M �
α+M � β, leading to a more restrictive model theory. For now we will stick to the
placement into P, and will come back to the other option in Section 6.8.2.

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#subst_exist_prv

30 First-Order Logic

Definition 3.8 (Tarski Semantics) A modelM consists of a type D designating
its domain together with functions fM : D|f | → D and PM : D|P | → P giving every
symbol of the signature an interpretation. We will abuse Notation and also useM to
refer to the domain. In this context, functions ρ : N→M will be called environments
and are used as variable assignments to recursively give interpretations to terms:

ρ̂(xk) := ρ k ρ̂(f v) := fM(ρ̂(v)) (v : tmn)

and extend this to formulas by

M �ρ P v := PM(ρ̂(v)) M �ρ (α →̇ β) :=M �ρ α→M �ρ β

M �ρ α ∧̇ β :=M �ρ α ∧M �ρ β M �ρ α ∨̇ β :=M �ρ α ∨M �ρ β

M �ρ ∀̇α := ∀x : D.M �x;ρ α M �ρ ∃̇α := ∃x : D.M �x;ρ α

where x; ρ is defined by (x; ρ) 0 := x, (x; ρ)(Sn) := ρn and is simply appending x as
the first element of the environment ρ. We then say that a formula ϕ holds in the
modelM and writeM � ϕ if for every environment ρ we haveM �ρ ϕ. We extend
this notation by writingM � Γ if every formula in the list Γ holds inM andM � T
iff ∀ϕ. T ϕ→M � ϕ for a theory T : fm→ P.

Fact 3.9 (Soundness) For any context Γ and formula ϕ we have that Γ `i ϕ im-
plies Γ � ϕ.

Remark 3.10 If ϕ(x) is a unary formula and m : M we will write M � ϕ(m)

instead of ∀ρ.M �m;ρ ϕ(x). Analogously for any n-ary formula.

3.3 Peano Arithmetic

Having set up the machinery of first-order logic, we will now use this to study Peano
arithmetic (PA) as a first-order theory. It’s signature consists of symbols for the
constant zero, the successor function, addition, multiplication and equality:

(FPA;PPA) := (O, S_ , _⊕_ , _⊗_ ; _ =̇ _).

The finite core of PA axioms consists of statements characterizing the successor func-
tion:

Disjointness : ∀̇x. Sx =̇ O →̇ ⊥ Injectivity : ∀̇xy. Sx =̇ Sy →̇ x =̇ y

as well as addition and multiplication:

⊕-base : ∀̇x.O ⊕ x =̇ x ⊕-recursion : ∀̇xy. (Sx)⊕ y =̇ S(x⊕ y)

⊗-base : ∀̇x.O ⊗ x =̇ O ⊗-recursion : ∀̇xy. (Sx)⊗ y =̇ y ⊕ x⊗ y

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tarski.html#sat
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Deduction.html#soundness
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#PA

3.3. Peano Arithmetic 31

We then get the full (and infinite) axiomatization of PA by adding the axiom scheme
of induction, which in our meta-theory is a type-theoretic function on formulas:

λϕ. ϕ[O] →̇ (∀̇x. ϕ[x] →̇ ϕ[Sx]) →̇ ∀̇x. ϕ[x]

If instead of the induction scheme we add the axiom ∀̇x. x = O ∨̇ ∃̇ y. x = Sy, we
get the theory Q known as Robinson arithmetic.

Definition 3.11 We recursively define a function · : N→ tm by 0:=O and n+ 1:=

Sn, giving every natural number a representation as a term. Any term t which is of
the form n will be called numeral.

Remark 3.12 For any function f : X → N we will extend our notation and write
f for the composition f ◦ · of f with the numeral function · : N→ tm.

In order to have the usual behavior we expect from =̇ , we also add the following
axioms to PA:

Reflexivity : ∀̇x. x =̇ x

Symmetry : ∀̇xy. x =̇ y →̇ y =̇ x

Transitivity : ∀̇xyz. x =̇ y →̇ y =̇ z →̇ x =̇ z

S-equality : ∀̇xy. x =̇ y →̇ Sx =̇ Sy

⊕-equality : ∀̇xyuv. x =̇ u ∧̇ y =̇ v →̇ x⊕ y =̇ u⊕ v
⊗-equality : ∀̇xyuv. x =̇ u ∧̇ y =̇ v →̇ x⊗ y =̇ u⊗ v.

We also use further notations; one for expressing less than x <̇ y := ∃̇ k. S(x⊕k) =̇ y

one for less or equal x ≤̇ y := ∃̇ k. x⊕k =̇ y and one for divisibility x | y := ∃̇ k. x⊗
k =̇ y.

The formulas of PA can be classified based on the quantifier blocks they contain,
giving them a natural hierarchy. We will only consider two levels of this hierarchy:
the very base level ∆0 only containing formulas wih bounded quantifiers and the level
Σ1 containing formulas from ∆0 with arbitrarily many existential quantifiers in front
of them.

Definition 3.13 We inductively define the predicate ∆0 : fm→ P by

∆0⊥ s =̇ t

∆0 α ∆0 β

∆0 (α �̇ β)

where �̇ is any logical connective. A ∆0 formula preceded by n : N existential quan-
tifiers will be called Σ1 .

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#ax_induction
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#ax_induction
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#num

32 First-Order Logic

Lemma 3.14 For any σ : N→ tm, the formula φ[σ] is ∆0 if φ is ∆0 .

Proof By induction on the formula φ. �

Closed ∆0 formulas correspond to statements with no quantifiers and only involving
equations with no free variables. For this type of formulas we can either proof them
or their negation.

Theorem 3.15 For any closed ∆0 formula ϕ we have PA ` ϕ or PA ` ¬̇ϕ.

Proof We proceed by induction on the formula.

• If ϕ = ⊥ then we can show PA ` ¬̇⊥.

• If ϕ = α �̇ β for some connective �̇, then by the induction hypothesis we have
that PA ` α or PA ` ¬̇α as well as PA ` β or PA ` ¬̇β. For every connective,
this leads to 4 cases which are easily handled.

• The case ϕ = (s =̇ t) is covered by a result we will later show in Corollary 5.7.

The case where ϕ has some quantifier does not occur, since by Definition 3.13 ∆0

formulas do not have quantifiers. �

Lemma 3.16 (∆0 -Absoluteness) LetM � PA and ϕ be any closed ∆0 formula,
then N � ϕ→M � ϕ.

Proof By Theorem 3.15 we have either PA ` ϕ or PA ` ¬̇ϕ. Since N � ϕ we must
have PA ` ϕ and thereforeM � ϕ by soundness. �

Lemma 3.17 Let ϕ0(x, y) be a ∆0 formula, then there is a ∆0 formula γ0(z) such
that PA ` ∃̇x ∃̇ y. ϕ0(x, y) ↔̇ ∃̇ z. γ0(z).

Proof Sketch We let γ0(z) := ∃̇x < z ∃̇ y < z. ϕ0(x, y). If we have ∃̇x ∃̇ y. ϕ0(x, y)

then z := x + y + 1 shows ∃̇ z. γ0(z) and conversely, if ∃̇x < z ∃̇ y < z. ϕ0(x, y) then
it is trivial to show ∃̇x ∃̇ y. ϕ0(x, y). �

Corollary 3.18 (∃̇ Compression) For any formula ∃̇ nϕ0 with ϕ0 being ∆0 , there
is a ∆0 formula γ0 such that PA ` ∃̇ nϕ ↔̇ ∃̇ γ0.

Proof We do a proof by induction on n, starting with n = 1 and using Lemma 3.17
in the inductive step. �

Lemma 3.19 For any closed Σ1 formula ϕ we have N � ϕ↔ PA ` ϕ.

Proof By Corollary 3.18 there is a ∆0 formula ϕ0 such that ∃̇ϕ0 is equivalent to
ϕ. The assumption N � ∃̇ϕ0 then gives us n : N with N � ϕ0(n). By Lemma 3.16
we then have PA ` ϕ0(n) giving us PA ` ∃̇ϕ0. The converse direction follows by
soundness. �

Corollary 3.20 (Σ1 Absoluteness) Let M � PA and ϕ be any closed Σ1 for-
mula, then N � ϕ→M � ϕ.

Chapter 4

Synthetic Computability

Usually, to talk about the notion of computability, one would develop a model of
computation inside of set theory, like the Turing machine model, which can then be
used to define what a computable function is. It then becomes possible to define
notions like decidability. A predicate p ⊆ N would be considered to be decidable if
there is a Turing machine computing the function f : N→ {0, 1} with fx = 1↔ x ∈ p.

When it comes to Coq, every concrete functions as defined by the user, in the absence
of any additional axioms, can in principle be shown to be computable in a chosen
model of computation, even in an automated way, by external tools [14]; meaning
from the outside we can observe the computability of every function defined inside
of the constructive type theory we work in. This then justifies a viewpoint where
we simply consider every function inside of the type theory as computable, allowing
many definitions, like the one for decidability, to be simplified. A predicate p : N→ P
is now called decidable if there exists a function f : N → B such that fx = tt↔ p x.
Here we did not need to require the computability of f and to make reference to a
concrete model of computation. This approach to the theory of computable functions
is called synthetic computability theory [1, 39]. We can even go one step further
and assume an axiom which then internalizes this viewpoint and will come back to
this in Section 6.1.

We can now define notions of computability theory in this setting:

Definition 4.1

• dec(P : P) := Σ bB. P ↔ b = tt

• Dec(p : X → P):= ∃(f : X → B) ∀x. (p x↔ fx = tt)

• Enum(p : N→ P) := ∃(f : N→ N) ∀x. p x↔ ∃n. f n = S x

• Eq(X : T) := ∀x y : X. dec(x = y)

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Dec
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Dec_equiv
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#enumerable
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#EQ

34 Synthetic Computability

Furthermore, a type X is called discrete if EqX holds, enumerable if there is a
function f : N→ O(X) with ∀x ∃n. fn = Somex, and data type if both hold.

Fact 4.2 For every proposition P , if decP then P ∨ ¬P .

Proof By assumption there is a boolean b : B such that P↔ b = tt. By case analysis
on b get two cases.

• If b = tt then P follows, hence we can show P ∨ ¬P .

• In the case b = ff, assume we had P , then this would imply b = tt and therefore
tt = ff which gives a contradiction. This shows ¬P allowing us to prove P ∨¬P .

�

Fact 4.3 For any proposition P we have dec(¬P)→ stableP → decP .

Lemma 4.4 For any x, y : N we have dec(x = y).

Proof We do an induction on x : N to prove the statement ∀y. dec(x = y).

• In the base case x = 0 we need to show dec(0 = y) for arbitrary y. Using case
distinction for natural numbers, we know that either y = 0 or y = Sz for some
z : N. The first case dec(0 = 0) is easy to verify. In the second case we need to
show ∃b : B. 0 = Sz↔ b = tt which holds for the choice b := ff.

