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1 Introduction

In this thesis we study quantum automorphism groups of finite graphs.
Those are compact quantum groups that are meant to model the "quantum
symmetries" of a graph, generalizing classical automorphism groups of
graphs. Compact quantum groups in the sense of Woronowicz are C∗-al-
gebraic generalizations of compact groups.

We will present recent results by Martino Lupini, Laura Mančinska and
David Roberson about the asymptotic behaviour of quantum automorphism
groups of graphs, when the size of the graph grows:
In the classical case it is known, that almost all graphs have trivial automor-
phism group in the following sense: When choosing a graph on n vertices
uniformly at random, the probability, that its automorphism group is trivial,
goes to 1 as n tends to infinity.
This result is due to Erdős and Rényi, who established it in [ER63]. By work
of Lupini, Mančinska and Roberson (see [LMR17]), we now have a quantum
analogue of this fact: Almost all graphs have trivial quantum automorphism
group. The critical tool in the proof is the so-called "coherent algebra" of
a graph, a notion originating from algebraic graph theory. We will present
their proof of the above theorem and investigate, how coherent algebras can
help to study the quantum automorphism group of a graph.

Erdős and Rényi proved in the aforementioned paper also a theorem about
the asymptotic behaviour of automorphism groups of trees, i.e. connected
graphs without cycles, namely: Almost all trees have non-trivial automor-
phism group. This shows, that trees behave vastly different in terms of sym-
metries as compared to general graphs.
In this thesis we will show, that this behaviour carries over to the quantum
world: Almost all trees have quantum symmetries, i.e. their quantum auto-
morphism group is strictly larger than their classical automorphism group.
The proof of this is a combination of classical results of Erdős and Rényi
about trees and a recent result by Schmidt that gives a sufficient criterion
for a graph to have quantum symmetry.
Summarized we have the following theorem:

Theorem.

(i) [ER63] Almost all graphs have no symmetry.

(ii) [LMR17] Almost all graphs have no quantum symmetry.

(iii) [ER63] Almost all trees have symmetry.

(iv) Almost all trees have quantum symmetry.
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In the next chapter we begin by giving the basic definitions of compact (ma-
trix) quantum groups, quantum automorphism groups of graphs and pro-
vide some basics about graphs and their (quantum) symmetries.
In the third chapter we introduce coherent algebras and show, how they can
be of use for studying the (quantum) automorphism group of graphs.
In the fourth chapter we present the proof of the main theorem from [LMR17]
and discuss some characterizations of graphs with trivial quantum auto-
morphism group. Furthermore we present some own experimental results
about the quantum automorphism group of asymmetric graphs, which we
obtained by computing the coherent algebra of small graphs.
In the fifth chapter we prove the new result that almost all trees have quan-
tum symmetry.
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2 Preliminaries

In this chapter we will provide some background about compact quantum
groups, graphs, their (classical) automorphism groups, define their quantum
automorphism groups and give meaning to the phrase "quantum symme-
try".
Note: In the following, whenever we mention the tensor product of C∗-
algebras, we mean the minimal one.

2.1 Compact (Matrix) Quantum Groups

Compact (matrix) quantum groups were first defined by Woronowicz in an
attempt to generalize compact groups. As a general reference for compact
quantum groups we refer the reader to [Tim08].

Definition 2.1.1. [Wor98] A compact quantum group (CQG) is a pair (A, ∆)
where A is a unital C∗-algebra and ∆ : A → A⊗ A is a unital ∗-homomor-
phism such that:

(i) (∆⊗ id) ◦ ∆ = (id⊗∆) ◦ ∆

(ii) ∆(A)(1⊗ A) and ∆(A)(A⊗ 1) are linearly dense in A⊗ A.

The map ∆ : A→ A⊗ A is called comultiplication.

Example 2.1.2. Let G be a compact group and let C(G) be the space of all
continuous complex-valued functions on G. We define the map

∆ : C(G)→ C(G× G) ∼= C(G)⊗ C(G)

f 7→ f ◦ µ

where µ : G×G → G is the group law. Then (C(G), ∆) is a compact quantum
group and in fact all compact quantum groups (A, ∆A) with commutative
C∗-algebra A are of this form (see [Tim08, Proposition 5.1.3]). By identifying
G with (C(G), ∆), one can think of compact quantum groups as a generaliza-
tion of classical compact groups.

In view of this example, we will often denote the C∗-algebra (or "non-
commutative function algebra") of a compact quantum group G by C(G).

Definition 2.1.3. Let G = (C(G), ∆G) and H = (C(H), ∆H) be two compact
quantum groups. We say that H is a quantum subgroup of G, if there is a
surjective ∗-homomorphism ϕ : C(G)→ C(H) such that ∆H ◦ ϕ = (ϕ⊗ ϕ) ◦
∆G. In this case we write "H ⊆ G".
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Definition 2.1.4. [Wor87] A compact matrix quantum group (CMQG) is a
pair (A, u) where A is a unital C∗-algebra and u = (uij)

n
i,j=1 is a matrix with

entries in A such that:

(i) A is generated (as a C∗-algebra) by the entries of u.

(ii) The ∗-homomorphism ∆ : A→ A⊗ A, uij 7→ ∑n
k=1 uik⊗ ukj exists. (The

map ∆ is called comultiplication.)

(iii) The matrix u and its transpose ut are invertible.

Example 2.1.5. Let G ⊆ GLn(C) be a compact matrix group and let (uij)
n
i,j=1

be the coordinate functions on G, i.e.

uij : G → C

A = (akl)
n
k,l=1 7→ aij

Then the pair (C(G), u = (uij)
n
i,j=1) is a compact matrix quantum group.

Moreover, all compact matrix quantum groups (A, v) with commutative C∗-
algebra A are of this form (see [Tim08, Proposition 6.1.11]). So under the
identification of G with (C(G), u), compact matrix quantum groups general-
ize classical compact matrix groups.

A justification for the name compact matrix quantum group is the following
proposition, a proof of which can be found in [Tim08, Proposition 6.1.4].

Proposition 2.1.6. Every compact matrix quantum group is a compact quantum
group and the two notions of "comultiplication" coincide.

Remark 2.1.7. If G = (A, u) is a compact matrix quantum group and H =
(B, ∆H) is a quantum subgroup of G, then H naturally is a compact matrix
quantum group. Namely let ϕ : A → B be a surjective ∗-homomorphism
with ∆H ◦ ϕ = (ϕ⊗ ϕ) ◦∆G where ∆G is the comultiplication of G and define
the matrix v = (vij)

n
i,j=1 with entries in B via vij := ϕ(uij). Then B is generated

as a C∗-algebra by the entries of v, the matrices v and vt are invertible and we
have:

∆H(vij) = ∆H(ϕ(uij)) = (ϕ⊗ ϕ)(∆G(uij)) = (ϕ⊗ ϕ)

(
n

∑
k=1

uik ⊗ ukj

)

=
n

∑
k=1

ϕ(uik)⊗ ϕ(ukj) =
n

∑
k=1

vik ⊗ vkj

Example 2.1.8. Another very important example of a compact matrix quan-
tum group is the quantum symmetric group S+

n defined by Wang in [Wan98]:

C(S+
n ) := C∗(uij, 1 ≤ i, j ≤ n | u∗ij = u2

ij = uij,
n

∑
k=1

uik =
n

∑
k=1

ukj = 1 ∀ i, j)

It is the quantum analogue of the classical symmetric group Sn which is a
quantum subgroup of S+

n (in the sense of Definition 2.1.3).
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We have that C(S+
n ) is commutative for n = 1, 2, 3 and the map ϕ : C(S+

n )→
C(Sn) sending the generators uij to the corresponding coordinate functions
on the permutation matrices is an isomorphism.
For n ≥ 4, the algebra C(S+

n ) is non-commutative and infinite-dimensional.

