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Preface

In this thesis, we will discuss the connection between compatible POVMs (positive
operator valued measures) and the inclusion of free spectrahedra which was discov-
ered by Andreas Bluhm and Ion Nechita. We focus on their paper ‘Compatibility
of Quantum Measurements and Inclusion Constants for the Matrix Jewel’ ([BN20])
from 2020 which is a continuation of ‘Joint Measurability of Quantum Effects and
the Matrix Diamond’ ([BN18]) published in 2018. Both papers combine problems of
Quantum Information Theory (QIT) and convex optimization. Bluhm and Nechita
discovered that both problems are based on the same scaling problem. Not just the
connection but also both fields on their own are of interest. Thus, we give the fields
enough space to introduce before we present the core results which establish the
aforementioned connection and illustrate them with the aid of a concrete example;
the latter, to the best of my knowledge, has not yet been studied in the literature
before.

In convex analysis, linear matrix inequalities (LMI) are often used to solve opti-
mization problems (see [BEGFB94]). An often discussed problem are LMIs where
the solution sets are tuples of matrices ([HKM12],[HKMS16]). A matrix-valued so-
lution set of LMIs is called a free spectrahedron. That means, for a g-tuple of
self-adjoint matrices A = (A1, ..., Ag), the free spectrahedron DA is the set of all
g-tuples of self-adjoint matrices X = (X1, ..., Xg) such that

I −
g∑
i=1

Ai ⊗Xi

is positive semi-definite. For X ∈ Rg, then we denote the set by DA(1). It is a
fundamental and important problem to find an s = (s1, ..., sg) ∈ [0, 1]g such that the
implication

DA(1)⊆DB(1) ⇒ sDA⊆DB

holds. This scaling problem is related to the compatibility of POVMs.

A POVM {E1, ..., Ek} is a collection of k positive, self-adjoint matrices which
sum up to the identity matrix. A collection of g POVMs {E(1), ..., E(g)} is called
compatible or jointly measurable if there is a single POVM which can express the
collection. Compatibility of POVMs is indeed a current topic. For example in
the papers [GHK+23] and [Lou23] from 2023 you can find some connections to the
CHSH-game or quantum steering. A known result is that you can make POVMs
compatible by adding noise. For that we replace the collection {E(1), ..., E(g)} by
{s1E

(1) + (1− s1)/k1I, ..., sgE
(g) + (1− sg)/kgI} where s1, ..., sg ∈ [0, 1] is the noise
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level and k1, ..., kg ∈ N the number of effects of the POVMs E(1), ..., E(g) respec-
tively. One can ask for which s = (s1, ..., sg) a given collection of POVMs becomes
compatible. This is also a scaling problem.

In this thesis we present the connection of these scaling problems, which was
discovered in [BN20]. These results are for example useful to get more information
about compatibility witnesses ([BN20, Section 8,9], [Lou23, Chapter 8]). The main
object, which builds the bridge between these at first glance unrelated questions is a
special spectrahedron, the matrix jewel denoted by Du,k for a g-tuple k ∈ Ng. One
of the connections is the following theorem.

Theorem. Let d ∈ N and g ∈ N. For i ∈ {1, ..., g} take E(i) = (E(i)
1 , ..., E

(i)
ki−1

) ∈
(Msa

d )ki−1 and set E(i)
ki

:= Id − E
(i)
1 − ...− E

(i)
ki−1. Let k = (k1, ..., kg) and define

E :=
(

2E(1) − 2
k1
Id, ..., 2E(g) − 2

kg
Id

)
.

1. It holds Du,k(1)⊆DE(1) if and only if {E(i)
1 , ..., E

(i)
ki
}, i ∈ {1, ..., g}, are

POVMs.
2. It holds Du,k⊆DE if and only if {E(i)

1 , ..., E
(i)
ki
}, i ∈ {1, ..., g}, are jointly

measurable POVMs.

For given number and size of a collection of POVMs, Bluhm and Nechita showed
that the amount of noise to make POVMs compatible is equivalent to the scalar s
which solves the inclusion problem

Du,k(1)⊆DE(1) ⇒ sDu,k⊆DE .

With help of the proof of this statement we worked out a new theorem which refers
to a given POVM.

Theorem. Let d ∈ N, g ∈ N, k = (k1, ..., kg) ∈ Ng and s ∈ [0, 1]g. For the given
POVMs

{
E

(i)
1 , ..., E

(i)
ki

}
, i ∈ {1, ..., g} we have, that{

siE
(i) + (1− si)Id/ki

}
i∈{1,...,g}

is compatible if and only if

(s×(k1−1)
1 , ..., s×(kg−1)

g )Du,k⊆D(2E(1)− 2
k1
Id,...,2E(g)− 2

kg
Id)

holds true where s×(ki−1)
i = (si, ..., si)︸ ︷︷ ︸

ki−1

for i ∈ {1, ..., g}.

To get an idea of the meaning of making POVMs compatible, we introduce an
example POVM

E =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}

where θ ∈ [0, π/2]. Starting with this POVM, we are creating a collection of POVM
where one POVM has the fixed angle θ = 0 and the other one has an arbitrary
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angle θ ∈ [0, π]. We observe the changing necessary noise level to make the two
POVMs compatible when changing θ. We are presenting a numerical way and an
analytical one to solve the problem. For the numerical solution we write a semi-
definite program in Mathematica and visualize the problem. By interpreting the
visualizations, we hypothesize that the set of all noise levels which make POVMs
compatible is minimal in θ = π/4. This hypothesize can be verified by the analytical
solution which we also present in the thesis. Furthermore, the solution set we get in
θ = π/4 is known as the ‘quarter-circle’ which is a result from the theory of inclusion
of free spectrahedra.

The thesis is organized as follows. In the first chapter we give an overview about
matrix convex sets which are generalizations of convex sets. We introduce two
important examples, namely free spectrahedra and matrix ranges. These are not
only examples but each of these objects can be expressed by the respective other.
These connections are explained in Chapter II. From this point on, we focus more on
the free spectrahedra, especially their direct sum (in Chapter III) and the inclusion
(in Chapter IV). We will see that inclusions of free spectrahedra can be characterized
by a unital map. Positivity of the map gives information about on which level the
inclusion holds and vice versa. We are primarily interested in one specific inclusion,
that is if the matrix jewel is a subset of a given spectrahdron - and if not, how
much do we have to shrink the matrix jewel such that the inclusion holds. The
matrix jewel is a specific free spectrahedron, also discussed in Chapter IV. Before
we can give the connection between the inclusion of these free spectrahedra and the
POVMs, we give an introduction to the Quantum Information Theory (Chapter V).
We not only give definitions of POVMs and their compatibility, we also show and
visualize them in an example. We continue with the example in Chapter VI where
we present the main results of this thesis. In Chapter VII we present further ideas
about the example collection of POVMs. We are giving a numerical solution and an
analytical one. Every self-written computer program can be found in the Appendix,
Chapter A.

I would like to thank my advisor Dr. Tobias Mai for his support and his en-
couragement throughout the process of researching and writing this thesis. Thank
you.
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Chapter I.

Introduction to Matrix Convex Sets

1 Convex Analysis
A main object of this thesis are matrix convex sets which are a generalization of
convex sets. In this section we recall a few definitions and properties of the convex
sets polyhedra and polytopes. For brevity, let us fix [n] := {1, ..., n} where n ∈ N.

Definition I.1. Let c1, ..., cm be vectors in Rd and let α1, ..., αm ∈ R. The set

P := {x ∈ Rd : 〈ci, x〉 ≤ αi for all i ∈ [m]}

is called a polyhedron. The convex hull of a finite set of points in Rd is called a
polytope.

Both polyhedra and polytopes are convex sets. One can show that every polytope
is a polyhedron but the reverse is not always true since polyhedra can be unbounded.
But when a polyhedron is bounded, then you can express a polyhedron by a polytope.
Thus, we have two representations of a polyhedron.

Lemma I.2 (Weyl-Minkowski Theorem [Bar02, II.(4.3), IV.(1.3)]).

1. A bounded polyhedron is a polytope.
2. A polytope is a polyhedron.

The polar dual is an important object in convex analysis. Duality is often used
to get another mathematical point of view.

Definition I.3 ([Bar02, IV.(1.1)]). Let A⊆Rd be a a non-empty set. Then we call
the set

A• :=
{
c ∈ Rd : 〈c, x〉 ≤ 1 for all x ∈ A

}
the polar (dual) of A.