• In the inductive step we nee to show ∀y. dec(Sx = y) while having the induction
hypothesis ∀y. dec(x = y) at our disposal. We again proceed by a case distinc-
tion on y. The y = 0 case, dec(Sx = 0) is handled as above and in the remaining
case we need to show dec(Sx = Sy). We know use the induction hypothesis by
which we know that there is a boolean b : B such that x = y↔ b = tt. Therefore
Sx = Sy↔ x = y↔ b = tt, proving the claim. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Enum

Chapter 5

Undecidability of Peano Arithmetic

In this chapter we will establish the undecidability of the first order theory of PA. More
concretely, by means of a reduction, we will show that neither validity nor provability
for arbitrary PA formulas can be decided. We will see that PA can naturally express
the solvability of an arbitrary Diophantine equation p = q by a formula ϕp,q and if
validity or provability were decidable for arbitrary formulas, we could decide it for
ϕp,q and therefore decide whether p = q has a solution or not. The solvability problem
of Diophantine equations however is famously know to be undecidable [30, 31, 29].

We will start off by showing that PA can do computations on numerals, which will
be needed in the verification of the reduction. We then show an overall stronger
undecidability result by identifying a finite fragment of PA which already turns out
to be undecidable.

5.1 Computing on Numerals

We will now see that PA can do simple computations on numerals. This means
that if we take two natural numbers e.g. 5 and 7 and add them to get 12, then
PA can deductively show this result on the respective numerals i.e. we can show
PA ` 5⊕ 7 =̇ 12.

Lemma 5.1 For any x, y : N we have PA ` x+ y =̇ x⊕ y.

Proof We proceed by induction on x : N.

In the base case we need to show PA ` y =̇ 0 ⊕ y which immediately follows by the
⊕-base axiom of PA. The successor case is shown by

Ind. hyp.
PA ` x+ y =̇ x⊕ y

S-equality
PA ` Sx+ y =̇ S(x⊕ y)

⊕-recursion
PA ` Sx+ y =̇ (Sx)⊕ y

Def. of numerals
PA ` Sx+ y =̇ Sx⊕ y

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#num_add_homomorphism

36 Undecidability of Peano Arithmetic

�

Lemma 5.2 For any x, y : N we have PA ` x · y =̇ x⊗ y.

Proof Again we proceed by induction on x : N.

In the base case we need to show PA ` 0 =̇ 0 ⊗ y which immediately follows by the
⊗-base axiom of PA. The successor case is shown by

Reflexivity
PA ` y =̇ y

Ind. hyp.
PA ` x · y =̇ x⊗ y

⊕-equality
PA ` y ⊕ x · y =̇ y ⊕ x⊗ y

⊗-recursion
PA ` y ⊕ x · y =̇ (Sx)⊗ y

Lemma 5.1
PA ` y + x · y =̇ (Sx)⊗ y

Def. of numerals
PA ` Sx · y =̇ Sx⊗ y

�

We can think of the previous results as homomorphism properties of the numeral
function · .

Fact 5.3 For x, y : N with x = y we have PA ` x =̇ y.

Lemma 5.4 For x, y : N with x 6= y we have PA ` ¬̇x =̇ y

Proof We do an induction on x : N. In the base case we need to show that 0 6= y

implies PA ` ¬̇0 =̇ y. In the case y = 0 this follows trivially and in the y = Sz case
this follows by the disjointness axiom.

In the inductive step we know that Sx 6= y and need to show PA ` ¬̇Sx =̇ y. Here
the y = 0 case follows by the disjointness axiom. In the y = Sz case we get

Ind. Hyp.
PA ` ¬̇x =̇ z
x =̇ z, PA ` ⊥

Injectivity
Sx =̇ Sz, PA ` ⊥
PA ` ¬̇Sx =̇ Sz

�

We can now use these results to show that PA can either show a deduction for the
equality or apartness of two numerals.

Theorem 5.5 If x, y : N then PA ` x =̇ y + PA ` ¬̇x =̇ y.

Proof By Lemma 4.4 we either have x = y or x 6= y and the claim therefore follows
by using Fact 5.3 and Lemma 5.4. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#num_mult_homomorphism
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#num_eq
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#num_neq
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#num_eq_dec

5.2. Undecidability 37

Our goal is to extend this decidability result of equality to any closed term, by first
showing that every closed term is equal to some numeral.

Lemma 5.6 If t : tm is closed then there is n : N with PA ` t =̇ n.

Proof We proceed by induction on the closed term t. Since t is closed, it cannot
be equal to a variable xk and we therefore only need to consider the cases where t is
build up from function symbols and other closed terms. The only function symbols
in PA are O,S,⊕ and ⊗.

• If t = O then we clearly have PA ` t =̇ 0.

• Now assume t = St0. Since t0 is closed we have by induction that there is n0 : N
with PA ` t0 =̇ n0. From this we straightforwardly get PA ` t =̇ Sn0.

• If t = t1 ⊕ t2 then t1, t2 must be closed and by induction we get n1, n2 : N with
PA ` t1 =̇ n1 and PA ` t2 =̇ n2. We then have

PA ` t2 =̇ n2 PA ` t1 =̇ n1 ⊕-equality
PA ` t1 ⊕ t2 =̇ n1 ⊕ n2

PA ` t =̇ n1 ⊕ n2 Lemma 5.1
PA ` t =̇ n1 + n2

• The case t = t1 ⊗ t2 is analogous to the previous one. �

Corollary 5.7 If s, t : tm are closed then PA ` t =̇ s + PA ` ¬̇ t =̇ s.

Proof By Lemma 5.6 s, t are provably equal to numerals. Therefore the claim follows
from Theorem 5.5. �

5.2 Undecidability

We will now focus on the finite fragment U ⊆ PA whose only axioms are the equality
axioms, as well as the base-case and recursion axioms for ⊕ and ⊗. We immediately
remark that N is still a model of U and U is still strong enough to show Lemma 5.1
and Lemma 5.2.

Definition 5.8 We inductively define polynomials with natural number coefficients,
by building them up using constants, variables, addition and multiplication:

p, q ::= an | var k | add p q | mult p q (n, k : N)

A tuple (p, q) of polynomials then designates a Diophantine equation p = q. We recur-
sively define the canonical evaluation J·Kσ of polynomials under a variable assignment

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#closed_term_is_num
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#term_eq_dec
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.PA.html#FAeq
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.H10.H10p.html#dio_polynomial_pfree
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.H10.H10p.html#dp_eval_pfree

38 Undecidability of Peano Arithmetic

σ : N→ N by:

JanKσ := n Jadd p qKσ := JpKσ + JqKσ
Jvar kKσ := σ k Jmult p qKσ := JpKσ · JqKσ

We then say that a Diophantine equation p = q has a solution iff there exists an
assignment σ : N→ N such that JpKσ = JqKσ.

Definition 5.9 We recursively define an embedding of polynomials p as terms p∗ : tm

in the signature of PA

an
∗ := n (add p q)∗ := p∗ ⊕ q∗

(var k)∗ := xk (mult p q)∗ := p∗ ⊗ q∗

Definition 5.10 A Diophantine equation (p, q) can now be expressed as the PA for-
mula by p∗ =̇ q∗. If xN is the greatest variable appearing in the formula p∗ =̇ q∗

then ϕp,q := ∃̇Np∗ =̇ q∗ is a closed formula internally expressing that the Diophantine
equation has a solution. This will be our embedding of equations into PA.

Next we will see that this way of embedding is sensible, by noting that p∗ evaluates
to the expected result in the standard model N.

Lemma 5.11 For every environment σ : N→ N we have σ̂(p∗) = JpKσ.

Proof We show this by induction on p.

• If p = an we have σ̂(an
∗) = σ̂(n) = n = JanKσ.

• If p = var k then σ̂((var k)∗) = σ̂(xk) = σ(k) = Jvar kKσ.

• If p = add a b we have

σ̂((add a b)∗) = σ̂(a∗ ⊕ b∗) = σ̂(a∗) + σ̂(b∗)
Ind.
= JaKσ + JbKσ = Jadd a bKσ

• The case p = mult a b is analogous to the previous one. �

We will now see that we get a similar result in the deduction system. Consider that p
has the syntactic representation p∗ = 2⊗x1⊗x1⊕x0⊕5. If we are now given a variable
assignment σ : N → N with σ(0) = 4, σ(1) = 2 we can evaluate the polynomial p in
the usual way to get

JpKσ = 2σ(1)2 + σ(0) + 5 = 2 · 2 · 2 + 4 + 5 = 17

https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#embed_poly
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#embed
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#nat_eval_poly

5.2. Undecidability 39

or we can use σ and substitute its values as numerals into p∗

p∗[σ] = 2⊗ σ(1)⊗ σ(1)⊕ σ(0)⊕ 5 = 2⊗ 2⊗ 2⊕ 4⊕ 5

By previous results we know that U is strong enough to derive that the latter is
equal to the numeral 17. This observation leads us to the natural extension of the
homomorphism property of · to polynomials:

Lemma 5.12 Let p be a polynomial and σ : N→ N a variable assignment, then we
have U ` p∗[σ] =̇ JpKσ

Proof We do an induction on p.

• If p = an we have

Reflexivity
U ` n =̇ n Subst.

U ` n [σ] =̇ n
Def.

U ` an
∗[σ] =̇ JanKσ

• If p = var k we have

Reflexivity
U ` σ(k) =̇ σ(k)

Subst.
U ` (xk)[σ] =̇ σ(k)

Def.
U ` (var k)∗[σ] =̇ Jvar kKσ

• If p = add a b we have

Ind. Hyp.
U ` a∗[σ] =̇ JaKσ

Ind. Hyp.
U ` b∗[σ] =̇ JbKσ ⊕-equality

U ` a∗[σ]⊕ b∗[σ] =̇ JaKσ ⊕ JbKσ
Lemma 5.1

U ` a∗[σ]⊕ b∗[σ] =̇ JaKσ + JbKσ
Subst.

U ` (a∗ ⊕ b∗)[σ] =̇ JaKσ + JbKσ
Def.

U ` (add a b)∗[σ] =̇ Jadd a bKσ

• The case where p = mult a b is analogous to the previous one. �

With this result we can now verify that when substituting the solution of a Diophan-
tine equation into its syntactical representation, U is strong enough to recognize it as
a solution.

Lemma 5.13 If (p, q) has the solution σ : N→ N then U ` (p∗ =̇ q∗)[σ].

Proof By assumption we have s := JpKσ = JqKσ and therefore

https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#prv_poly
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#problem_to_prv

40 Undecidability of Peano Arithmetic

Lemma 5.12
U ` p∗[σ] =̇ JpKσ

Def.
U ` p∗[σ] =̇ s

Lemma 5.12
U ` JqKσ =̇ q∗[σ]

Def.
U ` s =̇ q∗[σ]

Transitivity
U ` p∗[σ] =̇ q∗[σ]

Subst.
U ` (p∗ =̇ q∗)[σ]

�

Corollary 5.14 If (p, q) has a solution then U ` ϕp,q.
Proof Let σ be a solution of (p, q), then by Lemma 5.13 we have U ` (p∗ =̇ q∗)[σ]

and by Fact 3.7 the substitution σ is therefore a witness for U ` ∃Np∗ =̇ q∗. �

Lemma 5.15 (p, q) has a solution iff U � ϕp,q.