Definition 2.1.9. Let A be a unital C∗-algebra and u = (uij)
n
i,j=1 be a matrix

with entries in A. Then u is called a magic unitary, if

(i) uij is a projection (i.e. u∗ij = u2
ij = uij) for all 1 ≤ i, j ≤ n and

(ii) ∑n
k=1 uik = ∑n

k=1 uki = 1 for all 1 ≤ i ≤ n.

Remark 2.1.10. The second condition in Definition 2.1.9 implies that for each
1 ≤ i ≤ n the projections {uij | 1 ≤ j ≤ n} (and respectively {uji | 1 ≤ j ≤
n}) are orthogonal.

Proof. We proof the general result that projections p1, . . . , pn with ∑n
i=1 pi = 1

are orthogonal.
For every j ∈ {1, . . . , n} we have

pj = p2
j = pj

(
n

∑
i=1

pi

)
pj =

n

∑
i=1

pj pi pj = pj +
n

∑
i=1
i 6=j

pj pi pj

So ∑n
i=1
i 6=j

pj pi pj = 0. For each k 6= j the operator pj pk pj = (pk pj)
∗(pk pj) is

positive, hence also −pj pk pj = ∑n
i=1

i 6=j,k
pj pi pj is positive. But this implies that

pj pk pj = 0 and since∥∥pk pj
∥∥2

=
∥∥(pk pj)

∗(pk pj)
∥∥ =

∥∥pj pk pj
∥∥ = 0

we have that pk pj = 0.

2.2 Graphs and their symmetries

Definition 2.2.1. A graph is a tuple Γ = (V, E) where V is a non-empty set
of vertices and E ⊆ V × V is a set of edges (in particular, we don’t allow a
graph to have multiple edges between the same pair of vertices). It is called
finite if V is finite, and undirected if we have (i, j) ∈ E ⇒ (j, i) ∈ E for all
i, j ∈ V. An edge of the form (i, i) ∈ E (i ∈ V) is called a loop. If v ∈ V is
a vertex, we define its degree to be the number of neighbours of v, i.e. the
number of vertices u ∈ V such that (v, u) ∈ E.

In this thesis we will only be concerned with finite undirected graphs
without loops. Furthermore, we will usually identify the vertex set V with
the set {1, . . . , n} where n = #V.

Definition 2.2.2. A path of length k in a graph Γ = (V, E) is a k-tuple
(e1, . . . , ek) of edges ej = (uj, vj) ∈ E such that vj = uj+1 ∀j = 1, . . . k− 1. It is
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called a cycle if u1 = vk.
A graph is called connected if for every pair of vertices i, j ∈ V (i 6= j) there is
a path from i to j, i.e. u1 = i and vk = j. A tree is a connected graph without
cycles.

Definition 2.2.3. The adjacency matrix of a graph Γ = (V, E) is the matrix
A = (aij)i,j∈V with entries

aij :=

{
1, if (i, j) ∈ E
0, otherwise

Definition 2.2.4. An automorphism of a graph Γ = (V, E) is a bijection
σ : V → V that preserves adjacency and non-adjacency, i.e. (i, j) ∈ E ⇔
(σ(i), σ(j)) ∈ E for all i, j ∈ V.
The set of all automorphisms of Γ forms a group Aut(Γ) under composi-
tion and is called the automorphism group of Γ. It can be identified with a
subgroup of the symmetric group Sn (where n = #V) which can in turn be
embedded as permutation matrices in Mn(C).
The automorphism group then has a nice description in terms of the adja-
cency matrix A of Γ:

Aut(Γ) = {σ ∈ Sn | σA = Aσ}

Definition 2.2.5. We call a graph Γ symmetric, if there exists a non-trivial
automorphism of Γ, and asymmetric otherwise.

2.3 Quantum symmetries

Definition 2.3.1. Let G = (C(G), ∆) be a compact quantum group and let A
be a unital C∗-algebra. An action of G on A is a ∗-homomorphism α : A →
A⊗ C(G) such that:

(i) (∆⊗ id) ◦ α = (id⊗α) ◦ α

(ii) The linear span of α(A)(1⊗ C(G)) is dense in A⊗ C(G).

If X is a compact space and G is a compact quantum group acting on C(X),
we also say that G acts on X (following the paradigm of identifying spaces
with their function algebras).

Example 2.3.2. Let Xn := {1, . . . , n}. Then

C(Xn) = C∗(p1, . . . , pn | p2
i = p∗i = pi ∀i = 1, . . . , n,

n

∑
j=1

pj = 1)
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and the quantum group S+
n acts on Xn via

α : C(Xn)→ C(Xn)⊗ C(S+
n )

pj 7→
n

∑
i=1

pi ⊗ uij

and this action is maximal in the sense that every other compact quantum
group acting on Xn is a quantum subgroup of S+

n (for details see [Wan98]).

In the same way that classical group actions can be understood to model
(classical) symmetries of spaces, we can interpret quantum group actions as
quantum symmetries. With that viewpoint, S+

n can be seen as the quantum
symmetry group of Xn. We call quantum subgroups of S+

n quantum permu-
tation groups.
A natural question is now: What is the quantum symmetry group of a graph?
As we have already seen, the classical symmetry group of a graph has a nice
description in terms of permutation matrices and the adjacency matrix. Go-
ing over to function algebras we get:

C(Aut(Γ)) = C∗(uij, 1 ≤ i, j ≤ n | u2
ij = u∗ij = uij,

n

∑
s=1

uis =
n

∑
s=1

usj = 1,

uijukl = ukluij ∀i, j, k, l, uA = Au)

= C(Sn)�< uA = Au >

Dropping commutativity then leads to the following definition which is in
analogy with the classical case.

Definition 2.3.3. [Ban05] Let Γ = (V, E) be a graph on n vertices and let A be
its adjacency matrix. Then the quantum automorphism group QAut(Γ) of Γ
is defined as the compact matrix quantum group with

C(QAut(Γ)) := C(S+
n )�< uA = Au >

and generator matrix π(u) = (π(uij))
n
i,j=1 where u = (uij)

n
i,j=1 is the genera-

tor matrix of C(S+
n ) and

π : C(S+
n )→ C(S+

n )�< uA = Au >

is the canonical projection.
It is a quantum subgroup of S+

n and acts on V in the canonical way.
We say that Γ has quantum symmetry, if C(QAut(Γ)) is non-commutative.

Proposition 2.3.4. In the situation above, the relation uA = Au is equivalent to
the relations:

(i) uijukl = 0 = ukluij whenever (i, k) ∈ E and (j, l) 6∈ E

(ii) uijukl = 0 = ukluij whenever (i, k) 6∈ E and (j, l) ∈ E
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Proof. Assume that uA = Au holds. That means that for all 1 ≤ i, j ≤ n we
have that

∑
k:(k,j)∈E

uik = ∑
l:(i,l)∈E

ul j

Now let (i, k) 6∈ E and (j, l) ∈ E. Then:

uijukl = uij

 ∑
r:(r,l)∈E

uir

 ukl = uij

 ∑
s:(s,i)∈E

usl

 ukl = 0

The first equality follows from the fact that uij appears in the first sum as
(j, l) is an edge. The second equality follows from the assumption. The last
expression is zero because ukl does not appear in the second sum since (k, i) is
not an edge. The relation ukluij = 0 then follows by applying the involution
to uijukl = 0. The proof of (ii) is completely analogous.
Now for the reverse implication, assume that (i) and (ii) hold and let i, j ∈
{1, . . . , n} be arbitrary. Then:

∑
k:(k,j)∈E

uik =

(
∑

k:(k,j)∈E
uik

)(
n

∑
r=1

urj

)

=

(
∑

k:(k,j)∈E
uik

)(
∑

r:(i,r)∈E
urj

)
= ∑

r:(i,r)∈E
∑

k:(k,j)∈E
uikurj

= ∑
r:(i,r)∈E

(
n

∑
k=1

uik

)
urj

= ∑
r:(i,r)∈E

urj

Where we have used the relations (i) and (ii) in the second and fourth equal-
ity. This shows that uA = Au as desired.