Remark I.4. Usually the polar set of A is denoted by A◦. For the matrix convex sets
we distinguish between the complex and the real polar dual, following [DDOSS17],
the former will be denote by A• and the latter by A◦ (see Definition I.36). To
avoid confusion, we write A• also the polar dual in the real scalar case which we are
considering in this section.

1
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One of the most important properties of the polar dual is the Bipolar Theorem.

Lemma I.5 (Bipolar Theorem [Bar02, IV.(1.2)] ). Let A⊆Rd a closed convex set
containing the origin. Then (A•)• = A.

Polar duals of polytopes can be spanned by the extreme points of the polytope.

Lemma I.6 ([BN20, Lemma 3.2]). The polar dual of P = conv({v1, ..., vm})⊆Rd for
an m ∈ N can be written as

P• :=
{
x ∈ Rd : 〈vi, x〉 ≤ 1 for all i ∈ [m]

}
.

We can construct new convex sets for example with the Cartesian product or the
the direct sum.

Definition I.7. Let P1⊆Rk1 and P2⊆Rk2 be two convex sets where k1, k2 ∈ N.
Then, their Cartesian product is defined by

P1 × P2 :=
{

(x, y) ∈ Rk1+k2 : x ∈ P1, y ∈ P2
}
.

We present a nice property of faces of a Cartesian product of two polytopes. You
can find a definition of a face in [Bar02, II.(2.6)]. A face is not to be confused with
a facet, see [Bar02, VI.(1.4)].

Lemma I.8 ([Bre98, Lemma 2.3]). Let ki ∈ N and let Pi⊆Rki be two polytopes where
i ∈ [2]. For 0 ≤ l ≤ k1 + k2, the l-dimensional faces of P1 × P2 are of the form
F1 ×F2, where Fi is a ji-dimensional face of Pi (i ∈ [2]) and j1 + j2 = l.

Again we can construct new convex sets of higher dimension by summing up two
convex sets. There are several definitions of the direct sum. The one we use is
discussed for instance in [Bre98, Page 16] where it is called ‘orthogonal sum’. For
simplicity, we will use the name ‘direct sum’.

Definition I.9. Let P1⊆Rk1 and P2⊆Rk2 be two convex sets where k1, k2 ∈ N.
Then, their direct sum is defined by

P1 ⊕ P2 := conv
({

(x, 0) ∈ Rk1+k2 : x ∈ P1
}
∪
{

(0, y) ∈ Rk1+k2 : y ∈ P2
})

.

It is obvious, that the direct sum of convex sets is again a convex set. Furthermore,
the direct sum of two polytopes is again a polytope which can be expressed by the
extreme points of the original polytopes.

Lemma I.10 ([Bre98, Corollary 2.2(a)]). Let ki ∈ N and let Pi⊆Rki be two polytopes
with 0 ∈ int(Pi) where i ∈ [2]. Then xi is an extreme point of Pi (i ∈ [2]) if and
only if x1 ⊕ x2 is an extreme point or P1 ⊕ P2.

We can find a further representation of the direct sum of polytopes by using the
crossproduct and the polar dual.

Lemma I.11 ([Bre98, Lemma 2.4]). Let ki ∈ N and let Pi⊆Rki be two polytopes with
0 ∈ int(Pi) where i ∈ [2]. Then

P1 ⊕ P2 = (P•1 × P•2 )•.

We see that there are nice properties for convex sets especially for polytopes and
polyhedra. We want to generalize some properties in the free analysis for example
the connection between the polar dual, the direct sum and the Cartesian product.



CHAPTER I. 3

2 Preparation for the Matrix Convex Sets
Before we can start to define matrix convex sets, we have to introduce some standard
formalism with some properties. For brevity, we use Rg+ := {x = (x1, ..., xg) ∈ Rg :
xi ≥ 0 for all i ∈ [g]} where g ∈ N. For an n ∈ N we denote by Mn the set
of complex n × n matrices. We write Msa

n for the self-adjoint n × n matrices. We
denote by In the n×n identity matrix. If the dimension is clear from the context, we
sometimes drop the index. For d, g ∈ N we introduce the operator system generated
by the g-tuple A = (A1, ..., Ag) ∈ (Msa

d )g which is defined by

OSA := span{Id, Ai : i ∈ [g]}.

In my thesis, all Hilbert spaces are finite dimensional. Let H be a Hilbert space,
then B(H) are the bounded, linear operators on H. Let X,Y ∈ B(H). We write
X ≥ 0 if X is positive semi-definite. Correspondingly, we write X ≥ Y if X − Y is
positive semi-definite. We are often working with positivity of operators on tensor
products of Hilbert spaces. The next lemma is a generalization of [BN20, Lemma
3.20].

Lemma I.12. Let k ∈ N and let H1, ...,Hk be Hilbert spaces. Let A ∈ B(H1 ⊗ ... ⊗
Hk)sa. If for all n ∈ N the inequality

(P1 ⊗ ...⊗ Pk)A(P1 ⊗ ...⊗ Pk) ≥ 0

holds true for all P1, ..., Pk orthogonal projections onto n-dimensional subspaces of
H1, ...,Hk, then

A ≥ 0.

Proof. For i ∈ [k], let A = (A1, ..., Ak) and Ai⊆Hi a not necessarily countable set
and let {e(i)

αi }αi∈Ai an orthonormal basis of Hi. Then,{
e(1)
α1 ⊗ ...⊗ e

(k)
αk

: αi ∈ Ai, i ∈ [k]
}

is an orthonormal basis of H1 ⊗ ...⊗Hk [RS03, Proposition 2 in Section II.4].
Let us assume, that A is not positive. Then, there exists a ψ ∈ H1⊗ ...⊗Hk with
‖ψ‖ = 1 such that 〈ψ,Aψ〉 < 0. Thus, we can write ψ in the basis introduced above
as

ψ =
∞∑

i1,...,ik=1
ψi1,...,ike

(1)
i1
⊗ ...⊗ e(k)

ik

where ψi1,...,ik ∈ C for all ij ∈ N, j ∈ [k]. The sequence converges in norm, this means
(by [RS03, Theorem II.6]) for every ε > 0 there is a N ∈ N such that ‖ψ−ψN‖ ≤ ε
with

ψN =
N∑

i1,...,ik=1
ψi1,...,ike

(1)
i1
⊗ ...⊗ e(k)

ik

for N ∈ N. Thus, by Bessel’s inequality and the Cauchy-Schwarz-inequality we get

|〈ψN , AψN 〉 − 〈ψ,Aψ〉| ≤ 2ε‖A‖∞.
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We conclude that for N large enough 〈ψN , AψN 〉 < 0. We choose P1, ..., Pk to be
the orthogonal projections onto the subspace spanned by {e(1)

i }i∈[N ],..., {e
(k)
i }i∈[N ],

respectively. Then,

〈ψN , (P1 ⊗ ...⊗ Pk)A(P1 ⊗ ...⊗ Pk)ψN 〉 = 〈ψN , AψN 〉 < 0

which contradicts the assumption that (P1 ⊗ ... ⊗ Pk)A(P1 ⊗ ... ⊗ Pk) is positive
semi-definite. Thus, A ≥ 0.

In this thesis, we need not only the positivity of operator but also of maps of
operators. We notate by id the identity function.

Definition I.13. Let H1,H2 be two Hilbert spaces and T : B(H1)→ B(H2) a linear
map.

1. Let k ∈ N. The map T is k-positive if the map

T ⊗ id : B(H1)⊗Mk → B(H2)⊗Mk

is positive.
2. A map T is called completely positive if it is k-positive for all k ∈ N.
3. The map T is unital if T (IH1) = IH2 .

For brevity, we use the notation UCP(B(H1),B(H2)) for a set of unital, completely
positive maps from B(H1) to B(H2).

Unital, completely positive maps are closed under compositions and direct sums.
For convenience we show the closeness of direct sums.

Lemma I.14. Let m,n ∈ N and H a Hilbert space. Let Φm ∈ UCP(B(H),Mm) and
Φn ∈ UCP(B(H),Mn). Then the direct sum

Φm+n := Φm ⊕ Φn : B(H)→Mm+n, A 7→
(

Φm(A) 0
0 Φn(A)

)

is again a unital completely positive map.