Proof If (p, q) has a solution, then by Corollary 5.14 we have U ` ϕp,q and therefore
U � ϕp,q by soundness.

Conversely, if we have U � ϕp,q, then in particular N � ϕp,q which means there is an
environment ρ : N → N such that N �ρ p∗ =̇ q∗. We then know that ρ is a solution
for (p, q) due to Lemma 5.11. �

Lemma 5.16 (p, q) has a solution iff U `i ϕp,q.
Proof The first direction is simply Corollary 5.14. The converse follows from sound-
ness and Lemma 5.15. �

Note that in Lemma 5.16 we have to restrict provability to intuitionistic provability
`i, since without the additional assumption of LEM, the constructive type theory
only allows a proof of soundness for `i. Since ϕp,q is Σ1, we could use a Friedman
translation to extract a classical proof U `c ϕp,q form the intuitionistic proof U `i ϕp,q,
therefore generalizing Lemma 5.15 and the following results.

Theorem 5.17 For every theory T with U ⊆ T and N � T we have that validity
λϕ. T � ϕ and provability λϕ. T `i ϕ are undecidable. So in particular this holds for
PA.

Proof Lemma 5.15 and Lemma 5.16 respectively show that the decidability of λϕ.U �
ϕ and λϕ.U `i ϕ would imply the decidability of the satisfiability of Diophantine
equations, which is known to be undecidable. Since U ⊆ T , this result then extends
to T . �

Corollary 5.18 Validity λϕ. � ϕ and provability λϕ. `i ϕ for first-order logic are
undecidable over the signature of PA.

Proof Let
∧

U denote the formula which is the conjunction of the finitely many
axioms of U. Since we then have

`i (
∧

U →̇ ϕ) ⇔ U `i ϕ and � (
∧

U →̇ ϕ) ⇔ U � ϕ

the result follows from Theorem 5.17. �

https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10p_to_FA_prv'
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10p_to_FA_sat
https://www.ps.uni-saarland.de/extras/axiomatisations/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10p_to_FA_prv

Chapter 6

Tennenbaum’s Theorem

When we think about models of PA, the first thing that comes to mind are the natural
numbers N, and one could certainly say that the sole purpose of PA is to accurately
describe this model. The world of PA models is however larger than this. One way
to show this is to add a new constant c to the language of PA and get an extended
theory PA∗ by adding the axiom scheme comprising of the axioms n < c for every n : N.
Every finite subset of these new axioms will still have N as a model; we only need to
make sure that the interpretation of the constant c is big enough to satisfy the finitely
many inequalities n1 < c, . . . , nk < c. By the classical compactness theorem then,
there must also be a model for the full theory PA∗. This is then easily verified to be a
model of PA not isomorphic to N, as the interpretation of c can have no counterpart
in N. These kinds of non-standard models can be so large that it becomes impossible
to enumerate all of their elements or perform computations on them algorithmically.
This raises the question whether there is a sweet spot in this regard: Is there a model
of PA which is non-standard, in the sense that it is not isomorphic to N, and yet still
keeps the arithmetical operations computable?

For a first take on the question we can assume that here computable means having a
Turing machine computing the function. If we then take e.g. the addition function
⊕M : M×M→M we can however not immediately describe a Turing machine that
computes it. Since Turing machines manipulate finite strings on a tape, we cannot
hand it elements of a generic model PA � M as input. We need to relate every
element ofM to a string over the tape alphabet, which then enables us to hand them
as a digestible input to the machine. This immediately leads us to the conclusion
that the models under consideration should be countable if all its elements are to
be encoded without ambiguity, which is necessary if we want a machine computing
⊕M on all possible input pairs x, y : M. So the question narrows down to countable
non-standard models with computable operations.

An answer to this question was first given by Stanley Tennenbaum in [47] and is
now known as Tennenbaum’s theorem. It states that for any countable non-standard

42 Tennenbaum’s Theorem

modelM � PA there is no way to encode its elements as natural numbers such that
either the addition or multiplication operation onM is computable on the codes.

The first proof of Tennenbaum’s theorem we present is based on the article [44] by
Peter Smith and has four main ingredients:

1. In Lemma 6.28 we saw a straightforward encoding of finite sets as natural
numbers. In a non-standard model this encoding can surprisingly be extended
to also encode infinite sets.

2. In a non-standard model, any predicate which holds on all numerals will also
hold on some non-standard element (Lemma 6.46).

3. A result from the theory of computation (Section 6.2) tells us that there are
pairs of recursively enumerable sets which cannot be separated by a recursive
set.

4. In a computable PA model divisibility of elements by a standard element is
decidable.

The proof then very roughly proceeds as follows: assuming we are in a non-standard
modelM � PA, and given a pair of inseparable r.e. sets A,B ⊆ N , 2. tells us that
there is a non-standard element e ∈M such that for all elements below e, the sets are
disjoint. The set X := {x ∈ M | x ∈ A ∧ x < e} turns out to separate A and B and
can therefore not be recursive. By 1. the set can however be coded by one element
c ∈ M, such that x ∈ X ↔ πx | c. If addition ⊕M of the model were computable,
then πx | c would turn out to be recursive, which is not possible as it would entail
recursiveness of X.

The framework in [44] takes set theory as a foundation, classical logic for reasoning
and uses Turing machines as the computational model. Here we want to treat the
theorem in constructive type theory, adding to existing work [37, 33, 32] by not only
giving another formal treatment of the theorem in a constructive setting, but by also
mechanizing and verifying these results in the Coq proof assistant.

Compared to the setting Smith uses, our approach differs in the following points:

• The foundation uses constructive type theory, having a built-in intuitionistic
logic which we use as the meta-logic for the development of first-order logic.

• We still use Tarski semantics for the first-order logic, but with the model do-
mains being types. This gives it an overall different flavor as by Definition 3.8
e.g. function symbols are interpreted as functions in the type theory.

• We will not use a concrete model of computation, but instead assume Church’s
thesis (Section 6.1), stating that every function N → N inside of our chosen

6.1. Church’s Thesis 43

type theory is computable.

• In our formulation of the theorem we will not have to assume that multiplication
or addition of the model are computable, as this follows from the previous two
points.

After the presentation of the first proof, we will also see that by choosing even stricter
constructive semantics, as was done by McCarty in [33], the categoricity of Heyting
arithmetic can be shown rather quickly, giving a variant of Tennenbaum’s theorem.

6.1 Church’s Thesis

Eli: “Let’s not make this any more difficult than it already is.”
— Wes Anderson, The Royal Tenenbaums

Since Tennenbaum’s theorem is concerned with models of PA whose operations are
computable, we necessarily need to specify the model or notion of computability which
will be used. Making reference to a computable function then means we are making
reference to a concrete description of the function in this computation model. In [44]
the choice was to consider Turing machines.

In our constructive setting, there is however another approach. Instead of explicitly
working with a model of computation in this way, we can simplify the treatment by
assuming Church’s thesis as an axiom. Church’s thesis is an informal statement which
in its usual form expresses that every function f : N→ N we would intuitively consider
to be computable, has a representation in the Turing machine (or any equivalent)
model. The idea is that if we have a class of functions that we intuitively believe
to only consist of computable functions, we can commit to this belief by assuming
Church’s thesis as an axiom, formulated in such a way that it applies to this class of
functions. We could not consistently assume Church’s thesis in a classical logic as it
is easy to construct a non-recursive function N→ N using the law of excluded middle.
As discussed in Chapter 4 we are using the constructive type theory as a setting for a
synthetic theory of computation, therefore subscribing to the assumption that every
function internal to the type theory is computable. We therefore assume the following
formulation:

Definition 6.1 (Church’s Thesis) By CT we mean the statement that every func-
tion f : N→ N in CTT is computable in a formal model of computation (e.g. Turing
machines or µ-recursive functions).

Remark 6.2 When it comes to Coq, every concrete function as e.g. defined by the
user can in principle be shown to be computable in a chosen model of computation.
In a proof however, say for a statement of the form ∀(f : N→ N). P f , we would start
by assuming we have some f : N→ N. The function f then has no concrete definition,
making it impossible to produce a representation of it in the model of computation.

44 Tennenbaum’s Theorem

It is in a situation like this then, that we make use of (and need to assume) Church’s
thesis in order to get a representation.

To see the usefulness of Church’s Thesis in our context, we first remark that we can
get the very helpful Axiom 6.4 by combining it with the following standard result [43]

Proposition 6.3 If f : N→ N is a µ-recursive function, then there is a binary Σ1

formula ϕf (x, y) such that

∀n.Q ` ∀̇ y. ϕf (n, y) ↔̇ f n =̇ y

This should be read as: Q can verify that ϕf is an object level representation of f .

Axiom 6.4 (CT) For every function f : N→ N there is a Σ1 formula ϕf (x, y) with
∀n,Q ` ∀̇ y. ϕf (n, y) ↔̇ f n =̇ y.

Axiom 6.4 then is our chosen formulation of Church’s thesis for this context. In princi-
ple, Proposition 6.3 could be derived, as was done (in a slightly different formulation)
in [34].

Remark 6.5 Using Axiom 6.4 we get the existence of a formula ϕπ represent-
ing the injective prime function π we will construct in Corollary 6.27. This avoids
going through some lengths in explicitly constructing and deductively verifying the
correctness of a formula ϕπ by hand, as would otherwise be necessary.

Definition 6.6 Let p : N → P, then we call p weakly representable if there is a
unary Σ1 formula ϕp(x) with ∀x. p x↔Q ` ϕp(x) and strongly representable if for
every x : N we have p x→ Q ` ϕp(x) and ¬p x→ Q ` ¬̇ϕp(x).

We will then further assume the representability theorem [38] as an axiom.

Axiom 6.7 (RT) Any enumerable (decidable) predicate on N is weakly (strongly)
representable.

Using CT, the representability theorem can in principle be shown, and we will give a
sketch of its proof. The proof was however not fully mechanized, which is the reason
we assume it as an axiom.

Proof Sketch (of Axiom 6.7) If p is enumerable there is a function f : N→ N such
that ∀x. p x↔ ∃n. fn = Sx and by Axiom 6.4 there is a binary Σ1 formula ϕf (x, y)

representing f . We then define ϕp(x) := ∃̇n. ϕf (n, Sx) giving us

Q ` ϕp(x) ⇐⇒ Q ` ∃̇n. ϕf (n,Sx)

⇐⇒ ∃n : N.Q ` ϕf (n,Sx)

⇐⇒ ∃n : N.Q ` fn =̇ Sx

⇐⇒ ∃n : N. fn = Sx ⇐⇒ p x

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#CT_Q
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#RT_weak
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#RT_strong
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#RT_strong

6.2. Inseparable r.e. Sets 45

where in the second equivalence we made use of the fact that ∃̇n. ϕf is Σ1 . This
shows that p is weakly representable.