Remark 2.3.5. Let Γ be a graph and let u = (uij)
n
i,j=1 be the generator ma-

trix of C(QAut(Γ)). Then the canonical map ϕ : C(QAut(Γ)) → C(Aut(Γ))
sending uij to the corresponding coordinate function on the permutation ma-
trices makes Aut(Γ) a quantum subgroup of QAut(Γ) and factors through
C(QAut(Γ))�< uijukl = ukluij >. The induced map

ϕ̃ : C(QAut(Γ))�< uijukl = ukluij >→ C(Aut(Γ))

is an isomorphism.
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Remark 2.3.6. Let G = (A, u) be a quantum permutation group and let A0 ⊆
A be the dense ∗-algebra generated by the entries of u. Then the assignments

ε(uij) = δij

S(uij) = u∗ji

define a counit and an antipode on A0. Together with the comultiplication
this makes A0 into a Hopf-∗-algebra.
The existence of a dense Hopf-∗-algebra is also true in general compact quan-
tum groups, for a proof of this see [Tim08, Theorem 5.4.1].
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3 Coherent configurations and
coherent algebras

Coherent configurations and coherent algebras were first introduced by Hig-
man in [Hig76]. His original motivation came from the representation theory
of finite groups, but it turns out that coherent configurations/algebras arise
naturally in the context of algebraic combinatorics and algebraic graph the-
ory. As a general reference for this we recommend [Pec02] and [God10].
In this chapter we will see, how one can associate to a graph certain coherent
configurations/algebras which "know" whether or not the graph has trivial
(quantum) automorphism group. This idea is due to Lupini, Mančinska and
Roberson and the results in this chapter are mostly taken from their paper
[LMR17].

3.1 Basic definitions and first examples

Definition 3.1.1. [Hig76] Let X be a finite set. A partitionR = {Ri | i ∈ I} of
X× X is called a coherent configuration on X, if:

(i) There exists J ⊆ I such that {Rj | j ∈ J} is a partition of the diagonal
D = {(x, x) | x ∈ X} in X× X.

(ii) For each Ri, its transpose {(y, x) | (x, y) ∈ Ri} is also inR.

(iii) For all i, j, k ∈ I and (x, y) ∈ Rk the number of z ∈ X such that (x, z) ∈
Ri and (z, y) ∈ Rj is a constant pk

ij independent of the choice of x and y.

Furthermore, we define the characteristic matrices A(i) (i ∈ I) ofR as

A(i)
xy :=

{
1, (x, y) ∈ Ri

0, otherwise

Example 3.1.2. Let G be a finite group acting on a finite set X. The orbits of
the induced action on X × X are called the orbitals of G on X and they form
a coherent configuration.

Proof. By identifying X with the diagonal in X × X we see that the orbits of
G acting on X correspond to the orbitals contained in the diagonal. Hence (i)
in Definition 3.1.1 is satisfied.
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The fact that (ii) holds is immediate from the following:

(x, y) and (w, z) are in the same orbital
⇔ ∃ σ ∈ G : σx = w ∧ σy = z
⇔ (y, x) and (z, w) are in the same orbital

For (iii), denote the orbitals by Oi (i ∈ I) and let i, j, k ∈ I and (x, y), (x′, y′) ∈
Ok. There exists σ ∈ G with σx = x′ and σy = y′. This induces then a
bijection between

{z ∈ X | (x, z) ∈ Oi ∧ (z, y) ∈ Oj}

and
{z ∈ X | (x′, z) ∈ Oi ∧ (z, y′) ∈ Oj}

via z 7→ σz.
Hence

pk
ij := #{z ∈ X | (x, z) ∈ Oi ∧ (z, y) ∈ Oj}

does not depend on the choice of x and y.

For example let X = {1, 2, 3, 4} and G = {id, (1, 2), (3, 4), (1, 2)(3, 4)}.
Then the action of G on X yields the following coherent configuration:

1 2 3 4

1 • • • •

2 • • • •

3 • • • •

4 • • • •

Definition 3.1.3. A subset A ⊆ Mn(C) is called a coherent algebra if:

(i) A∗ = A

(ii) A is a unital algebra with respect to ordinary matrix multiplication.

(iii) A is a unital algebra with respect to entrywise multiplication of matri-
ces.

Proposition 3.1.4. Let X be a finite set and R = {Ri | i ∈ I} be a coherent
configuration on X. Then the linear span of the characteristic matrices A(i) (i ∈ I)
ofR is a coherent algebra.

Proof. LetA denote the linear span of the A(i). Since the union of all classes of
R is X×X, the all-ones-matrix is the sum of all characteristic matrices, hence
in A. That the identity matrix is in A follows from (i) in Definition 3.1.1. The
assertion that A is closed under the involution ∗ follows from (ii) in Defi-
nition 3.1.1. Closedness under entrywise products (denoted by "•") follows
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from the fact that A(i) • A(j) = 0 if i 6= j (since the classes of R are dis-
joint) and that A(i) • A(i) = A(i) for all i ∈ I (since A(i) is a 0-1-matrix). For
closedness under ordinary matrix multiplication, let i, j ∈ I and x, y ∈ X and
consider the (x, y)-entry cxy = ∑z∈X a(i)xz a(j)

zy of the product A(i)A(j). Then cxy

counts the number of z ∈ X such that a(i)xz = 1 and a(j)
zy = 1, i.e. the number of

z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj. So we have cxy = pk
ij where k ∈ I

such that (x, y) ∈ Rk. By (iii) in Definition 3.1.1, this does not depend on the
choice of (x, y) ∈ Rk. So for all (x, y) ∈ Rk we have that cxy = pk

ij and hence

A(i)A(j) = ∑k∈I pk
ij A

(k) ∈ A.

Proposition 3.1.5. Let A ⊆ Mn(C) be a coherent algebra. Then A has a unique
basis of 0-1-matrices which are the characteristic matrices of a coherent configura-
tion.

Proof. See for example Proposition 1.5 in [Pec02].

Remark 3.1.6. The two preceding propositions show, that coherent configu-
rations and coherent algebras contain essentially the same information and
merely reflect two different perspectives of the same thing. They can be
used interchangeably and in the following we will frequently switch between
those two perspectives.

3.2 The coherent algebra of a graph

Definition 3.2.1. Let Γ be a graph. The coherent algebra generated by the
adjacency matrix of Γ is called the coherent algebra of Γ and is denoted by
CA(Γ).
The coherent configuration of Γ is the coherent configuration corresponding
to the coherent algebra of Γ via Proposition 3.1.5.

Example 3.2.2. A graph Γ is called k-regular (k ∈ N) if every vertex of Γ has
degree k, i.e. if every vertex has exactly k neighbours.
A k-regular graph is called strongly regular, if there exist λ, µ ∈N such that:

(i) Every pair of adjacent vertices has λ common neighbours.

(ii) Every pair of non-adjacent vertices has µ common neighbours.

Regularity can equivalently be encoded in terms of the adjacency matrix A ∈
Mn(C) as the relation

AJ = JA = kJ

where J ∈ Mn(C) denotes the all-ones-matrix.
Furthermore, strong regularity of a k-regular graph can be encoded in the
relation

A2 = kI + λA + µ(J − I − A)

where I ∈ Mn(C) is the identity matrix.
These relations show that for a strongly regular graph every polynomial in
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A and J is in the linear span of {I, J, A}. Moreover, this linear span is also
closed under entrywise products because the diagonal of A is zero (since we
only consider graphs without loops) so the entrywise product of I and A is
the zero matrix. Hence the coherent algebra of a strongly regular graph is
always given by span{I, J, A}.