Proof. Since Φm and Φn are unital, it follows directly that Φm+n is unital. It
remains to show that Φm+n is completely positive. By Definition I.13 we have to
show that Φm+n is k-positive for all k ∈ N. So, let us fix an k ∈ N and take an
(Ai,j)ki,j=1 ∈ B(H). We calculate

(Φm+n ⊗ id)((Ai,j)ki,j=1) =
(

(Φm ⊗ id)((Ai,j)ki,j=1) 0
0 (Φn ⊗ id)((Ai,j)ki,j=1)

)
.

If we assume that (Ai,j)ki,j=1 is positive, than it follows that the two blocks on the
diagonal are positive, that means (Φm+n ⊗ id)((Ai,j)ki,j=1) is positive. Since k ∈ N
was chosen arbitrary, the assertion holds.

We often work with tuples of operators. For brevity, we use some conventions.
Let A ∈ B(H)g for g ∈ N. Then we will write A as A = (A1, ..., Ag). If we write λA
for a λ ∈ C, than we mean λA := (λA1, ..., λAg). Additionally, consider B ∈ B(H)g,
then we notate A±B := (A1 ±B1, ..., Ag ±Bg).
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3 Definition of Matrix Convex Sets
In convex analysis, you have convex sets defined in Euclidean spaces where the main
idea is that the set contains the line segment connecting any two points within the
set. Matrix convex sets are a generalization of convex sets. You can say that matrix
convex sets are closed under convex combinations of matrices.
Definition I.15. For g ∈ N, let Fn⊆(Mn)g for all n ∈ N. Then we call F =

⋃
n∈NFn

a free set. A free set F is a matrix convex set if it satisfies the following properties
for all m,n ∈ N.

1. If X = (X1, ..., Xg) ∈ Fm and Y = (Y1, ..., Yg) ∈ Fn, then

X ⊕ Y := (X1 ⊕ Y1, ..., Xg ⊕ Yg) ∈ Fm+n.

2. If X = (X1, ..., Xg) ∈ Fm and Ψ :Mm →Mn is a unital completely positive
map, then (Ψ(X1), ...,Ψ(Xg)) ∈ Fn.

We see, that matrix convex sets are closed under direct sums by the first property.
By the second property matrix convex sets are closed under transformations by
completely positive maps.
Remark I.16. In this work, we mostly consider free sets or matrix convex sets as
F =

⋃
n∈NFn, where Fn⊆(Msa

n )g for all n ∈ N.
We introduce some common properties of matrix convex sets which are defined

intuitively.
Definition I.17. Let F =

⋃
n∈NFn a free set.

• The matrix convex set F is open/ closed/ bounded if all Fn (n ∈ N) defining
it have this property.

• The matrix convex set F is uniformly bounded, if there is some 0 < R ∈ R
such that ‖Xi‖ < R for all X = (X1, ..., Xg) ∈ F and i ∈ [g].
• We say F contains 0 in its interior when there is a δ > 0 such that for all
X = (X1, ..., Xg) ∈ F it holds: If ‖Xi‖ < δ for all i ∈ [g] then X ∈ F . If F
contains 0 in its interior, we write 0 ∈ int(F).

Remark I.18. We can easily see, if the matrix convex set F is uniformly bounded,
then it is also bounded. The converse is not always true. But we will see (in Theorem
II.6), if 0 ∈ int(F), then F is uniformly bounded if and only if F is bounded (actually,
it is enough to have boundedness in the first level).
Additionally, we want to define the largest matrix convex set such that the first

level of the matrix convex set is fixed by a given convex set.
Definition I.19 ([DDOSS17, Definition 4.1]). Let g ∈ N and F a matrix convex set
defined by Fn⊆(Mn)g for all n ∈ N. Let C ⊆Rg be a convex set such that F1 = C.
We define the largest matrix convex set of F with F1 = C as

Wmax(C)(n) :={
X ∈ (Msa

n )g :
g∑
i=1

ciXi ≤ αI, ∀c = (c1, ..., cg) ∈ Rg, ∀α ∈ R s.t. C ⊆H(c, α)
}

where

H(c, α) :=
{
x ∈ Rg :

g∑
i=1

cixi ≤ α
}
.
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Note that Wmax(C)(1) = C.
Remark I.20. You really can verify Wmax(C)(n) as ‘maximal convex set’ since: If
F ⊆

⋃
n∈N(Msa

n )g is a closed matrix convex set with F1 = C, then indeed

Fn⊆Wmax(C)(n)

for all n ∈ N as proven in [DDOSS17, Proposition 4.3].
There are two important examples of matrix convex sets that we will discuss in the

next two sections. The first example is the free spectrahedron, which is essential for
the connection to the POVMs. Thus, we look at the properties of free spectrahedra
and express them using other objects. Therefor, we will also introduce the matrix
range, which is also a very important example of a matrix convex set.

4 Free Spectrahedron
The free spectrahedra are geometric objects which are important for solving several
problems in convex optimization.

Definition I.21. Let g ∈ N and A = (A1, ..., Ag) ∈ (B(H)sa)g be a g-tuple of self-
adjoint bounded operators on a Hilbert space H. Let n ∈ N. The free spectrahedron
at level n defined by A is the set

DA(n) :=
{
X ∈ (Msa

n )g :
g∑
i=1

Ai ⊗Xi ≤ IH ⊗ In

}
.

The free spectrahedron is then defined as the (disjoint) union of all these levels, i.e.

DA :=
⋃
n∈N
DA(n).

In some literature, it is not provided that the free spectrahedron is self-adjoint.
In [DDOSS17] you can see that there are similar results for the non-self-adjoint
spectrahedron.
Remark I.22. In some literature, for example [HKM12] or [DDOSS17], the free
spectrahedron is defined with help of a linear matrix inequality. Let g ∈ N and
A = (A1, ..., Ag) ∈ (B(H)sa)g. For a fixed n ∈ N, we can write the inequality in
DA(n) as

L(X) = IH ⊗ In −
g∑
i=1

Ai ⊗Xi ≥ 0.

This representation is called linear matrix inequality and is a generalization of a
monic linear pencil or matrix pencil of degree g which has the form

L(x) = IH −
g∑
i=1

xiAi ≥ 0.

This representation is often discussed in convex optimization. An overview over the
history and applications of linear matrix inequalities can be found in [BEGFB94].
The next lemma shows that the free spectrahedron is indeed a matrix convex

set which is proven in [DDOSS17, Proposition 2.1] for the non-self-adjoint case.
Furthermore we can show that the free spectrahedron is closed.
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Lemma I.23. The free spectrahedron is a closed matrix convex set.

Proof. Let g ∈ N and A = (A1, ..., Ag) ∈ (B(H)sa)g.

First, we want to verify for DA the two conditions in Definition I.15.

1. For fixed m,n ∈ N, choose X = (X1, ..., Xg) ∈ DA(m) and Y = (Y1, ..., Yg) ∈
DA(n). By definition of DA we get

g∑
i=1

Ai ⊗ (Xi ⊕ Yi) =
( g∑
i=1

Ai ⊗Xi

)
⊕
( g∑
i=1

Ai ⊗ Yi

)
≤ (IH ⊗ Im)⊕ (IH ⊗ In) = IH ⊗ (Im ⊕ In)

and thus X ⊕ Y ∈ DA(m+ n).
2. We take an X = (X1, ..., Xg) ∈ DA(m) and a Ψ ∈ UCP(Mm,Mn) and show

(Ψ(X1), ...,Ψ(Xg)) ∈ DA(n). From X ∈ DA(m) we get the positivity of

IH ⊗ Im −
g∑
i=1

Ai ⊗Xi.

Since Ψ ∈ UCP(Mm,Mn) we know that id⊗Ψ : B(H)⊗Mm → B(H)⊗Mn

is a unital positive map. Thus,

IH ⊗ In −
g∑
i=1

Ai ⊗Ψ(Xi) = (id⊗Ψ)
(
IH ⊗ Im −

g∑
i=1

Ai ⊗Xi

)

is positive and hence (Ψ(X1), ...,Ψ(Xg)) ∈ DA(n).

Since the two conditions are fulfilled, the free spectrahdron is a matrix convex set.