If p is decidable there is a function f : N → N such that ∀x. p x ↔ fx = 0 and by
Axiom 6.4 there is a binary Σ1 formula ϕf (x, y) representing f . We then define
ϕp(x) := ϕf (x, 0). By making use of Fact 5.3 we get

p x =⇒ fx = 0 =⇒ Q ` fx =̇ 0 =⇒ Q ` ϕf (x, 0) =⇒ Q ` ϕp(x)

and similarly

¬p x =⇒ fx 6= 0 =⇒ Q ` ¬̇(fx =̇ 0) =⇒ Q ` ¬̇ϕf (x, 0) =⇒ Q ` ¬̇ϕp(x)

by usage of Lemma 5.4. This shows that p is strongly representable. �

6.2 Inseparable r.e. Sets

To show Tennenbaum’s theorem we will use a result from the theory of computation
stating the existence of recursively enumerable (r.e.) sets which cannot be sepa-
rated by a recursive set. In our context we use predicates instead of sets and use the
synthetic notions of r.e. and recursiveness to express inseparability:

Definition 6.8 A pair A,B : N→ P of predicates is called inseparable iff

• A and B are enumerable,

• they are disjoint in the sense that ∀n.¬(An ∧B n)

• there is no decidable D : N → P which includes A i.e. ∀n.An → Dn and is
disjoint from B i.e. ∀n.¬(B n ∧Dn).

Lemma 6.9 There is a pair A,B : N → P of disjoint enumerable predicates which
cannot be separated by predicates of the form λnN.Q ` ϕ(n) with completeness prop-
erty ∀n.Q ` ϕ(n) ∨ Q ` ¬̇ϕ(n).

Proof By Fact 3.5 we know that there is an enumeration Φn : fm (n : N) of all
formulas. We can therefore define the disjoint predicates A := λnN.Q ` ¬̇Φn(n) and
B := λnN.Q ` Φn(n). A and B are then enumerable by Fact 3.5 since Q is finite.
Regarding the inseparability we need to show that for any predicate λnN.Q ` ϕ(n)

with the completeness property, having the two statements

∀n.A n→ Q ` ϕ(n) ∀n.¬(B n ∧ Q ` ϕ(n))

leads to a contradiction. Using the fact that we have an enumeration of formulas, we
get d : N with Φd = ϕ. Using this and unfolding the definition of A and B we have

∀n.Q ` ¬̇Φn(n)→ Q ` Φd(n) ∀n.¬(Q ` Φn(n) ∧ Q ` Φd(n)) (6.1)

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Insep3
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Insep_1

46 Tennenbaum’s Theorem

Next we use the completeness property of λnN.Q ` ϕ(n). If Q ` ϕ(d) then Q ` Φd(d)

and therefore the right statement in the above gives us ⊥. If ¬Q ` ϕ(d) then we have
¬Q ` Φd(d) and therefore Q ` ¬̇Φd(d) by the decidability property of Φd. This then
leads to a contradiction due to the left statement in Equation (6.1). �

Corollary 6.10 Assuming RT, there is a pair α(x), β(x) of unary Σ1 formulas such
that A := λnN.Q ` α(n) and B := λnN.Q ` β(n) cannot be separated by predicates of
the form λnN.Q ` ϕ(n) with completeness property ∀n.Q ` ϕ(n) ∨ Q ` ¬̇ϕ(n).

Proof By Lemma 6.9 there are disjoint enumerable predicates A,B which cannot
be separated in the indicated way. By the enumerability part of RT we then get the
desired formulas from them. �

Corollary 6.11 Assuming RT, there is a pair A,B : N → P of inseparable predi-
cates.

Proof By Lemma 6.9 there are disjoint enumerable predicates A,B which cannot be
separated by formulas with the completeness property. By RT any decidable predicate
D gives raise to such a formula wherefore D cannot separate A and B. �

Corollary 6.12 Assuming RT, there is a pair α(x), β(x) of unary Σ1 formulas such
that A := λnN.Q ` α(n) and B := λnN.Q ` β(n) are inseparable.

Proof By using RT on Lemma 6.9. �

6.3 Some Number Theory and Finite Coding

We will later need some facts about prime numbers and will now develop these results
on the level of our type theory, which provides us with the natural number type N. We
presuppose that sensible definitions for basic arithmetic operations have been given
in the type theory, as was done for addition in Section 2.2.3.

We set out to show the infinitude of primes and start by showing a classic theorem
by Euclid.

Theorem 6.13 (Euclid) For any x, q : N we can show

Σ d r : N. x = d · q + r ∧ (0 < q→ r < q)

Proof If q = 0, we can choose d := 0 and r := x. Now knowing q > 0, we do an
induction on x : N. In the base case x = 0, the choice d := 0, r := 0 does the job. In
the inductive case we know that x = d′ · q+ r′ and using Lemma 4.4 we consider two
cases:

• If r′ = q− 1 then Sx = S(d′ · q+ q− 1) = (Sd′) · q. Choosing d :=Sd′ and r := 0

therefore proves the statement.

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Insep_2
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Insep_3
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Inseparable
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Euclid

6.3. Some Number Theory and Finite Coding 47

• If r′ 6= q− 1 then Sx = S(d′ · q+ r′) = d′ · q+ (Sr′). We can then choose d := d′

and r := Sr′. In this case the fact r = Sr′ < q follows from r′ < q and Sr′ 6= q.
�

The next lemma shows that d, r as constructed by Theorem 6.13 are unique.

Lemma 6.14 Given q, r1, r2, d1, d2 : N with r1, r2 < q, then d1q + r1 = d2q + r2

implies d1 = d2 and r1 = r2.

Proof We distinguish three cases.

• If d1 = d2 then d1q + r1 = d1q + r2 which shows r1 = r2.

• If d1 < d2 then (Sd1)q ≤ d2q + r2 and because of r1 < q we have d1q +

r1 < (Sd1)q. Combined this gives d1q + r1 < d2q + r2, in contradiction to
d1q + r1 = d2q + r2.

• If d2 < d1 we get a contradiction, just like in the second case. �

Proposition 6.15 For any x, q : N, we can extract the divisor divq x := d and
modulus modq x := r of x with respect to q from the proof of Theorem 6.13 and can
immediately follow:

1. x = (divq x) · q + (modq x)

2. 0 < q→ modq x < q

3. 0 < q ≤ x→ modq x < x.

Definition 6.16 A number a : N is divisible by b : N, written b | a if ΣnN. a = n · b
1. Then p : N is a prime number if p > 1 and for every a, b : N, p | a · b implies p | a
or p | b.

Definition 6.17 n : N is called irreducible if n > 1 and for any x < n, x | n
implies x = 1. We write irredn.

Lemma 6.18 irred is decidable.

Proof Since the quantification is bounded and equality as well as divisibility are
decidable, the whole predicate is decidable. �

Theorem 6.19 For any n : N, we have irredn + (n > 1→ Σx < N. x | n ∧ x 6= 1)

.
1In the Coq development we usually used the equivalent statement modb a = 0

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#unique
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Div
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Mod
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Factor
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Mod_bound
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Mod_lt
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#prime
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#irred
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#dec_irred
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#irred1

48 Tennenbaum’s Theorem

Proof We use Lemma 6.18 and the fact that the right side is equivalent to the
negation of irredn. �

Corollary 6.20 For any n : N, we have irredn + (n > 1→ Σx, y < N. x · y = n).

Theorem 6.21 Every n : N is prime iff it is irreducible.

Proof (adapted from [52]) It is easy to show that every prime is irreducible, so we
only show the converse. Assuming that x is irreducible we try to show x | ab ⇒ x |
a ∨ x | b by strong induction on a. We distinguish two cases:

• (x ≤ a) By Theorem 6.13 we have a = d · x + r with r < x, implying r < a.
Since we have

x | ab =⇒ x | db · x+ rb =⇒ x | rb

the induction hypothesis can be applied on r giving us x | r ∨ x | b , which
shows x | a ∨ x | b.

• (x > a) It is trivial for a = 0, so assume a > 0. In this case Theorem 6.13 gives
us x = d · a+ r with r < a. Since x | ab there is a k with kx = ab. So we have

x | xb =⇒ x | dab+ rb =⇒ x | dk · x+ rb =⇒ x | rb

again making it possible to apply the induction hypothesis on r to get x |
r ∨ x | b . If x | b we are done. If x | r we must actually have r = 0 since
r < a < x. Thus x = da and by the irreducibility of x we get a = x ∨ a = 1

showing x | a ∨ x | b respectively. �

Using this we can show that any number above 1 has some prime factor.

Lemma 6.22 If n > 1 then Σx : N. primex ∧ x | n.

Proof We do strong induction on n. By Corollary 6.20 n is already prime or we have
x, y < n with x · y = n. In the latter case the induction hypothesis gives us a prime
factor of x which is then also a prime factor of n. �

Definition 6.23 We define the factorial x! recursively by 0! :=1 and (Sx)! :=(Sx)·x!.

Fact 6.24 For any x : N, we have 0 < x! and x > 0 → x | x!.

Lemma 6.25 For any 0 < y ≤ x we have y | x!.

Proof By induction on x with y generalized. The base case is trivial, since there is
no such y. For the induction step, we distinguish between the cases y = Sx or y ≤ x,
which are then both shown by usage of the induction hypothesis and Fact 6.24. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#dec_irred_factor
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#prime_irred_equiv
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#irred_factor
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#faktorial
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#fac1
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#fac3

6.3. Some Number Theory and Finite Coding 49

Theorem 6.26 (Infinitude of Primes) ∀n : N.Σx > n. primex.

Proof Let n : N be given. Since n! + 1 > 1 we can use Corollary 6.20 to get a
prime factor k of n! + 1. If k ≤ n we would have modk n! = 0 by Fact 6.24 and
modk (n! + 1) = 0 leading to the contradictory statement modk 1 = 0. Hence k is
prime with k > n as desired. �

From the above intuitionistic proof we can extract a function π ′ : N→ N which only
produces prime numbers and has the additional property ∀n. π ′ n > n.

Corollary 6.27 The recursively defined function π : N→ N

π 0 := π ′ 0 ; π (Sn) := π ′(π n)

is injective and produces only prime numbers.

Proof By the property of π ′ for any n > 0 we have π (Sn) = π ′(π n) > π n showing
that π is strictly increasing and therefore injective. �

We will now see an application of the previously (Corollary 6.27) defined injective
prime-function π . It enables us to encode finite sets of natural numbers. To illustrate
this, we take the finite set S := {3, 8, 14, 21} and encode it by a single codenumber
c : N by multiplying prime numbers given by the function π .

c := (π 3) · (π 8) · (π 14) · (π 21)

If we want to know if k ∈ S, we simply need to check whether π k | c.

In particular, we can use this to encode finite sets of the form {u < n | p u} where p
is a definite predicate and n : N some bound.

Lemma 6.28 (Finite Coding) If p : N→ P is definite, then for every bound n : N
there is a code c : N such that

∀uN.
(
u < n→ (p u↔ π u | c)

)
∧
(
π u | c→ u < n

)
.