3.3 The orbital algebra of a graph

Definition 3.3.1. Let Γ = (V, E) be a graph. Its automorphism group natu-
rally acts on the vertices V and by Example 3.1.2 this yields a coherent con-
figuration on V. The corresponding coherent algebra is called the orbital
algebra of Γ and denoted by O(Γ).

The automorphism group of a graph is trivial if and only if the orbits of its
action on the vertices (and also the orbitals) are singletons. Hence we have:

Γ has no symmetry ⇐⇒ Aut(Γ) = {id} ⇐⇒ O(Γ) = Mn(C)

Definition 3.3.2. For a subset S ⊆ Mn(C) we define its commutant S′ as

S′ := {M ∈ Mn(C) | MN = NM for all N ∈ S}

The following characterization of the orbital algebra in terms of the auto-
morphism group is mentioned without a proof in [LMR17]. For the reader’s
convenience we give here a proof of this result.

Proposition 3.3.3. The orbital algebra of a graph Γ is the commutant of its auto-
morphism group as a subgroup of the permutation matrices:

O(Γ) = Aut(Γ)′

Proof. We first show the inclusion "⊆":
We denote the orbitals of Aut(Γ) by O1, . . . , Or ⊆ V ×V and their character-
istic matrices by A(1), . . . , A(r) ∈ Mn(C). They have the entries

A(k)
ij =

{
1, if (i, j) ∈ Ok

0, otherwise

Since these matrices span the orbital algebra O(Γ), it suffices to show that
each A(k) commutes with each element of Aut(Γ). So let σ ∈ Aut(Γ) be an
automorphism of Γ (seen as a permutation matrix). Then we have for all
1 ≤ k ≤ t and 1 ≤ i, j ≤ n (where n is the number of vertices in Γ):

(A(k)σ)ij =
n

∑
l=1

A(k)
il σl j = A(k)

iσ−1(j) =

{
1, if (i, σ−1(j)) ∈ Ok

0, otherwise

(σA(k))ij =
n

∑
l=1

σil A
(k)
l j = A(k)

σ(i)j =

{
1, if (σ(i), j) ∈ Ok

0, otherwise
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But certainly (i, σ−1(j)) and (σ(i), j) are in the same orbital of Aut(Γ), so the
expressions above are equal, i.e. A(k) and σ commute, which implies that
O(Γ) ⊆ Aut(Γ)′.
Now for the reverse inclusion let M ∈ Aut(Γ)′ and let (i, j), (k, l) be in the
same orbital of Aut(Γ), i.e. there is σ ∈ Aut(Γ) such that σ(i) = k and
σ(j) = l. Then, since M and σ commute:

Mij = (σMσ−1)ij =
n

∑
r,s=1

σisMsrσjr = Mσ(i)σ(j) = Mkl

This shows that M is constant on the orbitals of Aut(Γ), hence a linear com-
bination of the A(k), hence in O(Γ).

Corollary 3.3.4. For a graph Γ we have:

CA(Γ) ⊆ O(Γ)

Proof. Let A be the adjacency matrix of Γ. By the characterization of the au-
tomorphism group of Γ as the set of permutation matrices that commute
with A, we know that A ∈ Aut(Γ)′. Hence, by the preceding proposition,
A ∈ O(Γ). And because A generates CA(Γ) as a coherent algebra, the claim
follows.

Remark 3.3.5. Together with the characterization

Aut(Γ) = {id} ⇐⇒ O(Γ) = Mn(C)

this yields a sufficient condition for a graph to be asymmetric:

CA(Γ) = Mn(C) =⇒ Aut(Γ) = {id}

Note however that the reverse implication does not hold in general, as the
inclusion in Corollary 3.3.4 can be strict:
As we have shown in Example 3.2.2, the coherent algebra of a strongly regu-
lar graph is (at most) 3-dimensional but there exists an asymmetric strongly
regular graph Γ with 25 vertices, i.e. dim(CA(Γ)) = 3 while dim(O(Γ)) =
252.

3.4 The quantum orbital algebra of a graph

In this section we aim to construct a quantum analogue of the orbital alge-
bra of a graph in order to decide whether or not its quantum automorphism
group is trivial. The construction will be very similar to that of the orbital
algebra, using coherent configurations and coherent algebras. In order to be
able to define a quantum version of the orbital algebra, we first need to find
a quantum analogue of orbits and orbitals:
For this, consider a classical permutation group G ⊆ Sn acting on the set
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Xn = {1, . . . , n}. Then the equivalence relation of the orbits is:

i ∼ j⇔ ∃ σ ∈ G : σ(i) = j (i, j ∈ Xn)

In terms of coordinate functions (uij)
n
i,j=1 of permutation matrices in G this

can be reformulated as:

i ∼ j⇔ uij 6= 0 (i, j ∈ Xn)

Which motivates the following definition due to Banica and Freslon:

Definition 3.4.1. [BF18] Let G be a quantum permutation group acting on the
set Xn = {1, . . . , n} and let u = (uij)

n
i,j=1 be the magic unitary defining C(G).

On Xn we define the relation ∼1 via:

i ∼1 j :⇔ uij 6= 0 (i, j ∈ Xn)

Lemma 3.4.2. The relation ∼1 as defined in Definition 3.4.1 is an equivalence rela-
tion.

Proof. To see that ∼1 is reflexive, we apply the counit to uii:

ε(uii) = δii = 1

Hence uii 6= 0, i.e. i ∼1 i for all i ∈ Xn.
For the symmetry of ∼1, assume that i �1 j, i.e. uij = 0. Then

0 = S(uij) = uji

i.e. j �1 i.
The transitivity of ∼1 can be seen as follows: Let i ∼1 j and j ∼1 k, i.e.
uij 6= 0 6= ujk. Then also uij ⊗ ujk 6= 0. And therefore

(uij ⊗ ujk)∆(uik) = (uij ⊗ ujk)
n

∑
l=1

uil ⊗ ulk =
n

∑
l=1

(
uijuil

)
⊗
(
ujkulk

)
= uij ⊗ ujk 6= 0

which implies that ∆(uik) 6= 0, so uik 6= 0, i.e. i ∼1 k.

Definition 3.4.3. [BF18] Let G be a quantum permutation group acting on
Xn = {1, . . . , n}. We define the (quantum) orbits of G on X to be the equiva-
lence classes of the equivalence relation ∼1.

In the case when G is a classical permutation group (i.e. C(G) is commu-
tative), this definition agrees with the usual definition of orbits.

Now that we have a quantum version of orbits, we aim to find a quantum
version of orbitals.
Consider again the situation from the beginning of the section. The equiva-
lence relation of the orbitals is:

(i, j) ∼ (k, l)⇔ ∃ σ ∈ G : σ(i) = k ∧ σ(j) = l (i, j, k, l ∈ Xn)
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which can be reformulated in terms of coordinate functions (uij)
n
i,j=1 of per-

mutation matrices in G as:

(i, j) ∼ (k, l)⇔ uikujl 6= 0 (i, j, k, l ∈ Xn)

This motivates the following definition due to Lupini, Mančinska and Rober-
son.

Definition 3.4.4. [LMR17] Let G be a quantum permutation group acting on
Xn = {1, . . . , n} and let u = (uij)

n
i,j=1 be the magic unitary defining C(G). On

Xn × Xn we define the relation ∼2 via:

(i, j) ∼2 (k, l) :⇔ uikujl 6= 0 (i, j, k, l ∈ Xn)

Lemma 3.4.5. The relation ∼2 as defined in Definition 3.4.4 is an equivalence rela-
tion.