In the second part of the proof we show that DA is closed, which means that
DA(n) is closed for all n ∈ N. Therefor, we fix n ∈ N and take the sequence
(Xk)k∈N with Xk = (Xk

1 , ..., X
k
g ) ∈ DA(n) as a convergent sequence with limit

X = (X1, ..., Xg) ∈ (Mn)g. We claim that limit X is self-adjoint. To see this, we
use that the involution ∗ on the C∗-algebra B(H) is isometric and that each Xk is
a g-tuple of self-adjoint operators to get

X = lim
k→∞

Xk = lim
k→∞

(Xk)∗ = X∗.

Thus, we obtain for the limit that X ∈ (Msa
n )g. But this means that for all i ∈ [g]

the sequence (Xk
i )k∈N converges to Xi ∈ (Msa

n )g as k →∞. We define the sequence
(P k)k∈N as

P k := IH ⊗ In −
g∑
i=1

Ai ⊗Xk
i .

To prove that DA is closed, we want to show that the limit of the sequence (P k)k∈N
is positive.

First, we show that (P k)k∈N converges to

P := IH ⊗ In −
g∑
i=1

Ai ⊗Xi.
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Therefore, we estimate the matrix norm ‖P − P k‖. With the calculation

P − P k =
(
IH ⊗ In −

g∑
i=1

Ai ⊗Xi

)
−
(
IH ⊗ In −

g∑
i=1

Ai ⊗Xk
i

)

=
g∑
i=1

(
Ai ⊗Xi −Ai ⊗Xk

i

)
=

g∑
i=1

Ai ⊗ (Xi −Xk
i )

we get

‖P − P k‖ =
∥∥∥∥∥
g∑
i=1

Ai ⊗ (Xi −Xk
i )
∥∥∥∥∥ ≤

g∑
i=1

∥∥∥Ai ⊗ (Xi −Xk
i )
∥∥∥ .

Since the C∗-norm is a cross norm we can deduce that

‖Ai ⊗ (Xi −Xk
i )‖ = ‖Ai‖‖Xi −Xk

i ‖.

But Xk
i converges to Xi for every i ∈ [g], such that P k converges to P .

Now, we show that the limit P is positive. For all ξ ∈ H ⊗ Cn we know that
〈P kξ, ξ〉 ≥ 0, since P k is positive. Since P k converges to P it follows 〈Pξ, ξ〉 ≥ 0 for
all ξ. Hence, P is positive.

The next property is a characteristic one of free spectrahedra. Thus, we show this
property for convenience.
Lemma I.24. Let g ∈ N and A = (A1, ..., Ag) ∈ (B(H)sa)g, then 0 ∈ intDA.
Proof. Take a δ > 0, such that

g∑
i=1
‖Ai‖ ≤

1
δ

or equivalently
g∑
i=1

δ‖Ai‖ ≤ 1. (I.1)

We want to show X ∈ DA whenever ‖Xi‖ ≤ δ for all i ∈ [g]. So, take X =
(X1, ..., Xg) ∈ (Msa

n )g for an arbitrary n ∈ N such that ‖X‖ ≤ δ. With this and the
inequality (I.1), it follows that

g∑
i=1
‖Ai‖‖Xi‖ ≤ 1

which is nothing else than
g∑
i=1
‖Ai ⊗Xi‖ ≤ 1.

By the triangle inequality we also get∥∥∥∥∥
g∑
i=1

Ai ⊗Xi

∥∥∥∥∥ ≤ 1.

It follows for the spectrum σ that σ(
∑g
i=1Ai ⊗Xi)⊆[−1, 1], consequently

σ

(
Idn −

g∑
i=1

Ai ⊗Xi

)
⊆[0,∞)

such that
g∑
i=1

Ai ⊗Xi ≤ Idn

and hence X ∈ DA.
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Remark I.25 ([BN20, Remark 3.13]). With the last property of free spectrahedra
we can concretize the largest matrix convex set (Definition I.15). Let g ∈ N and
C ⊆Rg a convex set. Let d ∈ N and A = (A1, ..., Ag) ∈ (Msa

d )g. The largest free
spectrahedron Wmax(C) such that DA(1) = C is again a free spectrahedron. This
is true since 0 ∈ int(DA(1)) = int(C). Furthermore, the closed convex set C can be
defined as the intersection of finitely many hyperplanes.

Let us recall that polyhedra can be unbounded (unlike polytopes). Similarly,
spectrahedra can be unbounded.

Remark I.26. A free spectrahedron is not necessarily bounded. Take for example
A = {1}, then

DA(1) = {x ∈ R : x ≤ 1}

is unbounded and so is DA =
⋃
n∈NDA(n).

We finish this section by introducing two examples. The first example is one of
the most important ones in this thesis.

Example I.27. Let k ∈ N and define the diagonal matrices

V
(k)
j := −2

k
diag(1, ..., 1,

j-th entry
↓

1− k , 1, ..., 1)

for j ∈ [k − 1]. Notate V (k) = (V (k)
1 , ..., V

(k)
k−1). The matrix jewel base Du,k =⋃∞

n=1Du,k(n) defined by

Du,k(n) := DV (k)(n) =

X ∈ (Msa
n )k−1 :

k−1∑
j=1

V
(k)
j ⊗Xj ≤ Ikn


is a free spectrahedron. This object is discussed in detail in Chapter IV Section 2
and used in the inclusion of the free spectrahedra which is connected with POVMs.
For more information refer to Chapter VI.

The next presented object is the matrix cube which is the main object in the matrix
cube problem formulated in [BTN02]. This problem is discussed in several papers
for example [HKMS16]. Furthermore, the matrix cube is brought in connection with
the maximal violent of the steering inequality [BN22].

Example I.28 ([DDOSS17, Example 2.2]). Let g ∈ N and Eii the diagonal g × g
matrix with 1 at the i-th place and 0 elsewhere. We define the 2g × 2g matrices

Ai =
(
Eii 0
0 −Eii

)

for 1 ≤ i ≤ g and set A = (A1, ..., Ag). Then X = (X1, ..., Xg) ∈ DA if and only if

g∑
i=1

Ai ⊗Xi =
g∑
i=1

(
Eii ⊗Xi 0

0 −Eii ⊗Xi

)
≤ I2g ⊗ In.

This is equivalent to −In ≤ Xi ≤ I for all i ∈ [g]. We call this free spectrahedron
the (g-dimensional) complex matrix cube.
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5 Matrix Range
A further example of a matrix convex set is the matrix range. We use the matrix
range to get more information about the free spectrahedra.

Definition I.29. The matrix range W(A) of A = (A1, ..., Ag) ∈ (B(H)sa)g is defined
as W(A) =

⋃
n∈NWn(A) where

Wn(A) := {(X1, ..., Xg) ∈ (Msa
n )g :

∃Ψ ∈ UCP(B(H),Mn) such that Xi = Ψ(Ai) ∀i ∈ [g]}

for all n ∈ N.

Similar to the free spectrahedra, the matrix range is also a closed matrix convex
set. Before, we can show this property, we need some preparations.

5.1 Short Introduction to the Compactness in the BW Topol-
ogy

To prepare the proof of the closedness of the matrix range, we need that a unital,
completely positive map which is compact in the bounded, weak topology. Thus,
we introduce the bounded, weak topology along with some statements which are
important for us. This introduction is based on [Pau02, Chapter 7].
Let X and Y be two Banach spaces, let Y ∗ the dual of Y . For fixed x ∈ X and

y ∈ Y we define the linear functional x⊗ y on B(X,Y ∗) by

x⊗ y(L) = L(x)(y).

Let Z denote the closed linear span in B(X,Y ∗)∗ of these tensors. Then, by [Pau02,
Lemma 7.1], B(X,Y ∗) is isometrically isomorphic to Z∗ with the duality

〈L, x⊗ y〉 = x⊗ y(L).

This allows us to endow B(X,Y ∗) with the weak* topology defined as follow:

Definition I.30. We call the weak* topology that is induced on B(X,Y ∗) the BW
topology (bounded weak topology).

The name ‘bounded weak topology’ can be deduced from the statement of the
next lemma.

Lemma I.31. [Pau02, Theorem 7.2] A bounded net {Lλ} in B(X,Y ∗) converges to
L in the BW topology if and only if Lλ(x) converges weakly to L(x) for all x ∈ X.

There are various sets which are compact in the BW topology. We only need
compactness for the set of unital, completely positive maps.

Theorem I.32. [Pau02, Theorem 7.4] Let A be a C∗-algebra, let OS be a closed op-
erator system contained in A. Then UCP(OSA,Cn) is compact in the BW topology.
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5.2 Properties of the Matrix Range
Now, we have all preliminaries to show one of the main properties of the matrix
range.