Proof We do a proof by induction on n. For n = 0 we can choose c = 1. For
the successor case: if ¬p n we can simply take the code c given by the induction
hypothesis, otherwise if p n we multiply the given c with π n. In both cases the
separate parts of the conjunction are checked by making use of the prime property as
well as the injectivity of π . �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#infty_irred
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#Irred
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#inj_Irred
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#irred_Irred
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.NumberTheory.html#mono_inj
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#preThm4_nat

50 Tennenbaum’s Theorem

6.4 Basic Peano Arithmetic

In this section we will state and proof results about PA in some generic modelM � PA.
This is in contrast to Section 6.3, where we worked in the specific model M = N,
to facilitate some proofs. For the remainder of the whole chapter, M will always
designate a PA model.

Proposition 6.29 For any N � PA, we can recursively define a function µ : N→ N
by µ 0 :=ON and µ (n+ 1) := SN (µn). An image point e : N of µ is called standard
number and we will also use the notation std e to express this. We further have

• ρ̂(n) = µn for any n : N and environment ρ : N→ N .

• µ is an injective homomorphism and therefore an embedding of N into N .

Proof The fact ρ̂(n) = µn easily follows by induction on n : N. The homomorphism
property can then be concluded from this fact and the homomorphism property of the
numeral function, by using soundness on the results of Lemma 5.1 and Lemma 5.2.
It remains to show injectivity. For this we show ∀y. µ x = µ y → x = y by induction
on x. Both the base case and inductive step are handled by case analysis on y. �

Usually we would have to write SM,⊕M,⊗M, =̇ M for the interpretations of the
respective symbols in a model M. For better readability we will however take the
freedom to overload the symbols S,+, ·,= to also refer to these interpretations.

From this point on, this section can be skipped on a first reading, as all of the results
that will follow are “obviously” true in PA and their proofs do not illuminate the proof
of Tennenbaum’s theorem.

Lemma 6.30 For all x, y : M we have

0 = Sx→ ⊥ x+ 0 = x x · 0 = 0

Sx = Sy → x = y x+ Sy = S(x+ y) x · (Sy) = x+ x · y

Proof These follow straight from the axioms via soundness. �

Lemma 6.31 For all x, y, z : M we have the statements concerning addition and
multiplication

x+ y = y + x x · y = y · x
(x+ y) + z = x+ (y + z) (x · y) · z = x · (y · z)
x+ y = 0→ x = 0 ∧ y = 0 x+ z = y + z → x = y

x = 0 ∨ ∃y : M. x = Sy x = y ∨ x 6= y

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#inu
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#eval_num
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#inu_inj
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#inu_mult_hom
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#zero_succ

6.4. Basic Peano Arithmetic 51

and the following results for inequalities:

¬x < 0 Sx < Sy↔ x < y

x < Sy↔ x ≤ y x < Sy↔ x < y ∨ x = y

x < y ∨ x = y ∨ y < x x < y → x 6= y

x < y → y ≤ z → x < z x ≤ y → y ≤ z → x ≤ z
x < y → x+ z < y + z x ≤ y → x+ z ≤ y + z

All of the statements in Lemma 6.31 have relatively straightforward proofs in N and
require at most induction on one of the numbers. On paper these proofs then just
translate to any other model, although they become more technical. For illustration
purposes we will elaborate on these details in all of the remaining proofs of this section
and refer the reader to the mechanized proofs if they are interested in more.

Lemma 6.32 (Euclid) For every q, x : M there exist d, r : M such that x = d · q+

r ∧ (0 < q → r < q).

Proof From a result of Lemma 6.31 we know that q is zero or the successor of some
q′ : M. If d = 0 then d := 0 and r := x prove the claim. In the case that q = Sq′ we
proceed by induction on x : M. In the base case we need to show

M � ∃̇ d r. 0 =̇ d⊗ q ⊕ r ∧̇ (0 <̇ q →̇ r <̇ q)

which holds for d := 0 and r := 0. In the induction step the induction hypothesis gives
us d′, r′ : M such that

x = d′ · q + r′ ∧ (0 < q → r′ < q)

Using the decidability of equality shown in Lemma 6.31 we can now distinguish two
cases:

• If r′ = q′ then by choosing d := Sd′ and r := 0 we have

d · q + r = Sd′ · q = d′ · q + q = d′ · q + Sq′ = S(d′ · q′ + r′) = Sx

and 0 < q → 0 < q as desired.

• If r′ 6= q′ we choose d := d′ and r := Sr′ to get

d · q + r = d′ · q + Sr′ = S(d · q′ + r′) = Sx.

We are left to show Sr′ = r < q = Sq′ which is equivalent to r′ < q′ by a
result from Lemma 6.31. By the induction hypothesis we know that r′ < Sq′

and therefore r′ ≤ q′. We now have enough information to show easily show the
goal in every case trichotomy on r′ and q′ gives us. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#iEuclid

52 Tennenbaum’s Theorem

Next we show uniqueness of this decomposition.

Lemma 6.33 For all q, r1, r2, d1, d2 : M we have

r1 < q → d1 < d2 → d1 · q + r2 = d2 · q + r2 → ⊥.

Proof Given r1 < q we have d1 · q + r1 < d1 · q + q by the monotonicity of addition.
From d1 < d2 we get

Sd1 ≤ d2 =⇒ (Sd1) · q ≤ d2 · q
=⇒ (Sd1) · q ≤ d2 · q + r2 =⇒ d1 · q + q ≤ d2 · q + r2

By Lemma 6.31 the inequalities can be combined to give us d1 · q + r1 < d2 · q + r2

and therefore a contradiction to the assumption d1 · q + r1 = d2 · q + r2. �

Lemma 6.34 For all q, r1, r2, d1, d2 : M we have

r1 < q → r2 < d2 → d1 · q + r2 = d2 · q + r2 → r1 = r2 ∧ d1 = d2.

Proof By trichotomy we have d1 < d2 or d1 = d2 or d2 < d1 where the cases with
strict inequalities can immediately be excluded since they yield contradictions due to
Lemma 6.33. We therefore have d1 = d2, further entailing

d1 · q + r1 = d2 · q + r2 =⇒ d1 · q + r1 = d1 · q + r2 =⇒ r1 = r2

by the cancellation property of addition shown in Lemma 6.31. �

Lemma 6.35 For any x, y : N we have x < y iffM � x <̇ y.

Proof If x < y there is k : N with S(x + k) = y showing M � Sx ⊕ k =̇ y by
Lemma 5.1 and therefore witnessing M � x <̇ y. For the converse implication, if
there is e : M with S(µx + e) = µ y then e must be a standard number e = µk,
giving us µ (S(x+ k)) = µ y and therefore S(x + k) = y by the homomorphism
property and injectivity of µ . �

Lemma 6.36 For every quantifier-free binary ∆0 formula ϕ(x, y) we have

M � ∀x y. ϕ(x, y) ∨̇ ¬̇ϕ(x, y)

Proof We do an induction on ∆0 ϕ.

• If ϕ = ⊥ we haveM � ¬̇⊥.

• If ϕ = (s =̇ t) then the claim follows from the decidability of equality shown in
Lemma 6.31.

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#iFac_unique1
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Peano.html#iFac_unique
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#lt_equiv
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#LEM_binary

6.5. Standard Models 53

• If ϕ = α �̇ β then α, β are themselves binary and ∆0 and so the induction
hypothesis applies to them, giving us enough information to show the claim no
matter the particular connective �̇. �

Lemma 6.37 For every quantifier-free binary ∆0 formula ϕ(x, y) we have

M � ∀b y. (∃̇x. x <̇ b ∧̇ ϕ(x, y)) ∨̇ ¬̇(∃̇x. x <̇ b ∧̇ ϕ(x, y))

Proof We do an induction on b. The base case b = 0 is then straightforward as we
can show the right side of the disjunction. In the induction step we get two cases
from the induction hypothesis. In the first case we have thatM � ∃̇x. x <̇ b ∧̇ ϕ(x, y)

and can therefore showM � ∃̇x. x <̇Sb ∧̇ ϕ(x, y) in the goal. In the second case we
have M � ¬̇ ∃̇x. x <̇ b ∧̇ ϕ(x, y). By Lemma 6.36, we have M � ϕ(b, y) ∨̇ ¬̇ϕ(b, y)

and depending on the case we can either show M � ∃̇x. x <̇Sb ∧̇ ϕ(x, y) or M �
¬̇ ∃̇x. x <̇Sb ∧̇ ϕ(x, y). �

Lemma 6.38 For every x, y : N we have x < y iffM � x <̇ y.

Proof We do an induction over y : N with x quantified; the base case being trivial. In
the induction step we need to show the equivalence of x < Sy andM � x <̇ Sy. This
is again trivial in the case where x = 0. If x = Sz then Sz < Sy which is equivalent
to z < y, furthermore by the induction hypothesis equivalent toM � z <̇ y and finally
equivalent toM � Sz <̇ Sy by a result from Lemma 6.31. �

6.5 Standard Models

We will now define standard models of PA and record some basic results about them.

Definition 6.39 M is a standard model iff the homomorphism µ as defined in
Proposition 6.29 is surjective.

With a few steps we can show thatM is standard iff there is a bijective homomorphism
φ : N → M. We will accordingly write M ∼= N if this is the case. For this purpose,
we start by showing that µ is essentially the only homomorphism from N to M we
need to care about, since it is unique up to functional extensionality:

Lemma 6.40 Let φ : N→M be a homomorphism, then ∀x. φ x = µx.

Proof By induction on x and using the fact that both are homomorphisms. �

Lemma 6.41 M∼= N ⇐⇒ M is standard ⇐⇒ ∀e. std e.

Proof Given M ∼= N, there is an isomorphism φ : N → M. Since φ is surjective,
Lemma 6.40 implies that µ must also be surjective. For the converse: if µ is surjective,
it is an isomorphism since it is injective by Proposition 6.29. The second equivalence
simply holds by definition. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#LEM_bounded_exist_sat
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#lt_equiv
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#stdModel

54 Tennenbaum’s Theorem

Having seen that every model contains a unique embedding of N, one could ask
whether there is a formula ϕ which could define and pick out precisely the standard
numbers inM. Lemma 6.42 gives an answer to this question:

Lemma 6.42 M∼= N iff there is a unary formula ϕ(x) with

∀e.
(

std e ↔ M � ϕ(e)
)
.

Proof IfM ∼= N, then the formula x = x shows the claim. For the converse, given
a formula ϕ with the stated property, we certainly have M � ϕ(0) since µ 0 is a
standard number, and clearly M � ϕ(x) → stdx → std (Sx) → M � ϕ(Sx). Thus
by induction in the model, we haveM � ∀x. ϕ(x), which is equivalent to ∀e. std e. �

Remark 6.43 We can extract a more general statement from Lemma 6.42: Given
any predicate P : M → P which holds on µ 0 and ∀x : M. P x → P (Sx), we have
∀e. P e iff there is a unary formula ϕ with ∀e.

(
P e ↔ M � ϕ(e)

)
.

6.6 Overspill and Infinite Coding

In this section we will examine some properties of PA models which differ from N
and conclude with the two results Lemma 6.46 and Lemma 6.48 which are essential
for the proof of Tennenbaum’s theorem as the latter allows the potential encoding of
some infinite subsets.