Proof. For the reflexivity, note that

ε(uiiujj) = ε(uii)ε(ujj) = δiiδjj = 1

since the counit is an algebra homomorphism. This implies that uiiujj 6= 0,
i.e. (i, j) ∼2 (i, j) for all (i, j) ∈ Xn × Xn.
For the symmetry of ∼2 let (i, j), (k, l) ∈ Xn × Xn with (i, j) ∼2 (k, l), i.e.
uikujl 6= 0. Then by applying the antipode to ukiul j we see that

S(ukiul j) = S(uki)S(ul j) = uikujl 6= 0

so ukiul j 6= 0, i.e. (k, l) ∼2 (i, j).
For the transitivity, let (i, j), (k, l), (r, s) ∈ Xn × Xn with (i, j) ∼2 (k, l) (i.e.
uikujl 6= 0) and (k, l) ∼2 (r, s) (i.e. ukruls 6= 0). We have

∆(uirujs) = ∆(uir)∆(ujs)

=

(
n

∑
p=1

uip ⊗ upr

)(
n

∑
q=1

ujq ⊗ uqs

)

=
n

∑
p,q=1

uipujq ⊗ upruqs

and therefore

uik ⊗ ukr∆(uirujs)ujl ⊗ uls =
n

∑
p,q=1

uikuipujqujl ⊗ ukrupruqsuls

= uikujl ⊗ ukruls

6= 0

So in particular ∆(uirujs) 6= 0, which implies that uirujs 6= 0, i.e. (i, j) ∼2
(r, s).
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Remark 3.4.6. In the case of a classical group G acting on a set X, one can
also define higher order orbits (or k-orbits) as the orbits of the induced action
of G on Xk = X × . . . × X. We have found quantum analogues of this for
k = 1 and k = 2. But already for k = 3 it is absolutely not clear how to
even define something similar to the relations ∼1 or ∼2 because of the non-
commutativity in the quantum case. One could try to define ∼3 in a similar
way as ∼1 and ∼2 via a product of three elements uij, ukl, urs but there is no
canonical order in which one should multiply them.

Definition 3.4.7. Let G be a quantum permutation group acting on Xn =
{1, . . . , n}. We define the (quantum) orbitals of G on Xn to be the equivalence
classes of the equivalence relation ∼2.

In the construction of the orbital algebra of a graph we used the fact, that
the orbitals of the automorphism group form a coherent configuration. We
will now show the quantum analogue of this which is due to Lupini, Mančin-
ska and Roberson ([LMR17]).

Proposition 3.4.8. Let G be a quantum permutation group acting on
Xn = {1, . . . , n}. Then the quantum orbitals of G form a coherent configuration.

Proof. Denote by u = (uij)
n
i,j=1 the magic unitary defining C(G) and let R =

{Ri | i ∈ I} be the quantum orbitals of G on Xn. Since the Ri are the classes
of the equivalence relation∼2 it is clear that they form a partition of Xn×Xn.
Now let (i, j), (k, k) ∈ Xn × Xn with (i, j) ∼2 (k, k), i.e. uikujk 6= 0. Then the
orthogonality of the rows of u implies that i = j. Thus every orbital intersect-
ing the diagonal of Xn × Xn is contained in it. This shows that condition (i)
in Definition 3.1.1 is satisfied.
Now assume that (i, j) ∼2 (k, l) for some (i, j), (k, l) ∈ Xn×Xn. Then uikujl 6=
0, so also ujluik = (uikujl)

∗ 6= 0, which implies that (j, i) ∼2 (l, k). Hence, con-
dition (ii) in Definition 3.1.1 is satisfied.
For verifying condition (iii) in Definition 3.1.1 let r, s, t ∈ I, (i, j), (i′, j′) ∈ Rt
and put

S := {k ∈ X | (i, k) ∈ Rr and (k, j) ∈ Rs}
S′ := {k′ ∈ X | (i′, k′) ∈ Rr and (k′, j′) ∈ Rs}

Since uii′ujj′ 6= 0 we can conclude from

#S · uii′ujj′ = uii′

(
∑
k∈S

1

)
ujj′ = uii′

(
∑
k∈S

∑
k′∈X

ukk′

)
ujj′

= ∑
k∈S

∑
k′∈X

uii′ukk′ujj′ = ∑
k∈S

∑
k′∈S′

uii′ukk′ujj′

= ∑
k′∈S′

∑
k∈S

uii′ukk′ujj′ = ∑
k′∈S′

∑
k∈X

uii′ukk′ujj′

= uii′

(
∑

k′∈S′
∑

k∈X
ukk′

)
ujj′ = uii′

(
∑

k′∈S′
1

)
ujj′

= #S′ · uii′ujj′
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that #S = #S′. So the numbers pt
rs := #S do not depend on the choice of

(i, j) ∈ Rt. This concludes the proof.

With this fact in hand, we can now make the following definition:

Definition 3.4.9. Let Γ be a graph. The coherent algebra corresponding to the
coherent configuration formed by the quantum orbitals of QAut(Γ) is called
the quantum orbital algebra of Γ and denoted by QO(Γ).

The next result is a refinement of Corollary 3.3.4.

Proposition 3.4.10. For a graph Γ we have the following chain of inclusions:

CA(Γ) ⊆ QO(Γ) ⊆ O(Γ)

Proof. Denote by u = (uij)
n
i,j=1 the magic unitary defining C(QAut(Γ)) and

by A the adjacency matrix of Γ.
Recall that by Proposition 2.3.4 we have uijukl = 0 whenever (i, k) is an edge
and (j, l) is not. Thus, we can write the adjacency matrix of Γ as a sum of
characteristic matrices of the coherent configuration formed by the quantum
orbitals. Therefore A ∈ QO(Γ) and hence CA(Γ) ⊆ QO(Γ).
The second inclusion follows from the observation, that the orbitals of Aut(Γ)
are a refinement of the quantum orbitals of QAut(Γ). This is true because
Aut(Γ) is a quantum subgroup of QAut(Γ) so we have a surjective homo-
morphism ϕ : C(QAut(Γ)) → C(Aut(Γ)) and if ϕ(uijukl) is non-zero, then
already uijukl must have been non-zero, i.e. if (i, k) and (j, l) are in the same
orbital, they are also in the same quantum orbital.

Corollary 3.4.11. Let Γ be a graph and let u = (uij)
n
i,j=1 be the magic unitary

defining C(QAut(Γ)). We have uijukl = 0 unless (i, k) and (j, l) are in the same
class of the coherent configuration of Γ.

Proof. This follows from the first inclusion in Proposition 3.4.10.

Recall from Proposition 3.3.3 that we have the following characterization
of the orbital algebra of a graph Γ:

O(Γ) = Aut(Γ)′

If we write Aut(Γ) as a compact matrix quantum group (C(Aut(Γ)), u), where
u = (uij)

n
i,j=1 are as usual the coordinate functions on the permutation matri-

ces, we can reformulate the above equation as

∀M ∈ Mn(C) : M ∈ O(Γ) ⇐⇒ Mu = uM

We have the exact quantum analogue of this, proved by Lupini, Mančinska
and Roberson:

Theorem 3.4.12. [LMR17] Let Γ be a graph and let u = (uij)
n
i,j=1 be the magic

unitary defining C(QAut(Γ)). Then we have:

∀M ∈ Mn(C) : M ∈ QO(Γ) ⇐⇒ Mu = uM
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Proof. Let M = (Mij)
n
i,j=1 ∈ QO(Γ). Then M is constant on the quantum

orbitals of QAut(Γ), i.e. for all (i, k), (l, j) with (i, k) ∼2 (l, j) we have that
Mik = Ml j. Using this we compute:

(Mu)ij =
n

∑
k=1

Mikukj =

(
n

∑
l=1

uil

)(
n

∑
k=1

Mikukj

)

=
n

∑
k,l=1

Mikuilukj =
n

∑
k,l=1

(i,k)∼2(l,j)

Mikuilukj

=
n

∑
k,l=1

(i,k)∼2(l,j)