Lemma I.33. The matrix range is a closed matrix convex set.

Proof. For g ∈ N, we fix A = (A1, ..., Ag) ∈ (B(H)sa)g. For better clarity, we split
the proof in two parts.

First, we show that W(A) is a matrix convex set. We check the two conditions of
Definition I.15:

1. For m,n ∈ N let X = (X1, ..., Xg) ∈ Wm(A) and Y = (Y1, ..., Yg) ∈ Wn(A).
Then there exist unital completely positive maps Ψm ∈ UCP(B(H),Mm) and
Ψn ∈ UCP(B(H),Mn) such that Xi = Ψm(Ai) and Yj = Ψn(Aj) for all
i, j ∈ [g]. Now we can construct Ψm+n ∈ UCP(B(H),Mm+n) such that

(Ψm+n(A1), ...,Ψm+n(Ag)) = (Ψm(A1)⊕Ψn(A1), ...,Ψm(Ag)⊕Ψn(Ag)).

By Lemma I.14 it holds Ψm+n ∈ UCP(B(H),Mm+n) such that

X ⊕ Y = (X1 ⊕ Y1, ..., Xg ⊕ Yg) ∈ Wn+m.

2. Every X = (X1, ..., Xg) ∈ Wm(A) can be express by a unital, completely
positive map Ψ ∈ UCP(B(H),Mm), that means

(X1, ..., Xg) = (Ψ(A1), ...,Ψ(Ag)).

Since UCP maps are closed under compositions we have (Ψ(X1), ...,Ψ(Xg)) ∈
Wn(A) for an arbitrary function Ψ ∈ UCP(Mm,Mn).

It remains to show that the matrix range W(A) is closed. For a fixed n ∈ N, we
take the sequence (Xk)k∈N with Xk := (Xk

1 , ..., X
k
g ) ∈ Wn(A) which converges to

an X := (X1, ..., Xg) ∈ (Mn)g. Similar to the proof of Lemma I.23 one can show
that the limit X is self-adjoint. Now, we show that the limit X ∈ (Msa

n )g is also an
element in Wn(A).
Since Xk ∈ Wn(A), we know that for every Xk we can find a unital map Ψk ∈

UCP(B(H),Mn) such that Xk
i = Ψk(Ai) for all i ∈ [g]. Now we want to show, that

we can find a Ψ ∈ UCP(B(H),Mn) such that Xi = Ψ(Ai) for the limit X ∈ (Msa
n )g.

We can calculate with the linearity and unitality of Ψ

Ψk

(
α0IH +

g∑
i=1

αiAi

)
= α0In +

g∑
i=1

αiX
k
i

for arbitrary αi ∈ C. We know that this term converges to

α0In +
g∑
i=1

αiXi.

Consequently, for

OSA :=
{
Z ∈ B(H) | Z = α0IH +

g∑
i=1

αiAi and αi ∈ C for i = 1, ..., g
}
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the sequence (Ψk|OSA)k∈N converges pointwise.
In the next step, we want to show that there is a sub-net of the sequence (Ψk)k∈N

such that

lim
λ∈Λ

Ψkλ |OSA ∈ UCP(OSA,Mn).

From Theorem I.32 we know, that a map in UCP(OSA,MN is compact in the BW
topology. Therefor, for the sequence Ψk|OSA ∈ UCP(OSA,Mn) exists a sub-net
(Ψkλ |OSA)λ∈Λ of (Ψk|OSA)k∈N which converges with respect to the BW topology to
a limit Ψ|OSA ∈ UCP(OSA,Mn), that means

Ψ|OSA = lim
λ∈Λ

Ψkλ |OSA ∈ UCP(OSA,Mn).

By Lemma I.31, this means for all Ai, i ∈ [g] we have the pointwise convergence
Ψ|OSA(Ai) = limλ∈Λ Ψkλ |OSA(Ai). But Ψkλ |OSA(Ai) is by construction nothing
else than Xkλ

i . And by construction of Xk it holds limλ∈ΛX
kλ
i = Xi. Thus,

X = Ψ|OSA(Ai). By Arveson we can Ψ|OSA ∈ UCP(OSA,Mn) extend to a
Ψ ∈ UCP(B(H),Mn). Then X ∈ Wn(A) and the matrix range is closed.

We recall that the free spectrahedra is also closed but not bounded. However,
in contrast, we can show that the matrix range is not only bounded but uniformly
bounded.

Lemma I.34. The matrix range is uniformly bounded.

Proof. For a fixed n ∈ N, the matrix range is a set of elements which can be expressed
by a unital, completely positive map Φ. By [Pau02, Corollary 2.9 (Russo-Dye)], we
know that Φ is bounded and ‖Φ‖ ≤ ‖Φ(In)‖. Since Φ is unital, the map Φ is bounded
by 1. So, for every n ∈ N the elements of the matrix range are bounded by 1 and
thus the matrix range is uniformly bounded.

Unlike free spectrahedra, which has the origin in their interior (see Lemma I.24),
the matrix range does not necessarily contain the origin.
Remark I.35. The matrix range does not necessarily contains 0. Take for example
A = {1}, then for n ∈ N we have Wn(A) = {In} since the map Ψ ∈ UCP(R,Mn) is
unital. Thus, 0 /∈ W(A) =

⋃
n∈NWn(A).

There are a lot of connections between the matrix range and the free spectrahe-
dron for example we can represent the matrix range by the polar dual of the free
spectrahedron and reversed. To see this, we have to introduce the polar dual of free
sets.

6 Polar Dual
Similar to the Definition I.3 we define the polar dual of free sets. This section is a
collection of statements of [DDOSS17, Chapter 3].

Definition I.36. Let g ∈ N.

1. Let F =
⋃
n∈NFn⊆

⋃
n∈N(Mn)g be a free set. Its polar dual is defined as

F◦ =
⋃
n∈NF◦n⊆

⋃
n∈N(Mn)g, where

F◦n =
{
X ∈ (Mn)g : Re

( g∑
i=1

Ai ⊗Xi

)
≤ I for all A ∈ F

}
.
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2. Likewise, let F =
⋃
n∈NFn⊆(Msa

n )g be a free set. Its polar dual is defined as
F• =

⋃
n∈NF•n⊆(Msa

n )g, where

F•n =
{
X ∈ (Msa

n )g :
g∑
i=1

Ai ⊗Xi ≤ I for all A ∈ F
}
.

Similar to the real case at the beginning, we want to characterize the bipolar of a
free set. We again require the condition that the origin is contained in the free set.

Lemma I.37 ([DDOSS17, Lemma 3.2]). If F ⊆
⋃
n(Mn)g is a closed matrix convex

set containing 0, then

(F◦)◦ = F .

Likewise, if F is a closed matrix convex set in
⋃
n(Msa

n )g containing 0, then

(F•)• = F .

Proof. For the first part we refere you to the bipolar theorem of Effros and Winkler
[EW97, Corollary 5.5].

To show (F•)• = F , we first show the inclusion F ⊆(F•)•. Let n ∈ N. We know
that

F•n =
{
X ∈ (Msa

n )g :
g∑
i=1

Ai ⊗Xi ≤ I for all A ∈ F
}

and

((F•)•)n =
{
Y ∈ (Msa

n )g :
g∑
i=1

Xi ⊗ Yi ≤ I for all X ∈ F•n

}
.

Recognize, that the eigenvalues not change by switching the matrices in a tensor
product, that means that the eigenvalues of M ⊗ N are the same as for N ⊗M
for arbitrary M,N ∈ Mn. For an arbitrary A ∈ Fn, we see, that the inequality in
((F•)•)n is fulfilled.