Lemma 6.44 For any e : M, we have ¬std e iff ∀n : N. µ n < e.

Proof Assume ¬std e, then by trichotomy of < we have µn < e or µn = e or
e < µn. Since the last two cases would imply std e we must have µn < e. For the
reverse implication, assume µk = e for some k : N. Then the assumption ∀n. µn < e

immediately gives us a contradiction for e.g. n = k + 1. �

Definition 6.45 We will say thatM is not standard and writeM 6∼= N iffM is
not isomorphic to N. We will call it non-standard iff there is e : M such that ¬std e

and founded on the result of Lemma 6.44 we will often use the notation N < e : M
for this.

Note that we have “non-standard→ not standard”. The converse implication however,
does not hold constructively in general. It does hold in a negative context, which is
the situation we will later often encounter.

Using Lemma 6.42 we now get a notable result telling us that if a formula holds on
all standard elements, then –classically speaking– it’s truth value will “overspill” into
the rest of the model, meaning at least one non-standard element will also satisfy the
formula.

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#stdModel_equiv
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#num_lt_nonStd

6.6. Overspill and Infinite Coding 55

Lemma 6.46 (Overspill) IfM 6∼= N and ϕ(x) is a unary formula withM � φ(µn)

for every n : N then

1. ¬
(
∀e : M. (M � φ(e))→ std e

)
2. Stable std =⇒ ¬¬∃e : M.¬ std e ∧ M � φ(e)

3. DNE =⇒ ∃e : M.¬ std e ∧ M � φ(e).

Proof 1. Assuming ∀e : M. (M � φ(e))→ std e and combining it with our assumption
that ϕ holds on all numerals, Lemma 6.42 impliesM∼= N, giving us a contradiction.

For 2. we note that stability of std gives us the implication(
¬∃e : M.¬std e ∧ M � ϕ(e)

)
=⇒

(
∀e : M. (M � ϕ(e))→ std e

)
and we therefore get a contradiction in the same way as in 1. and 3. immediately
follows from the second statement. �

In Section 6.3 we had seen that in N it is relatively easy to encode finite sets. If
we try to do the same in PA we first of all need to express the statement on the
object level. This now comes with the difficulty of finding a first-order formula which
expresses that a number is prime. Fortunately we can now make use of the earlier
Remark 6.5 telling us that by making use of CT and more specifically Axiom 6.4, we
have a formula ϕπ representing the function π . This then allows us to express the
desired statement and get the following version of the coding result in our PA-model
M:

Lemma 6.47 If ϕ is a binary ∆0 formula, then for any n : N we have

M � ∀̇ b ∃̇ c ∀̇u <̇ n.
(
∃̇ z <̇ b. ϕ(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

Proof Let b : M be given, then by Lemma 6.37 the predicate λm : N.M � ∃̇ z <̇ b. ϕ(z,m)

is propositionally decidable and therefore Lemma 6.28 gives us c : N coding the pred-
icate up to the bound n. We will now show that c then also proves the claim

M � ∀̇u <̇ n.
(
∃̇ z <̇ b. ϕ(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

Given u : M withM � u <̇ n we conclude that u must be a standard number u = µk

for some k : N. We then have the equivalence

π k | c ⇐⇒ M � ∃̇ z <̇ b. ϕ(z, k)

since c is coding the predicate on the right. Finally we also have the equivalence
π k | c ⇐⇒ M � ∃̇ p. ϕπ (k, p) ∧̇ p | c due to ϕπ being the representation of π . �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Overspill
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Overspill_DN
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#preThm4

56 Tennenbaum’s Theorem

Looking at the coding statement we have just shown we can recognize that it is a
formula which is satisfied for every standard number. Therefore it is susceptible to
an application of Overspill, which gets us the surprising result that in models that
are not standard (and up to a ¬¬) we can get rid of the bound n, making it possible
to encode infinite sets by a single element of the model.

Lemma 6.48 If M 6∼= N and std is stable, then for any binary ∆0 formula ϕ we
have

¬¬ ∀b : M ∃c : M ∀u : N. M �
(
∃̇ z <̇ b. ϕ(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

Proof By Lemma 6.47 and Overspill Lemma 6.46 we potentially have a non-standard
e : M with

M � ∀̇ b ∃̇ c ∀̇u <̇ e.
(
∃̇ z <̇ b. ϕ(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

and thus for any b : M there is a code c : M such that for any u : M with u < e we
potentially have

M �
(
∃̇ z <̇ b. ϕ(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

So in particular because of Lemma 6.44 u < e holds whenever u is a standard number,
which then shows the claim. �

6.7 Tennenbaum’s Theorem

We now show the last missing ingredient to Tennenbaum’s theorem by establishing
that divisibility by a standard number is decidable if the model is a data type.

Lemma 6.49 IfM is a data type, e : M and n > 0 thenM � n | e is decidable.

Proof Let n : N with n > 0 and e : M be given. Since M is enumerable we get a
surjective function g : N → M and since M has decidable equality the statement
e = q · µn + µ r is decidable, as is µ 0 < µn → µ r < µn by Lemma 6.38. We can
therefore use the witness operator of N in combination with the Euclidean Lemma 6.32
to get

Σ r, k : N. e = µn · (g k) + µ r ∧ (µ 0 < µn→ µ r < µn)

So we have access to r, k : N satisfying the above conjunction. We now get two cases:

• If r = 0 we have e = µn · (g k) and thereforeM � n | e.

• If r 6= 0 we can show ¬M � n | e. Since if we had M � n | e we get some
d : M with e = n · d which by the uniqueness Lemma 6.34 implies r = 0, a
contradiction. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Thm4
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#dec_Divides

6.8. Variants of Tennenbaum’s Theorem 57

Lemma 6.50 IfM 6∼= N with stable std then ¬¬∃c : M.¬Dec(λn.M � π n | c).

Proof By Corollary 6.12 there are inseparable Σ1 formulas ∃z. α(z, x) and ∃z. β0(z, x)

where α0, β0 are binary ∆0 formulas. Since the inseparable formulas are disjoint, we
can show that this is also the case for α0 and β0:

N � ∀̇x y z <̇ n. ¬̇(α0(y, x) ∧̇ β0(z, x))

for every bound n : N. By Lemma 3.16 we then get

M � ∀̇x y z <̇ n. ¬̇(α0(y, x) ∧̇ β0(z, x))

Using Overspill we therefore potentially have e : M with

M � ∀̇x y z <̇ e. ¬̇(α0(y, x) ∧̇ β0(z, x))

showing the disjointness of α0, β0 when everything is bounded by e. We now define
the predicate X := λn.M � ∃̇ z <̇ e. α0(z, n) and note that

• If N � ∃̇ z. α0(z, n) there is m : N with N � α0(m,n) and M � α0(m,n) by
Lemma 3.16. We therefore get Xn.

• Assume that Xn ∧ N � ∃̇ z. β0(z, n). Then similarly to above, there is m : N
with M � β0(m,n), showing M � ∃̇ z <̇ e. β0(z,m). Together with Xn this
contradicts the disjointness of α0, β0 under the bound e.

Due to the inseparability of the given formulas, this shows that X cannot be decidable
and by Lemma 6.48 there potentially is a code c : M with Xn⇔M � π n | c. �

We now have everything in place to show Tennenbaum’s Theorem. Compared to the
original theorem this version is formulated positively, which makes a difference in our
constructive setting.

Theorem 6.51 (Tennenbaum) IfM � PA is a data type and has stable std then
M∼= N.

Proof AssumeM 6∼= N and try to show ⊥. By Lemma 6.50 there is (we can remove
the ¬¬ since we are trying to show ⊥) c : M with ¬Dec(λn.M � π n | c). This
already leads to the desired contradiction, since Lemma 6.49 showed that divisibility
is decidable ifM is a data type. This establishes ¬¬M ∼= N, which is equivalent to
M∼= N due to the stability of std . �

6.8 Variants of Tennenbaum’s Theorem

We will now look at two variants of Theorem 6.51, which will use a stronger notion
of inseparable formulas, requiring an intuitionistic deductive proof that there is no
intersection between the two formulas. We assume the existence of a formula pair
like this as an axiom:

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Thm5
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#Tennenbaum_enum

58 Tennenbaum’s Theorem

Axiom 6.52 There are inseparable Σ1 formulas α(x), β(x) for which we have HA `i
¬̇ ∃̇x. α(x) ∧̇ β(x). Formulas with this property are called HA-inseparable.

As stated by McCarty in [33], this should be derivable by carrying out the usual proof
of the existence of inseparable predicates, but formalized on the object level of HA.

6.8.1 Circumventing Overspill

Inspection of the proof of Theorem 6.51 reveals that the dependency on the stability of
std goes back to the use of the Overspill Lemma 6.46. As was suggested by Makholm
[23] it is possible to circumvent the usage of Overspill completely. This gives us yet
another version of Tennenbaum’s theorem by eliminating one of the assumptions,
ending however with a weaker conclusion.

This version requires a deeper rendering of Lemma 6.48, where the quantification
over n is not on the meta level, but on the object level. This can certainly be shown
by following the same proof idea as in Lemma 6.28. As this deduction was not
mechanized in the thesis we will simply take it as an assumption.

Theorem 6.53 Assuming that for every binary ∆0 formula α(x, y) we have

PA ` ∀̇n b ∃̇ c ∀̇u <̇ n.
(
∃̇ z <̇ b. α(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

then for any data typeM � PA we have ∀e.¬¬ std e.

Proof Assume we have e : M with ¬std e and HA-inseparable Σ1 formulas ∃z. α0(z, x)

and ∃z. β0(z, x) given by Axiom 6.52, where α0, β0 are binary ∆0 formulas. For the
predicate X := λu : N.M � ∃̇ z <̇ e. α0(z, u) we then have

• If N � ∃̇ z. α0(z, n) there is m : N with N � α0(m,n) and M � α0(m,n) by
Lemma 3.16. We therefore get Xn.

• Assume that Xn ∧ N � ∃̇ z. β0(z, n). Then similarly to above, there is m : N
with M � β0(m,n), showing M � ∃̇ z <̇ e. β0(z,m). Together with Xn this
contradicts however the deductive disjointness property of the HA-inseparable
formulas α0 and β0.

Due to the inseparability of the given Σ1 formulas, this shows that X is not decidable.

By our assumption and soundness we then get

M � ∃̇ c ∀̇u <̇ e.
(
∃̇ z <̇ e. α0(z, u)

)
↔̇ ∃̇ p. ϕπ (u, p) ∧̇ p | c

So there is a code c : M such that the predicate X := λu : N.M � ∃̇ z <̇ e. α0(z, u) is
coded by it, meaning that for every u : N we have

Xu ⇐⇒ M � ∃̇ p. ϕπ (u, p) ∧̇ p | c

and by Lemma 6.49 we can therefore conclude that X is decidable, giving us a con-
tradiction. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#obj_Insep

6.8. Variants of Tennenbaum’s Theorem 59

6.8.2 Variant by McCarty

We will now look at another constructive proof of Tennenbaum’s theorem that is due
to Charles McCarty [33, 32]. More specifically this version is concerned with HA

instead of PA. This is not the only difference in the setup however. McCarty also
assumes a more constructive and therefore more restrictive model theory. His chosen
semantics is still à la Tarski, but he strengthens it by basing it on intuitionistic
set theory IZF. This greatly restricts the class of models under consideration. As
was mentioned before our definition of Tarski semantics in Definition 3.8, in the
type theory we can replicate this shift to a more more constructive set theory by
putting the interpretations of first-order propositional symbols from P to T. For this
section we will assume a change like this has taken place in the definition of �. Most
importantly this means that disjunctions α ∧̇ β are now interpreted as informative
sum typesM � α+M � β.