Ml juilukj =
n

∑
k,l=1

Ml juilukj

=

(
n

∑
l=1

uil Ml j

)(
n

∑
k=1

ukj

)
=

n

∑
l=1

uil Ml j

= (uM)ij

This shows that indeed Mu = uM.
Conversely, let M ∈ Mn(C) be arbitrary and assume that M and u commute.
Then by the same calculation as above we have for all 1 ≤ i, j ≤ n:

n

∑
k,l=1

(i,k)∼2(l,j)

Mikuilukj = (Mu)ij = (uM)ij =
n

∑
k,l=1

(i,k)∼2(l,j)

Ml juilukj

Let (i, p), (q, j) be in the same quantum orbital. Then by multiplying both
sides of the above equation with uiq from the left and upj from the right we
obtain:

Mipuiqupj = Mqjuiqupj

And since uiqupj 6= 0 we can conclude that Mip = Mqj, i.e. M is constant on
the quantum orbitals of QAut(Γ) and hence in QO(Γ).
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4 (Quantum) Asymmetric Graphs

In this chapter we present the proof of the main result from [LMR17] and dis-
cuss some characterizations of graphs with trivial quantum automorphism
group. Such graphs will be called quantum asymmetric. Furthermore we
present some own experimental results about the quantum automorphism
group of asymmetric graphs, which we obtained by computing the coherent
algebra of small graphs.

4.1 Characterizations and a quantitative result

We begin by presenting the proof of Lupini, Mančinska and Roberson, that
almost all graphs are quantum asymmetric. This fact is in analogy with the
following classical result of Erdős and Rényi:

Theorem 4.1.1. Almost all graphs are asymmetric, in the following sense:
Among all graphs on n vertices, the proportion of those with trivial automorphism
group tends to 1 as n→ ∞.

Theorem 4.1.2. [LMR17] Let Γ be a graph on n vertices. We have:

QAut(Γ) = {id} ⇐⇒ QO(Γ) = Mn(C)

Proof. Assume that QAut(Γ) = {id}. Then the magic unitary defining
C(QAut(Γ)) is just the identity matrix and commutes with every element
of Mn(C). Hence by Theorem 3.4.12 we have that QO(Γ) = Mn(C).
Conversely assume that QO(Γ) = Mn(C), i.e. that the quantum orbitals are
singletons. Since the quantum orbits are exactly the quantum orbitals con-
tained in the diagonal, these are singletons too. So - by the very definition of
the quantum orbits - this means that uij 6= 0 if and only if i = j. Thus u is the
identity matrix, i.e. QAut(Γ) = {id}.

The following corollary is the crucial observation of Lupini, Mančinska
and Roberson. It provides a sufficient (and computable) criterion for a graph
to be quantum asymmetric.

Corollary 4.1.3. [LMR17] Let Γ be a graph on n vertices. We have:

CA(Γ) = Mn(C) =⇒ QAut(Γ) = {id}

Proof. From Proposition 3.4.10 we know that the coherent algebra is con-
tained in the quantum orbital algebra. So if CA(Γ) = Mn(C), then also
QO(Γ) = Mn(C). The result then follows from Theorem 4.1.2.
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So in fact we have the following chain of implications:

CA(Γ) = Mn(C)⇒ QAut(Γ) = {id} ⇒ Aut(Γ) = {id}

One can ask whether one of these implications is actually an equivalence. By
Remark 3.3.5 we know, that this can be true for at most one of them and not
for both. This question is discussed in more detail for the second implication
in the next section.

The following statement follows from Theorem 4.1 in [BK79].

Theorem 4.1.4. Almost all graphs Γ = (V, E) have coherent algebra CA(Γ) equal
to Mn(C) (where n = #V).

Combining this with the preceding corollary, we obtain:

Corollary 4.1.5. [LMR17] Almost all graphs are quantum asymmetric.

Remark 4.1.6. From both Theorem 4.1.4 and Corollary 4.1.5 one can deduce
Theorem 4.1.1.

The following proposition and its proof are essentially also contained in
[LMR17], but for the sake of exposition we collect these facts here together in
one statement.

Proposition 4.1.7. Let Γ be a graph on n vertices and let u = (uij)
n
i,j=1 be the magic

unitary generating C(QAut(Γ)). Then the following are equivalent:

(i) QAut(Γ) = {id}

(ii) QO(Γ) = Mn(C)

(iii) Every subspace K ⊆ Cn is invariant for u, i.e. u(K) ⊆ K⊗ C(QAut(Γ)).

(iv) Hom(1, u⊗2) := { f ∈ Cn ⊗Cn | u⊗2( f ) = f ⊗ 1} = Cn ⊗Cn

Where we regard u as a linear map1 u : Cn → Cn ⊗ C(QAut(Γ)) defined on the
standard basis vectors as

u(ei) =
n

∑
j=1

ej ⊗ uji

and u⊗2 : Cn ⊗Cn → Cn ⊗Cn ⊗ C(QAut(Γ)) is the linear map defined as

u⊗2(ei ⊗ ej) =
n

∑
k,l=1

ek ⊗ el ⊗ ukiul j

1 It is in fact a (finite-dimensional) representation of the compact quantum group QAut(Γ),
i.e. an element in Mn(C(QAut(Γ))) satisfying ∆(uij) = ∑n

k=1 uik ⊗ ukj for all i, j = 1, . . . , n.
One can define tensor products and morphisms of such representations, which explains the
notation used in the proposition. (For details see for example [NT13])
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Proof. The equivalence of (i) and (ii) was already shown in Theorem 4.1.2.
For the equivalence of (ii) and (iii) note that by Theorem 2.3 in [Ban05] a sub-
space K of Cn is invariant for u if and only if u commutes with the orthog-
onal projection onto K. If (ii) holds, u commutes with every such projection
by Theorem 3.4.12 and thus (iii) follows. If (iii) holds, u commutes with ev-
ery projection in Mn(C) and since every matrix is a linear combination of
projections, u commutes with every matrix in Mn(C) and (ii) follows by The-
orem 3.4.12.
The equivalence of (ii) and (iv) amounts to the claim that for f ∈ Cn ⊗Cn we
have that u⊗2( f ) = f ⊗ 1 if and only if f is constant on the quantum orbitals
of QAut(Γ).
For f = ∑n

i,j=1 fij(ei ⊗ ej) we have

u⊗2( f ) =
n

∑
i,j=1

fiju⊗2(ei ⊗ ej) =
n

∑
i,j,k,l=1

fij(ek ⊗ el ⊗ ukiul j)

=
n

∑
k,l=1

ek ⊗ el ⊗
(

n

∑
i,j=1

fijukiul j

)

and

f ⊗ 1 =

(
n

∑
i,j=1

fij(ei ⊗ ej)

)
⊗ 1 = ∑

k,l=1
ek ⊗ el ⊗ ( fkl1)

So u⊗2( f ) = f ⊗ 1 if and only if

n

∑
i,j=1

fijukiul j = fkl1 ∀k, l = 1, . . . , n

Now assume that this holds and let k, l ∈ {1, . . . , n} be arbitrary and let (r, s)
be in the same quantum orbital as (k, l), i.e. ukruls 6= 0. Then

frsukruls = ukr

(
n

∑
i,j=1

fijukiul j

)
uls = ukr ( fkl1) uls = fklukruls

implies that frs = fkl. Hence f is constant on the quantum orbitals of QAut(Γ).
Conversely, assume that f is constant on the quantum orbitals, then we have
for all k, l = 1, . . . , n

n

∑
i,j=1

fijukiul j =
n

∑
i,j=1

fklukiul j = fkl

n

∑
i,j=1

ukiul j = fkl1

and hence u⊗2( f ) = f ⊗ 1.
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4.2 Experimental results

All the characterizations of quantum asymmetric graphs in the last section
have in common, that none of them can be formulated purely in terms of
classical graph theory. But it would be nice to have a characterization of
quantum asymmetry in terms of classical graph invariants. One could argue
that

QAut(Γ) = {id} ⇐⇒ Aut(Γ) = {id}
would be a plausible characterization of quantum asymmetry, since the im-
plication "⇒" is known to be true (since Aut(Γ) ⊆ QAut(Γ)) and a counterex-
ample to the reverse implication would yield a compact quantum group,
wich is a quantum analogue of the trivial group in the sense of Remark 2.3.5.
The existence of such a "quantum trivial group" would be rather counterin-
tuitive and surprising and is not to be expected. Unfortunately, the proof of
the above equivalence still eludes us. Nevertheless we managed to verify it
with a computer for all graphs with at most 10 vertices using the sufficient
condition from Corollary 4.1.3 and obtained the following theorem.