It remains to show (F•)•⊆F . We use the fact, that F = (F◦)◦. By that, it is
sufficient to show that (F•)•⊆(F◦)◦. Take an Y ∈ ((F•)•)n, then Y ∈ (F•)◦ ∩
(Msa

n )g. This means

g∑
j=1

Xj ⊗ Yj = Re

 g∑
j=1

Xj ⊗ Yj

 ≤ I
for all X ∈ F•n⊆((Mn)sa)g. Now, let X̃ ∈ F◦n, this means

Re

 g∑
j=1

X̃j ⊗Aj

 ≤ I
for all A ∈ Fn. By assumption of Fn, every A is self-adjoint, this means that

g∑
j=1

(Re X̃j)⊗Aj = Re

 g∑
j=1

X̃j ⊗Aj

 ≤ I
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such that Re(X̃) ∈ F•n. By using that Y ∈ (F•)◦ ∩ (Msa
n )g is self-adjoint, we get

Re

 g∑
j=1

X̃j ⊗ Yj

 =
g∑
j=1

(Re X̃j)⊗ Yj ≤ I

and thus Y ∈ (F◦)◦ = F .
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Connection between Matrix Range
and Free Spectrahedra

1 Connection between Matrix Range and Free Spec-
trahedra by using the Polar Dual

The matrix range and the free spectrahedra are not just examples of matrix convex
sets. With a few conditions an arbitrary matrix convex set can be expressed by
the matrix range or free spectrahedron. Furthermore, they are connected with each
other. We can express the matrix range by the polar dual of the free spectrahedra
and reversed.

Proposition II.1 ([DDOSS17, Proposition 3.1]). Let A ∈ (B(H)sa)g, then

(W(A) ∪ {0})• =W(A)• = DA.

Proof. The equation (W(A) ∪ {0})• =W(A)• follows directly from the definition.

To verify W(A)• = DA, we first show that X ∈ W(A)• whenever X ∈ DA. Let
m,n ∈ N and Ψ ∈ UCP(B(H),Mn) arbitrary, then also

Ψ⊗ id ∈ UCP(B(H)⊗Mm,Mn ⊗Mm).

Furthermore,

IH ⊗ Im −
g∑
i=1

Aj ⊗Xj

is positive by definition of DA. Since Ψ⊗ Im is unital completely positive, we know

(Ψ⊗ id)
(
IH ⊗ Im −

g∑
i=1

Aj ⊗Xj

)
= In ⊗ Im −

g∑
i=1

Ψ(Aj)⊗Xj

is also positive. This means, for all elements in W(A) we know, that the inequality
is fulfilled.

It remains to show the reversed direction: For all X ∈ W(A)• it follows X ∈ DA.
So, let X ∈ W(A)•, then

In ⊗ Im −
g∑
i=1

Ψ(Ai)⊗Xi ≥ 0

15
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for all m,n ∈ N and Ψ ∈ UCP(B(H),Mn). For Ψ⊗ id ∈ UCP(B(H)⊗Mm,Mn ⊗
Mm) we get

(Ψ⊗ id)
(
IH ⊗ Im −

g∑
i=1

Ai ⊗Xi

)
≥ 0.

Now, we can use the argument of Lemma I.12 to get

IH ⊗ Im −
g∑
i=1

Ai ⊗Xi ≥ 0

and thus X ∈ DA.

We can ask if the polar of the free spectrahedra is again the matrix range. For
this statement we need a further condition, namely that the origin is in the matrix
range.

Lemma II.2 ([DDOSS17, Proposition 3.3]). Let A ∈ (B(H)sa)g and 0 ∈ W(A), then

(DA)• =W(A).

Proof. Since 0 ∈ W(A), we can use the bipolar theorem of matrix convex sets,
Lemma I.37, to get W(A) = (W(A)•)•. With Proposition II.1 we get the assertion
which is ((W(A)•)•)• = D•A.

2 Equivalent Statements of Free Spectrahedra and
Matrix Range

In Chapter I we have seen that the origin is contained in the interior of the free
spectrahedron but not necessarily in the matrix range. On the other hand the
matrix range is uniformly bound but the free spectrahedron is not. But one can
show that the interior of the matrix range contains the origin if and only if the
free spectrahedron is uniformly bounded. Before we introduce this theorem we need
some preparations.

2.1 Preparations
We need some preparations in spectral theory. We are interested in the spectrum of
a normal tuple. You can find more information about the spectral theory in [Mül03].

Definition II.3 ([Mül03, I.2 Definition 14]). Let A be a commutative Banach algebra
and denote byM(A) the set of all multiplicative functionals on A. For x1, ..., xn ∈ A
the joint spectrum σ(x1, ..., xn) is the set

σ(x1, ..., xn) = {(ϕ(x1), ..., ϕ(xn)) : ϕ ∈M(A)}.

Definition II.4 ([DDOSS17, Chapter 4]). We say a tupleN = (N1, ..., Nd) is a normal
tuple if N1, ..., Ng are normal, commuting operators. We denote by σ(N) the joint
spectrum of a normal tuple N in the sense of Definition II.3.

We need a connection between the matrix range and the joint spectrum of a
normal tuple. We present the connection beginning with the first level over the
n-the level up to the union over all levels.
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Lemma II.5 ([DDOSS17, Theorem 2.7, Corollary 2.8]). Let N be a normal g-tuple
with σ(N)⊆Cg. Then

W1(N) = conv(σ(N))

and

Wn(N) =
{

m∑
i=1

λ(i)Ki : i ∈ [m], λ(i) ∈ σ(N),m ∈ N,Ki ∈Mn,Ki ≥ 0,
m∑
i=1

Ki = In

}

for n ≥ 2. Furthermore, W(N) is the smallest matrix convex set containing σ(N).

2.2 The Theorem about the Equivalence of Free Spectrahe-
dron and Matrix Range

Theorem II.6 ([DDOSS17, Lemma 3.4]). For A ∈ B((H)sa)g the following terms are
equivalent:

1. 0 ∈ int(W(A)).
2. 0 ∈ int(W1(A)).
3. DA(1) is bounded.
4. DA is uniformly bounded.

Proof. We show this by proving the following chain of implications: (4) ⇒ (3) ⇒
(2) ⇒ (1) ⇒ (4).

(4) ⇒ (3):
This statement is clear by using the definition of DA.

(3) ⇒ (2):
We prove this part by contradiction. Suppose that 0 /∈ int(W1(A)). Since W1(A)
is convex we can use the Hahn-Banach separation theorem. Thus, there exist
a1, ..., ag ∈ R such that

g∑
i=1

aixi ≥ 0

for all x = (x1, ..., xg) ∈ W1(A). Furthermore, the inequality

g∑
i=1

taixi ≤ 0 < 1

holds true for all t < 0. Thus, we have (ta1, ..., tag) ∈ DA(1) for all t < 0. But this
contradicts that DA(1) is bounded.

(2) ⇒ (1):
Suppose 0 ∈ int(W1(A)). Then there is an ε > 0 such ε[−1, 1]g ⊆W1(A). We
recognize, that the cube with radius ε is inside W1(A), that is ε[−1, 1]d⊆W1(A).
Then there is a normal d-tuple N with

σ(N) = ε[−1, 1]d.
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By Lemma II.5 we know that W(N) is the smallest convex set containing σ(N)
such that W(N)⊆W(A). Hence, to show that 0 ∈ W(A) it is enough to show, that
0 ∈ int(W(N)) for a normal d-tuple with σ(N) = [−1, 1]d. But this follows by the
representation in Lemma II.5.

(1) ⇒ (4):
Let δ > 0 and assume, that 0 ∈ int(W(A)). Fix some i ∈ [g] and let X = (X1, ..., Xg)
be defined as

Xj =
{1

2δIn, if j = i,

0, if j 6= i

for j ∈ [g]. By assumption and the definition of int(W(A)), we know that ±X ∈
W(A). Since DA = W(A)• and by definition of the polar dual, Definition I.36, we
know that for every Y ∈ DA

±Xi ⊗ Yi = ±
g∑
j=1

Xj ⊗ Yj ≤ In2

holds. Thus, we get

1 ≥ ‖Xj ⊗ Yj‖ = 1
2δ‖Yj‖

respectively ‖Yj‖ ≤ 2/δ for all j ∈ [g]. Thus, DA is bounded.

2.3 A further Connection between Matrix Range and Free
Spectrahedra by using the Polar Dual

We can use the shown equivalence of Proposition II.6 to get another connection
between matrix range and free spectrahedra at the first leve by using the polar dual
which is not necessarily self-adjoint.
Lemma II.7 ([BN20, Lemma 3.22]). Let H be a Hilbert space and let A ∈ (B(H)sa)g
for g ∈ N such that DA(1) is bounded. Then

(DA(1))◦ =W1(A).

Proof. By Definition I.21, x ∈ DA(1) if and only if

IH −
g∑
i=1

xiAi ≥ 0.

By applying an arbitrary unital, completely positive map Ψ : B(H) → C this is
equivalent to

1−
g∑
i=1

xiΨ(Ai) ≥ 0.