Lemma 6.54 For any unary formula ϕ(x) we have

M � ∀̇x. ¬̇¬̇ ∀̇ y < x. ϕ(y) ∨̇ ¬̇ϕ(y).

Proof We proceed by induction on x. If x = 0 the statement trivially holds. In
the inductive step we need to show M � ¬̇¬̇ ∀̇ y < Sx. ϕ(y) ∨̇ ¬̇ϕ(y). Since single
double negated instances of excluded middle can be shown constructively, we have
M ` ¬̇¬̇(ϕ(x) ∨̇ ¬̇ϕ(x)) and combined with the induction hypothesis this proves the
goal. �

Theorem 6.55 Assuming MP, every HA model is isomorphic to N.

Proof Let M � HA and α, β be HA-inseparable formulas given by Axiom 6.52.
Considering the predicate X := λn.M � α(n) we have:

• N � α(n)→ Xn by Corollary 3.20.

• Assuming Xn ∧ N � β(n) we getM � β(n) again by absoluteness, but together
with Xn it contradicts HA `i ¬̇ ∃̇x. α(x) ∧̇ β(x).

This shows that X is separating the formulas α, β and can therefore not be decid-
able. For the purpose of getting a contradiction, we now assume N < e : M. Using
Lemma 6.54 on α and instantiating x with e we get

¬¬M � ∀̇ y < e. α(y) ∨̇ ¬̇α(y).

We are trying to prove ⊥ so we can drop the ¬¬ in the above, and since any standard
number n is smaller than e we can concludeM � α(n) ∨̇ ¬̇α(n), showing that there
is a decision M � α(n) + ¬M � α(n) for every n : N. This means we have DecX,
in contradiction to the earlier statement about X, therefore showing ¬N < e : M,
which is equivalent to ∀e.¬¬ std e. Because of MP we can then concludeM∼= N. �

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#McCarty'

Chapter 7

Conclusion

7.1 Discussion

Having seen three variants of Tennenbaum’s theorem, we will now turn to discuss
them. To start off, we note that because of the definiteness of equality shown in
Lemma 6.31 and due to Fact 4.3, we can conclude that the models in question only
need decidable apartness 6= instead of decidable equality.

In his paper [33], McCarty pointed out that a weak version of CT, namely

Definition 7.1 (Weak Church’s Thesis) Every function f : N→ N is potentially
(i.e. ¬¬) computable.

suffices for his proof. Adapted to our setting this would amount to assuming

Axiom 7.2 (WCT) For every function f : N → N there potentially exists a Σ1

formula ϕf (x, y) with ∀n.Q ` ∀̇ y. ϕf (n, y) ↔̇ f n =̇ y.

instead of CT. This leads to a version of Corollary 6.12 only expressing the po-
tential existence of a pair of inseparable formulas, which still suffices for the proof
of Lemma 6.50 since it also only asserts a potential existence. We can therefore
strengthen the overall results, since we only need the weaker Axiom 7.2.

In the proofs of all three variants of Tennenbaum’s theorem we made use of the global
assumptions CT and RT. For now we will leave them out in the statements of the
respective variants, so that they read:

1. (Tennenbaum) For every enumerable apartness type M � PA with stable std

we have ∀e. std e.

2. (Makholm) For every enumerable apartness typeM � PA we have ∀e.¬¬ std e.

3. (McCarty) Assuming a more constructive model theory, for everyM � HA we
have ∀e.¬¬ std e.

62 Conclusion

On the surface, they all differ quite substantially from the original statement of Ten-
nenbaum’s theorem as they do not mention the computability of any operations. But
as mentioned in the introduction of Chapter 6 this owes to the fact that our models
are situated in a constructive type theory, making the operations of the model com-
putable. In the presence of MP all versions imply that the model is isomorphic to N
under the respective assumptions, but as presented here, in the absence of MP, we can
make out differences in their conclusions. We see that the variants due to Makholm
and McCarty only show ∀e.¬¬std e. Most notably, the variant by Makholm tells us
how far we can at least get if we drop the stability assumption of std in the first vari-
ant. This raises the question about the gap between the two statements, i.e. what
is the additional assumption needed to make a proof of “Makholm → Tennenbaum”
possible. One guess in this direction is that in the presence of CT the stability of
std for every data type could imply MP–or in the absence of CT– implies the version
of Markov’s principle which says that every µ-recursive functions which potentially
terminates does indeed terminate.

Looking at the proofs of variants 1 and 3 we can see that Lemma 6.49 is responsible
for the assumptions on the domain type of the model. In order to get the lemma, we
needed the type to have decidable apartness as well as an enumerator. It might be
worthwhile to study PA models with decidable numeral divisibility in their own right,
to see whether there are interesting equivalent characterizations. The question about
the most general preconditions that the type of the model has to satisfy in order to
make a proof of the theorem possible, also remains open.

Next, we want to mention that we can give an alternative proof of Lemma 6.49, if
instead of being enumerable, the type of M has a witness operator. A witness
operator for a type A is a functionW : ∀pA→P. (∀x. p x+¬p x)→ (∃x. p x)→ Σx. p x,
which turns any propositional satisfiability proof of a decidable predicate into an
informative proof with a concrete witness.

Lemma 7.3 IfM is discrete and a has a witness operator, then for any e : M and
0 < n the propositionM � n | e is decidable.

Proof Let n : N with n > 0 and e : M be given. By Lemma 6.32 we propositionally
have the existence of q, r : M with

e = q · µn+ r and 0 < µn→ r < µn

The decidability of the above conjunction follows from the assumption that M has
decidable equality and Lemma 6.35. We can use the witness operator of M to get
computational witnesses q, r. Since r < µn, the element r must be a standard number
r = µ r′. We can now consider the cases r′ = 0 or r′ 6= 0 and finish up in the same
way as in the proof of Lemma 6.49. �

7.2. Coq Mechanization 63

This enables a proof of Theorem 6.51 for discrete types which posses a witness op-
erator. We can still push this a bit further. Again, we can weaken discreteness to
apartness and inspecting the proof of Theorem 6.51 further, with regards to possible
double negations we could introduce, we can see that it suffices for Lemma 7.3 to show
¬¬∀eM, 0 < n. dec(M � n | e). Note that this lemma is of the form A1 ∧ A2 → C

which also shows ¬¬(A1 ∧A2)→ ¬¬C. Since we only need it to conclude with ¬¬C
the lemma can therefore be weakened to:

Lemma 7.4 If M is potentially an apartness type with a witness operator, then
potentially for any e : M and 0 < n the propositionM � n | e is decidable.

Overall this leaves us with the following strengthened version of Theorem 6.51:

Corollary 7.5 If M � PA has stable std and is potentially an apartness type with
a witness operator, thenM∼= N.

Assuming LEM, the model existence theorem [11, 17] gives the construction of a
classical enumerable model of the theory PA∗, which is PA together with an axioms
enforcing the existence of some element bigger then any numeral (see the introduc-
tion of Chapter 6). By the above corollary then, this model cannot have decidable
apartness. Note here that the combined usage of LEM and CT is most likely unprob-
lematic in Coq [12] whereas they are inconsistent in systems which cannot differentiate
between total functional relations and functions (cf. [49]).

7.2 Coq Mechanization

The mechanization of first-order logic was based on previous developments and starts
by the definition of inductive types for terms, formulas and the natural deduction
system using deBruijn indices to realize binding of variables to quantifiers. Proofs
in PA that are easy on paper can be hard to turn into fully mechanized natural
deductions, mainly because of numerous steps and context management needed for
simple substitutions during a deduction. To avoid this in the mechanization, whenever
possible, we instead verified that a statement holds in every PA model, which brought
the management of the proof back to the more comfortable level of the proof assistant.

The mechanization of the undecidability of PA comprises 1650 lines of code (loc), 750
loc for specifications and 900 loc for the lemmas and their proofs, which are repre-
sented by the content of Chapter 5. The mechanization of Tennenbaum’s theorem as
presented in Chapter 6 took about 4200 loc, divided into 1100 loc for specifications
and 3100 loc for proofs.

We want to note here that the proof by McCarty as presented in Theorem 6.55 was
not mechanized. Switching all of the necessary definitions from P to T introduces
many typing problems requiring substantial changes in the original project. We did

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#McCarty_
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#McCarty_

64 Conclusion

mechanize the proof by additionally assuming ∀AB : P. A∨B → A+B, showing that
the outlined proof indeed works out and it does remain as a future goal to go through
with the change from P to T.

7.3 Related Work

Presentations of first-order logic in the context of proof-checking have already been
discussed and used by Shankar in [41], Paulson [36] and O’Connor [34], where they
were used to investigate Gödel’s incompleteness theorems. Our mechanization of
first-order logic follows work based on [15, 17]. Undecidability of the satisfiability
of Diophantine equations goes back to the work of Davis, Putnam, Robinson and
Matiyasevich [8, 9], and was mechanized in Coq by Larchey-Wendling and Forster [29]
which is part of a bigger library of mechanized undecidability results [16]. Classical
presentations of Tennenbaum’s theorem can be found by Smith [44] and Kaye [26],
and further investigations into Tennenbaum phenomena were done by Godziszewski
and Hamkins in [48]. Constructive treatments have been done by McCarty [32, 33],
and Plisko [37]. For a general account of the Church-Turing thesis we refer to [6], for
the more specific use in constructive settings the book by Troelstra [49] and for further
investigations into CT and its connections to other axioms of synthetic computability
theory this work [13] by Forster.

7.4 Future Work

We mentioned before, that by performing our investigation of Tennenbaum’s theorem
in a constructive type theory, all functions are naturally considered computable. The
statement of the theorem therefore no longer mentions computability of addition or
multiplication. To bring this back into play we could assume the existence of an
abstract universal machine T : N → N → N → O(N) [13]. The computability of
addition and multiplication can then be expressed in reference to T . Accordingly, CT

then needs to be adapted to only apply to functions N→ N which are computable by
T and it should again be possible to only assume the weaker WCT version.

In the Coq development, we only considered extensional models, meaning the equality
symbol =̇ of PA was always interpreted as the equality on the domain type of
the model. This simplified the treatment by enabling the usage of the rewriting
capabilities provided by the proof assistant. We are confident that this restriction is
not necessary and could in principle be removed.