Theorem 4.2.1. For all graphs Γ with at most 10 vertices we have:

QAut(Γ) = {id} ⇐⇒ Aut(Γ) = {id}

The statement we have actually shown is a classical one, namely:
For all graphs Γ with at most n = 10 vertices we have:

CA(Γ) = Mn(C) ⇐⇒ Aut(Γ) = {id}

But by Corollary 4.1.3 this yields the quantum statement in Theorem 4.2.1.

In contrast to the quantum orbital algebra, the coherent algebra of a graph
can be computed in polynomial time using the two-dimensional Weisfeiler-
Lehman algorithm. This algorithm (and its higher-dimensional extensions)
determine a strong graph invariant and are used by many graph software
packages to test whether or not two given graphs are isomorphic2.
We will briefly describe the two-dimensional Weisfeiler-Lehman algorithm.
For details we refer to [Für17].

2Two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are called isomorphic, if there is a bijection
σ : V1 → V2 which preserves adjacency and non-adjacency, i.e. for all u, v ∈ V1 we have that
(u, v) ∈ E1 ⇐⇒ (σ(u), σ(v)) ∈ E2.
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The two-dimensional Weisfeiler-Lehman algorithm:

Given: Γ = (V, E)

We denote by ∆ := {(u, u) | u ∈ V} ⊆ V ×V the diagonal in V ×V.

1. Partition V×V into the self-loops, edges and non-edges of Γ, i.e. put
R = {∆, E, Ec \ ∆}.

2. For every (u, v) ∈ V ×V and R, S ∈ R put

p(u, v; R, S) := #{w ∈ V | (u, w) ∈ R and (w, v) ∈ S}.

Define a new partitionR′ of V ×V by declaring (u, v), (u′, v′) ∈ V ×
V to be in the same class if

p(u, v; R, S) = p(u′, v′; R, S) ∀R, S ∈ R.

3. IfR′ = R, then outputR, else repeat step 2 withR′ in place ofR.

Result: The coherent configurationR of Γ.

The idea behind Step 2 is to calculate the intersection numbers p(u, v; R, S)
and refine the partition until they only depend on the class in which (u, v) is
and not on the specific choice of u and v. The resulting numbers will then be
the pk

ij from Definition 3.1.1.
The canonical implementation of this algorithm is unfortunately quite slow.
In our calculations we have used an optimized implementation from [Rei].
As a first step we generated a list of all graphs of size at most 10 using
the graph software package nauty3. Then we singled out those with triv-
ial automorphism group, also using nauty. For all resulting graphs we cal-
culated their coherent configuration using the two-dimensional Weisfeiler-
Lehman algorithm. The resulting configuration was always the partition of
{1, . . . , n} × {1, . . . , n} into singletons, i.e. the coherent algebra was always
the full matrix algebra. Hence by Corollary 4.1.3 these graphs are quantum
asymmetric.

3http://pallini.di.uniroma1.it/

http://pallini.di.uniroma1.it/
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5 Quantum Symmetries of Trees

In this chapter we prove the new result that almost all trees have quantum
symmetry. This is a quantum analogue of a classical theorem by Erdős and
Rényi:

Theorem 5.1. [ER63] Almost all trees are symmetric in the following sense:
Among all trees on n vertices, the proportion of those with non-trivial automorphism
group tends to 1 as n→ ∞.

Definition 5.2. Let Γ = (V, E) be a graph. A triple (u1, u2, v) of vertices
u1, u2, v ∈ V is called a cherry, if

(i) u1, u2 and v are pairwise distinct,

(ii) u1 and u2 are adjacent to v,

(iii) u1 and u2 have degree 1 and

(iv) v has degree 3.

Note, that in their paper [ER63], Erdős and Rényi used a slightly differ-
ent notion of cherries. In their definition, the requirement (iv) from above
is missing. This changes the formulas in the proof of Lemma 5.5 compared
their proof of Theorem 5.1 by a small degree.
The key fact about cherries is, that if a graph has a cherry (u1, u2, v), then it
has a non-trivial automorphism that swaps u1 and u2 and fixes every other
vertex. Erdős and Rényi proved Theorem 5.1 by showing that almost all trees
contain at least one cherry.
To show that almost all trees have quantum symmetry, it is interestingly
enough to show that almost all trees have two cherries! The key fact in the
quantum case is the following result by Schmidt ([Sch18, Theorem 2.2]). To
state it, we need to define the support of a graph automorphism.

Definition 5.3. Let Γ = (V, E) be a graph and let σ : V → V be an automor-
phism of Γ. The set

{v ∈ V | σ(v) 6= v}
is called the support of σ.

Proposition 5.4. [Sch18, Theorem 2.2] Let Γ be a graph. If there exist two non-
trivial automorphisms σ, τ of Γ that have disjoint support, then Γ has quantum
symmetry.

So if a graph has two cherries, it has two disjoint automorphisms and thus
has quantum symmetry. We will now prove, that almost all trees contain at
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least two cherries. Luckily, Erdős and Rényi’s proof can easily be adjusted
to yield the existence of two cherries instead of just one. Our proof closely
follows the argument of Erdős and Rényi, but we get slightly different for-
mulas in (5.1) and (5.2) because of our modified definition of cherries. The
main difference between our proof and their proof is in the last step, which
provides the existence of two cherries and not just one.

Lemma 5.5. Almost all trees contain at least two cherries in the following sense:
The probability, that a tree - drawn uniformly at random from the set of all trees on
n vertices - has at least two cherries, goes to 1 as n tends to infinity.

Proof. For every n ∈ N we denote by P the uniform probability measure on
the set of all trees on n vertices.
Let Tn be a random tree on n vertices and denote these vertices by v1, . . . , vn.
For every choice of indices i1, i2, j ∈ {1, . . . , n} we define

εi1,i2,j(Tn) :=

{
1 if (vi1 , vi2 , vj) is a cherry in Tn

0 otherwise

It is a well-known fact that the number of trees on n labelled vertices is
equal to nn−2. Now let i1, i2, j ∈ {1, . . . , n} be pairwise distinct labels and
let Γ = (V, E) be a tree on n− 3 vertices labelled with {1, . . . , n} \ {i1, i2, j}.
By attaching a cherry (vi1 , vi2 , vj) at any vertex u ∈ V we can construct a
tree on n vertices with a cherry at (i1, i2, j). On the other hand, any tree on
n vertices with a cherry at (i1, i2, j) can be constructed in this way. Since Γ
has n− 3 vertices, we have n− 3 possibilities for choosing u, thus there are
(n− 3)(n− 3)n−5 = (n− 3)n−4 trees on n vertices with a cherry at (i1, i2, j).
Hence:

E[εi1,i2,j] =
(n− 3)n−4

nn−2 (5.1)

for all pairwise distinct i1, i2, j ∈ {1, . . . , n}.
Similarly, let j1, i1, i2, j2, i3, i4 ∈ {1, . . . , n} be labels and let Γ = (V, E) be a
tree with vertices labelled with {1, . . . , n} \ {j1, i1, i2, j2, i3, i4}. In the case that
all labels j1, i1, i2, j2, i3, i4 are different from each other, we can attach cherries
(vi1 , vi2 , vj1) and (vi3 , vi4 , vj2) at any two vertices u1 and u2 of Γ and thereby
construct a tree on n vertices with two cherries at (i1, i2, j1) and (i3, i4, j2).
On the other hand, every tree on n vertices with two cherries at (i1, i2, j1)
and (i3, i4, j2) can be constructed in this way. Since Γ has n− 6 vertices, we
have n − 6 possibilities for choosing u1 and u2 respectively. Thus there are
(n− 6)(n− 6)(n− 6)n−8 = (n− 6)n−6 trees on n vertices with two cherries
at (i1, i2, j1) and (i3, i4, j2). In the case that j1 = j2 and either i1 = i3 and i2 = i4
or i1 = i4 and i2 = i3 and j1, i1, i2 are distinct, we can conclude as in the case
of 3 labels that the number of trees on n vertices with a cherry at (i1, i2, j1) is
(n − 3)n−4. In all other cases, there is no tree on n vertices with cherries at
(i1, i2, j1) or (i3, i4, j2). Hence:
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E[εi1,i2,j1εi3,i4,j2 ] =



(n−6)n−6

nn−2 if i1, i2, i3, i4, j1, j2 are all different
(n−3)n−4

nn−2 if j1 = j2 and i1 = i3, i2 = i4
or j1 = j2 and i1 = i4, i2 = i3
and j1, i1, i2 are all different

0 otherwise

(5.2)

Let Cn(Tn) denote the number of cherries in Tn, i.e.

Cn(Tn) =
n

∑
j=1

n

∑
i1=1

i1

∑
i2=1

εi1,i2,j(Tn)

=
n

∑
j=1

n

∑
i1=1
i1 6=j

i1−1

∑
i2=1
i2 6=j

εi1,i2,j(Tn)

The number of 3-tuples (j, i1, i2) ∈ {1, . . . , n}3 such that all entries are distinct
is n(n− 1)(n− 2). The further condition that i2 < i1 halves this number, so
the above sum has n(n−1)(n−2)

2 summands. Hence:

E[Cn] =
n

∑
j=1

n

∑
i1=1
i1 6=j

i1−1

∑
i2=1
i2 6=j

E[εi1,i2,j]

=
n

∑
j=1

n

∑
i1=1
i1 6=j

i1−1

∑
i2=1
i2 6=j

(n− 3)n−4

nn−2

=
n(n− 1)(n− 2)

2
(n− 3)n−4

nn−2

=
n
2
+ O(1)

We now want to calculate the variance of Cn. For this we need the second
moment. We first compute:

Cn(Tn)
2 =

n

∑
j1=1

n

∑
i1=1

i1−1

∑
i2=1

n

∑
j2=1

n

∑
i3=1

i3−1

∑
i4=1

εi1,i2,j1(Tn)εi3,i4,j2(Tn)

=
n

∑
j1=1

n

∑
i1=1
i1 6=j1

i1−1

∑
i2=1
i2 6=j1

n

∑
j2=1

n

∑
i3=1
i3 6=j2

i3−1

∑
i4=1
i4 6=j2

εi1,i2,j1(Tn)εi3,i4,j2(Tn)
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Taking expectation we get:

E[C2
n] =

n

∑
j1=1

n

∑
i1=1
i1 6=j1

i1−1

∑
i2=1
i2 6=j1

n

∑
j2=1

n

∑
i3=1
i3 6=j2

i3−1

∑
i4=1
i4 6=j2

E[εi1,i2,j1εi3,i4,j2 ]

To apply the formulas from (5.2) we split this sum into the two cases where
j1, i1, i2, j2, i3, i4 are all different and where either j1 = j2 and i1 = i3, i2 = i4 or
j1 = j2 and i1 = i4, i2 = i3 and j1, i1, i2 are different.

E[C2
n] =

n

∑
j1=1

n

∑
i1=1
i1 6=j1

i1−1

∑
i2=1
i2 6=j1

n

∑
j2=1
j2 6=j1
j2 6=i1
j2 6=i2

n

∑
i3=1
i3 6=j1
i3 6=i1
i3 6=i2
i3 6=j2

i3−1

∑
i4=1
i4 6=j1
i4 6=i1
i4 6=i2
i4 6=j2

E[εi1,i2,j1εi3,i4,j2 ]

+ 2
n

∑
j=1

n

∑
i1=1
i1 6=j

i1−1

∑
i2=1
i2 6=j

E[εi1,i2,j1εi3,i4,j2 ]

=
n

∑
j1=1

n

∑
i1=1
i1 6=j1

i1−1

∑
i2=1
i2 6=j1

n

∑
j2=1
j2 6=j1
j2 6=i1
j2 6=i2

n

∑
i3=1
i3 6=j1
i3 6=i1
i3 6=i2
i3 6=j2

i3−1

∑
i4=1
i4 6=j1
i4 6=i1
i4 6=i2
i4 6=j2

(n− 6)n−6

nn−2 (5.3)

+ 2
n

∑
j=1

n

∑
i1=1
i1 6=j

i1−1

∑
i2=1
i2 6=j

(n− 3)n−4

nn−2 (5.4)

The number of 6-tuples (j1, i1, i2, j2, i3, i4) ∈ {1, . . . , n}6 such that all entries
are different is n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5) = n!

(n−6)! . Each of the
further conditions that i2 < i1 and i4 < i3 halves this number. So the expres-
sion in (5.3) has 1

4
n!

(n−6)! summands. The expression in (5.4) is of order O(n)

since it can be bounded from above by 2n3 (n−3)n−4

nn−2 = O(n), so we get:

E[C2
n] =

1
4

n!
(n− 6)!

(n− 6)n−6

nn−2 + O(n)

=
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

4
(n− 6)n−6

nn−2 + O(n)

=
n2

4
+ O(n)

Combining this with the previous calculation yields

Var[Cn] = E[C2
n]−E[Cn]

2 = O(n)
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and hence
Var[Cn]

E[Cn]2
= O

(
1
n

)
.

Moreover

E[Cn − 1] = E[Cn]−E[1] =
n
2
+ O(1)− 1 =

n
2
+ O(1)

since the expectation is linear and

Var[Cn − 1] = Var[Cn] = O(n)

since the variance is invariant under addition of constants. Therefore:

Var[Cn − 1]
E[Cn − 1]2

= O
(

1
n

)
We now want to see that P[Cn ≥ 2] goes to 1 or equivalently that

P[Cn = 0 or Cn = 1] = P[Cn = 0] + P[Cn = 1]

goes to 0 as n→ ∞.
Let N ∈ N such that E[Cn] > 1 for all n ≥ N. Using Chebyshev’s inequality,
it follows that for all n ≥ N:

P[Cn = 0] ≤ P
[
|Cn −E[Cn]| ≥ E[Cn]

]
≤ Var[Cn]

E[Cn]2
= O

(
1
n

)
and

P[Cn = 1] = P[Cn − 1 = 0] ≤ P
[
|Cn − 1−E[Cn − 1]| ≥ E[Cn − 1]

]
≤ Var[Cn − 1]

E[Cn − 1]2
= O

(
1
n

)
So P[Cn ≥ 2] = 1− P[Cn = 0] − P[Cn = 1] n→∞−−−→ 1 which completes the
proof.

Combining this lemma with the result by Schmidt (Proposition 5.4) yields
the following theorem.

Theorem 5.6. Almost all trees have quantum symmetry.

Proof. By the preceding lemma we know that almost all trees have at least
two cherries. So in particular, almost all trees have two non-trivial automor-
phisms with disjoint support. So by Proposition 5.4 the result follows.
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