Thus, we have the equivalence

DA(1) =W1(A)◦.

Since DA(1) is bounded we know with Theorem II.6 that 0 ∈ W1(A). Thus, we can
use the Bipolar Theorem, Theorem I.5, such that we get

DA(1)◦ = (W1(A)◦)◦ =W1(A).
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3 Representing a Matrix Convex Set by Free Spec-
trahedra or Matrix Range

We recall that the matrix range is uniformly bounded. This is a characteristic
property of a matrix range. One can say that if an arbitrary closed matrix convex
set is bounded then you can write it as a matrix range.

Proposition II.8 ([DDOSS17, Prop. 3.5]). Let F ⊆
⋃
n(Msa

n )d be a closed matrix
convex set. One can show that F has the form F =W(A) for some A ∈ (B(H)sa)d
if and only if F is uniformly bounded.

In this whole chapter we see the connection between the matrix range and the
free spectrahedron. So, for the free spectrahedron we can make a similar statement.
Therefore, we use the property that the origin is in the interior of a free spectrahedron
and the connection between the matrix range and the free spectrahedron.

Proposition II.9 ([DDOSS17, Prop. 3.5]). A closed matrix convex set F ⊆
⋃
n(Msa

n )d
has the form F = DA for some A ∈ (B(H)sa)d if and only if 0 ∈ int(F).

Proof. First we show 0 ∈ int(F) whenever F = DA for some A ∈ (B(H)sa)d. Since
DA is a matrix convex set, the assertion follows from 0 ∈ intDA, refer by Lemma
I.24

For the other direction we assume 0 ∈ int(F) to conclude that F has the form
F = DA for some A ∈ (B(H)sa)d. By Definition I.17 0 ∈ int(F) means that there
is a δ > 0 such that ‖Xi‖ ≤ δ for all i ∈ [d] implies X ∈ F . Let this δ > 0 be fixed
and define X = (X1, ..., Xd) by

Xj =
{

0, j 6= k,
1
2δI, j = k,

then X ∈ F . Take Y ∈ F•. With Definition I.36 it follows

δ

2‖Yk‖ =

∥∥∥∥∥∥
d∑
j=1

Yj ⊗Xj

∥∥∥∥∥∥ ≤ 1

for all k ∈ [d]. Thus, ‖Yk‖ ≤ 2/δ and F• is bounded. With Proposition II.8, there
is an A ∈ (B(H)sa)d such that F• = W(A). Finally with Lemma I.6 and Theorem
II.6 we conclude

F = (F•)• = (W(A))• = DA.
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Direct Sum of Matrix Convex Sets

In Chapter I Section 1 we introduced the direct sum of polytopes. We want to
generalize this definition for matrix convex sets and show representations for direct
sums between free spectrahedra.

1 Cartesian Product
The Cartesian product is necessary for defining the direct sum of matrix convex sets.

Definition III.1. Let F ,G be two free sets. Their Cartesian product is defined as
F×̂G =

⋃
n∈N(F×̂G)n where

(F×̂G)n := {(X,Y ) : X ∈ Fn, Y ∈ Gn}

for all n ∈ N.

Remark III.2 ([BN20, Section 3.3]). Let F ,G be two matrix convex sets. Then their
Cartesian product (F×̂G)n is again matrix convex.

The Cartesian product of matrix convex sets at level n = 1 is the ordinary Carte-
sian product of convex sets, i.e.

(F×̂G)1 = F1 × G1.

Let F ,G be two free spectrahedra. Then their Cartesian product F×̂G is also a
free spectrahedron. We see this in the next proposition:

Proposition III.3 ([BN20, Proposition 3.18]). Let A ∈ (B(H1)sa)k1, B ∈ (B(H2)sa)k2

(k1, k2 ∈ N) be two tuples of self-adjoint bounded operators. Then DA×̂DB is the
free spectrahedron defined as DA×̂DB =

⋃
n∈N(DA×̂DB)(n) where

(DA×̂DB)(n) =
{
X ∈ (Msa

n )k1+k2 :

k1∑
i=1

(Ai ⊕ 0H2)⊗Xi +
k2∑
j=1

(0H1 ⊕Bj)⊗Xk1+j ≤ IH1⊕H2 ⊗ In

}

for all n ∈ N.
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Proof. Let n ∈ N. Since the isomorphism

(H1 ⊕H2)⊗ Cn ' (H1 ⊗ Cn)⊕ (H2 ⊗ Cn),

holds true, the inequality in the set (DA×̂DB)(n)

k1∑
i=1

(Ai ⊕ 0H2)⊗Xi +
k2∑
j=1

(0H2 ⊕Bj)⊗Xk1+j ≤ IH1⊕H2 ⊗ In

holds true if and only if k1∑
i=1

Ai ⊗Xi

⊕
 k2∑
j=1

Bj ⊗Xk1+j

 ≤ (IH1 ⊗ In)⊕ (IH2 ⊗ In).

But the last inequality is true if and only if (X1, ..., Xk1) ∈ DA(n) and
(Xk1+1, ..., Xk1+k2) ∈ DA(n).

2 Direct Sum
Now, we have all preparations to define the direct sum.

Definition III.4. Let F ,G be two matrix convex sets defined by Fn ∈ (Msa
n )g1 and

Gn ∈ (Msa
n )g2 for all n ∈ N. Their direct sum is defined as

(F⊕̂G) := ((F• ⊗ I)×̂(I ⊗ G•))•

where

(F• ⊗ I)m :=
{
{(X1 ⊗ I1, . . . , Xg1 ⊗ In) : X ∈ F•n} ∃n ∈ N s.t. m = n2,

∅ all other m ∈ N.

We discuss direct sums of various sets. We start with the direct sum of free
spectrahedra at an arbitrary level n ∈ N.

Proposition III.5 ([BN20, Proposition 3.21]). Let A ∈ (B(H1)sa)k1, B ∈ (B(H2)sa)k2

(k1, k2 ∈ N) be two tuples of self-adjoint operators. Moreover, let DA(1) and DB(1)
be bounded. Then the direct sum DA⊕̂DB is the free spectrahedron defined by

(DA⊕̂DB)(n)

=

X ∈ (Msa
n )k1+k2 :

k1∑
i=1

(Ai ⊗ IH2)⊗Xi +
k2∑
j=1

(IH1 ⊗Bj)⊗Xk1+j ≤ IH1⊕H2 ⊗ In

 .
Proof. We show each direction separately.

First, let X = (X1, ..., Xk1+k2) ∈ (DA⊕̂DB)n, n ∈ N. Then

k1∑
i=1

((Ψ1 ⊗Ψ2)(Ai ⊗ IH2)⊗Xi) +
k2∑
j=1

((Ψ1 ⊗Ψ2)(IH1 ⊗Bj))⊗Xk1+j ≤ Im2n
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for all UCP maps Ψi : B(H) → Mm, m ∈ N and i ∈ [2]. We rewrite the last
equation to

(Ψ1 ⊗Ψ2 ⊗ In)(IH1⊕H2 ⊗ In)−
k1∑
i=1

(Ψ1 ⊗Ψ2 ⊗ In)(Ai ⊗ IH2 ⊗Xi)

−
k2∑
j=1

(Ψ1 ⊗Ψ2 ⊗ In)(IH1 ⊗Bj ⊗Xk1+j) ≥ 0.

Consider orthogonal projections P1, P2 onto m-dimensional subspaces of H1 and H2,
respectively. We remark, that the maps X 7→ PXP , X 7→ QXQ and X 7→ InXIn
are UCP maps. Thus, we can imply that

(P1 ⊗ P2 ⊗ In)(IH1⊗H2 ⊗ In)(P1 ⊗ P2 ⊗ In)

−
k1∑
i=1

(P1 ⊗ P2 ⊗ In)(Ai ⊗ IH2 ⊗Xi)(P1 ⊗ P2 ⊗ In)

−
k2∑
j=1

(P1 ⊗ P2 ⊗ In)(IH1 ⊗Bj ⊗Xk1+j)(P1 ⊗ P2 ⊗ In) ≥ 0.