We did not properly formalize the arithmetic hierarchy on formulas. For a more
complete definition of ∆0 formulas, one would like to include a rule allowing bounded
quantifiers in ∆0 formulas. To simplify matters, we also usually assumed that Σ1

formulas already have the form ∃̇ϕ0 where ϕ0 is a ∆0 formula. Overall we deem
a proper mechanization of the arithmetic hierarchy with convenient definitions as a
project on its own.

https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#McCarty_
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#McCarty_
https://www.ps.uni-saarland.de/~hermes/Tennenbaum/Tennenbaum.Tennenbaum.html#McCarty_

7.4. Future Work 65

In Section 6.8.1 we saw how the overspill lemma could be avoided with some stronger
assumptions. The deductive proof appearing as an assumption of Theorem 6.53 is
certainly provable and one possible way to establish that a deduction must exist
comes via the usage of the completeness theorem for classical first-order logic. The
completeness theorem however requires the addition of classical reasoning principles
to the type theory, which is in conflict with the assumption of CT. A direct mecha-
nized natural deduction proof seems like a feasible future goal, as there are recently
developed tools aiding in the construction of first-order deductive proofs [22].

Appendix A

Appendix

As an overview, we again present all of the axioms of PA and the two subsystems that
are in use in this text; Robinson arithmetic Q and the undecidable fragment U from
Chapter 5.

U only contains the axioms:

∀̇x.O ⊕ x =̇ x

∀̇xy. (Sx)⊕ y =̇ S(x⊕ y)

∀̇x.O ⊗ x =̇ O

∀̇xy. (Sx)⊗ y =̇ y ⊕ x⊗ y.

Robinson arithmetic Q has the additional axioms:

∀̇x. Sx =̇ O →̇ ⊥
∀̇xy. Sx =̇ Sy →̇ x =̇ y

∀̇x. x = O ∨̇ ∃̇ z. x = Sz

and we get PA by further adding

λϕ. ϕ[O] →̇ (∀̇x. ϕ[x] →̇ ϕ[Sx]) →̇ ∀̇x. ϕ[x].

Bibliography

[1] Andrej Bauer. First steps in synthetic computability theory. Electronic Notes in
Theoretical Computer Science, 155:5–31, 2006.

[2] Andrej Bauer. Intuitionistic mathematics for physics, 2008. URL http://math.
andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/.

[3] Andrej Bauer. Five stages of accepting constructive mathematics. Bulletin of
the American Mathematical Society, 54(3):481–498, 2017.

[4] Alonzo Church. A set of postulates for the foundation of logic. Annals of math-
ematics, pages 346–366, 1932.

[5] Alonzo Church. A note on the Entscheidungsproblem. The journal of symbolic
logic, 1(1):40–41, 1936.

[6] B. Jack Copeland. The Church-Turing Thesis. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2020 edition, 2020.

[7] Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis,
INRIA, 1986.

[8] Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for
exponential Diophantine equations. Annals of Mathematics, pages 425–436, 1961.

[9] Martin Davis, Yuri Matijasevič, and Julia Robinson. Hilbert’s tenth problem.
Diophantine equations: positive aspects of a negative solution. American Math.
Soc Providence, R. I, 1976.

[10] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool forautomatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34:381–392, 1972.

[11] Melvin Fitting. Model existence theorems for modal and intuitionistic logics.
The journal of symbolic logic, 38(4):613–627, 1973.

http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/
http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/

Bibliography 69

[12] Yannick Forster. Church’s thesis and related axioms in coq’s type theory. arXiv
preprint arXiv:2009.00416, 2020.

[13] Yannick Forster. Church’s Thesis and Related Axioms in Coq’s Type Theory. In
Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Confer-
ence on Computer Science Logic (CSL 2021), volume 183 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:19, Dagstuhl, Germany, 2021.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-175-7.
doi: 10.4230/LIPIcs.CSL.2021.21. URL https://drops.dagstuhl.de/opus/
volltexte/2021/13455.

[14] Yannick Forster and Fabian Kunze. A certifying extraction with time bounds
from Coq to call-by-value λ-calculus. arXiv preprint arXiv:1904.11818, 2019.

[15] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability
in Coq, with an application to the Entscheidungsproblem. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs,
pages 38–51, 2019.

[16] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr,
and Maximilian Wuttke. A Coq library of undecidable problems. In CoqPL 2020
The Sixth International Workshop on Coq for Programming Languages, 2020.

[17] Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for
first-order logic analysed in constructive type theory: Extended version. Journal
of Logic and Computation, 31(1):112–151, 2021.

[18] Harvey Friedman. Some systems of second order arithmetic and their use. In
Proceedings of the international congress of mathematicians (Vancouver, BC,
1974), volume 1, pages 235–242. Citeseer, 1975.

[19] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Éditeur inconnu, 1972.

[20] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme i. Monatshefte für Mathematik und Physik, 38(1):173–198,
1931.

[21] J Roger Hindley. Basic simple type theory. Number 42. Cambridge University
Press, 1997.

[22] Johannes Hostert, Mark Koch, and Dominik Kirst. A toolbox for mechanised
first-order logic. In The Coq Workshop 2021, 2021.

[23] Henning Makholm (https://math.stackexchange.com/users/14366/hmakholm-

https://drops.dagstuhl.de/opus/volltexte/2021/13455
https://drops.dagstuhl.de/opus/volltexte/2021/13455

70 Bibliography

left-over monica). Tennenbaum’s theorem without overspill. Mathematics Stack
Exchange. URL https://math.stackexchange.com/q/649457. (version: 2014-
01-24).

[24] Antonius JC Hurkens. A simplification of Girard’s paradox. In International
Conference on Typed Lambda Calculi and Applications, pages 266–278. Springer,
1995.

[25] Thomas Jech. Set theory. Springer Science & Business Media, 2013.

[26] Richard Kaye. Tennenbaum’s theorem for models of arithmetic. Set Theory,
Arithmetic, and Foundations of Mathematics. Ed. by J. Kennedy and R. Kossak.
Lecture Notes in Logic. Cambridge, pages 66–79, 2011.

[27] Dominik Kirst. Foundations of Mathematics: A Discussion of Sets and Types,
2018.

[28] Dominik Kirst and Marc Hermes. Synthetic Undecidability and Incompleteness
of First-Order Axiom Systems in Coq. In Liron Cohen and Cezary Kaliszyk, edi-
tors, 12th International Conference on Interactive Theorem Proving (ITP 2021),
volume 193 of Leibniz International Proceedings in Informatics (LIPIcs), pages
23:1–23:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN 978-3-95977-188-7. doi: 10.4230/LIPIcs.ITP.2021.23. URL
https://drops.dagstuhl.de/opus/volltexte/2021/13918.

[29] Dominique Larchey-Wendling and Yannick Forster. Hilbert’s tenth problem in
Coq. In 4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, volume 131, pages 27–1. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019.

[30] Yuri V. Matijasevič. Enumerable sets are Diophantine. Soviet Mathematics:
Doklady, 11:354–357, 1970.

[31] Yuri V. Matiyasevich. On Hilbert’s Tenth Problem. Expository Lectures 1,
2000. URL https://mathtube.org/sites/default/files/lecture-notes/
Matiyasevich.pdf.

[32] Charles McCarty. Variations on a thesis: intuitionism and computability. Notre
Dame Journal of Formal Logic, 28(4):536–580, 1987.

[33] Charles McCarty. Constructive validity is nonarithmetic. The Journal of Sym-
bolic Logic, 53(4):1036–1041, 1988. ISSN 00224812. URL http://www.jstor.
org/stable/2274603.

[34] Russell O’Connor. Essential incompleteness of arithmetic verified by Coq. In

https://math.stackexchange.com/q/649457
https://drops.dagstuhl.de/opus/volltexte/2021/13918
https://mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf
https://mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf
http://www.jstor.org/stable/2274603
http://www.jstor.org/stable/2274603

Bibliography 71

International Conference on Theorem Proving in Higher Order Logics, pages
245–260. Springer, 2005.

[35] Christine Paulin-Mohring. Inductive definitions in the system Coq rules and
properties. In International Conference on Typed Lambda Calculi and Applica-
tions, pages 328–345. Springer, 1993.

[36] Lawrence C Paulson. A mechanised proof of Gödel’s incompleteness theorems
using nominal Isabelle. Journal of Automated Reasoning, 55(1):1–37, 2015.

[37] Valerii Egorovich Plisko. Constructive formalization of the Tennenbaum theorem
and its applications. Mathematical notes of the Academy of Sciences of the USSR,
48(3):950–957, 1990.

[38] Panu Raatikainen. Gödel’s Incompleteness Theorems. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stan-
ford University, spring 2021 edition, 2021.

[39] Fred Richman. Church’s thesis without tears. The Journal of symbolic logic, 48
(3):797–803, 1983.

[40] Egbert Rijke. Introduction to homotopy type theory. Lecture notes, 2018.

[41] Natarajan Shankar. Proof-checking metamathematics (theorem-proving). PhD
thesis, The University of Texas at Austin, 1986.

[42] Michael Shulman. Synthetic differential geometry, 2006.

[43] Peter Smith. An introduction to Gödel’s theorems. Cambridge University Press,
2013.

[44] Peter Smith. Tennenbaum’s theorem. 2014.

[45] Gert Smolka. Modeling and Proving in Computational Type Theory Using the
Coq Proof Assistant. 2021.

[46] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
isomorphism. Elsevier, 2006.

[47] Stanley Tennenbaum. Non-archimedean models for arithmetic. Notices of the
American Mathematical Society, 6(270):44, 1959.

[48] Michał Tomasz Godziszewski and Joel David Hamkins. Computable quotient
presentations of models of arithmetic and set theory. arXiv e-prints, pages arXiv–
1702, 2017.

[49] Anne S Troelstra. Metamathematical investigation of intuitionistic arithmetic
and analysis, volume 344. Springer Science & Business Media, 1973.

72 Bibliography

[50] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory. Num-
ber 43. Cambridge University Press, 2000.

[51] Alan Mathison Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London mathematical society, 2(1):
230–265, 1937.

[52] Jaap van Oosten. Gödel’s incompleteness theorems. Departement of Mathemat-
ics, Utrecht University, 2015.

[53] Benjamin Werner. Sets in types, types in sets. In International Symposium on
Theoretical Aspects of Computer Software, pages 530–546. Springer, 1997.

	Abstract
	Introduction
	On Constructive Type Theory
	Constructive Type Theory as a Foundation for Mathematics
	A Primer on Type Theory
	Simply-typed -Calculus
	Dependent Type Theory
	Base Types
	Propositions as Types
	The Type of Propositions

	The Coq Proof-Assistant

	First-Order Logic
	Syntax and Natural Deduction
	Semantics
	Peano Arithmetic

	Synthetic Computability
	Undecidability of Peano Arithmetic
	Computing on Numerals
	Undecidability

	Tennenbaum's Theorem
	Church's Thesis
	Inseparable r.e. Sets
	Some Number Theory and Finite Coding
	Basic Peano Arithmetic
	Standard Models
	Overspill and Infinite Coding
	Tennenbaum's Theorem
	Variants of Tennenbaum's Theorem
	Circumventing Overspill
	Variant by McCarty

	Conclusion
	Discussion
	Coq Mechanization
	Related Work
	Future Work

	Appendix
	Bibliography