We rewrite the equation to

(P1 ⊗ P2 ⊗ In)

IH1⊕H2 ⊗ In −
k1∑
i=1

Ai ⊗ IH2 ⊗Xi −
k2∑
j=1

IH1 ⊗Bj ⊗Xk1+j


(P1 ⊗ P2 ⊗ In) ≥ 0

to use Lemma I.12 to get

IH1⊕H2 ⊗ In −
k1∑
i=1

(Ai ⊗ IH2)⊗Xi −
k2∑
j=1

(IH1 ⊗Bj)⊗Xk1+j ≥ 0

respectively

k1∑
i=1

(Ai ⊗ IH2)⊗Xi +
k2∑
j=1

(IH1 ⊗Bj)⊗Xk1+j ≤ IH1⊕H2 ⊗ In.

Thus, we conclude DA⊕̂DB ⊆D(A⊗IH2 ,IH1⊗B).

For the other direction we use, that by Theorem II.6 the boundness of DA(1) and
DB(1) implies that 0 ∈ W(A) and 0 ∈ W(B). Thus, we can use Lemma II.2 to get
D•A = W(A) and D•B = W(B). When we now calculate ((D•A ⊗ I)×̂(I ⊗D•B))m for
an arbitrary m ∈ N, then we get by Definition III.4

((D•A ⊗ I)×̂(I ⊗D•B))n2

=
{
(X ⊗ In, In ⊗ Y ) : ∀i ∈ [2] ∃Ψi ∈ UCP(B(Hi),Mn) such that

(X ⊗ In, In ⊗ Y ) = (Ψ(A1 ⊗ IH2),Ψ(A2 ⊗ IH2), ...,Ψ(IH1 ⊗Bk2)),Ψ := Ψ1 ⊗Ψ2
}

when there is an n ∈ N such that n2 = m and

((D•A ⊗ I)×̂(I ⊗D•B))m = ∅
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for all other m ∈ N. Thus, we have the inclusion

(D•A ⊗ I)×̂(I ⊗D•B)⊆W(A⊗ IH2 , IH1 ⊗B)

which implies

D(A⊗IH2 ,IH1⊗B)⊆DA⊕̂DB

by Definition III.4 and Lemma II.1.

2.1 Direct sum at level 1
With help of the direct sum of the general free spectrahedra we can find an expression
for spectrahedra at the first level. We see that the direct sums at level one are objects
from convex analysis.

Proposition III.6 ([BN20, Prop 3.24]). Let A ∈ (B(H1)sa)k1, B ∈ (B(H2)sa)k2

(k1, k2 ∈ N) be two tuples of self-adjoint operators. Moreover, let DA(1) and DB(1)
be polytopes. Then

(DA⊕̂DB)(1) = DA(1)⊕DB(1).

Proof. By Proposition III.5, we know for all x ∈ DA(1) and y ∈ DB(1) that (x, 0)
and (0, y) are elements in (DA⊕̂DB)(1). Thus, the inclusion

DA(1)⊕DB(1)⊆(DA⊕̂DB)(1)

holds true.
It remains to show the reversed direction. Let (x, y) ∈ (DA⊕̂DB)(1). Then, by

Proposition III.5

IH1⊕H2 −
k1∑
i=1

(Ai ⊗ IH1)xi −
k2∑
i=1

(IH2 ⊗Bj)yj ≥ 0.

Let Ψi ∈ UCP(B(Hi),C), i ∈ [2] arbitrary. By an application of Ψ1⊗Ψ2⊗ id we get

1−
k1∑
i=1

xiΨ1(Ai)−
k1∑
i=1

yjΨ2(Bj) ≥ 0.

Thus, (DA⊕̂DB)(1)•⊆W1(A) × W1(B). Since (DA⊕̂DB)(1) is closed and convex,
we can applying the Bipolar Theorem I.5 to get

((DA⊕̂DB)(1)•)• = (DA⊕̂DB)(1).

Now, we can apply Lemma I.11 and Lemma II.7 to see that the inclusion

(DA⊕̂DB)(1)⊆(W1(A)×W1(B))• = DA(1)⊕DB(1)

holds true.

In Proposition II.9 we see that we can represent a matrix convex set by free
spectrahedra. We can use this representation to expand the last statement. Thereby,
we see that the direct sum at the first level is the direct sum as usual.
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Lemma III.7 ([BN20, Cor 3.25]). Let F and G be closed matrix convex sets with 0
in their interior and let F1 and G1 polytopes. Then

(F⊕̂G)1 = F1 ⊕ G1.

Proof. By Proposition II.9 we know that for F and G there are g1, g2 ∈ N, Hilbert
spaces H1,H2 and A ∈ (B(H1)sa)g1 , B ∈ (B(H2)sa)g2 such that

F = DA and G = DB.

By using the last Proposition III.6 we get the assertion.

3 Further Properties of the Direct Sum
In Chapter I Section I we introduced the largest matrix convex set. There are many
free spectrahedra which are polytopes at the first level. Thus, it makes sense to have
a nice property about the direct sum of the matrix convex sets of polytopes.

Lemma III.8 ([BN20, Lemma 3.26]). Let P1 and P2 be two polytopes with zero in
their interiors. Then

Wmax(P1 ⊕ P2) =Wmax(P1)⊕̂Wmax(P2).

Proof. Let i ∈ [2], ki ∈ N and Pi⊆Rki . By the secound part of the Weyl-Minkowski
theorem, Theorem I.2, every polytope is a polyhedron. Thus, there exist c(i)

si ∈ Rki
and α(i)

si ∈ R such that

Pi =
{
x ∈ Rki : 〈c(i)

si , x〉 ≤ α
(i)
si ∀si ∈ [mi]

}
where mi ∈ N. Since 0 ∈ int(Pi) by assumption, the inequality can only be fulfilled,
if α(i)

si > 0. Furthermore, the facets of Pi are defined by

F (i)
si =

{
pi ∈ Pi : 〈c(i)

si , pi〉 = α(i)
si

}
for si ∈ [mi]. Therefore, we can write

Pi =
{
x ∈ Rki :

〈
h(i)
si , x

〉
≤ 1 ∀si ∈ [mi]

}
=

x ∈ Rki :
ki∑
j=1

xjP
(i)
j ≤ Imi


where h

(i)
si = c

(i)
si /α

(i)
si and P

(i)
j = diag(h(i)

1 (j), ..., h(i)
mi(j)) ∈ Rmi×mi such that

P
(i)
j (s) := h

(i)
si (j) for j ∈ [ki]. By Lemma I.8, we know, that F (1)

s1 × F
(2)
s2 is the

facet of P1 ×P2, such that we get (h(1)
s1 , h

(2)
s2 ) as the extreme points of P•1 ×P•2 . By

Lemma I.11 we know that (P•1 ×P•2 )• = P1⊕P2 such that we can represent P1⊕P2
with the extreme points of P•1 × P•2 :

P1 ⊕ P2 =
{

(x1, x2) ∈ Rk1 × Rk2 : 〈(h(1)
s1 , h

(2)
s2 ), (x1, x2)〉 ≤ 1 ∀si ∈ [mi]

}
.

Thus, (h(1)
s1 , h

(2)
s2 ) are the hyperplanes defining P1 ⊕ P2 such that we represent

P1 ⊕ P2 =

x ∈ Rk1+k2 :
k1+k2∑
j=1

xjQj ≤ Im1m2


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where Qj ∈ Rm1m2 with Qj(s1, s2) := (h(1)
s1 , h

(2)
s2 )j and j ∈ [k1 + k2]. With the

definition of the maximal spectrahedron, it follows

Wmax(P1 ⊕ P2)(n) =

X ∈ (Msa
n )k1+k2 :

k1+k2∑
j=1

Qj ⊗Xj ≤ Inm1m2

 .
But when we now evaluate the expression for Qj , we get

Qj(s1, s2) =

h
(1)
s1 (j) = P

(1)
j (s1) 1 ≤ j ≤ k1

h
(2)
s2 (j − k1) = P

(2)
j−k1

(s2) k1 + 1 ≤ j ≤ k1 + k2

=

(P (1)
j ⊗ Ik2)(s1, s2) 1 ≤ j ≤ k1

(Ik1 ⊗ P
(2)
j−k1

)(s1, s2) k1 + 1 ≤ j ≤ k1 + k2

such that the assertion follows.

The next lemma is again about the direct sum of polytopes. We combine the direct
sum with an inclusion of free spectrahedra at level one. The next property is useful
to check the inclusion of a direct sum of polytopes for each polytope separately.

Lemma III.9 ([BN20, Lemma 3.28]). Let ki ∈ N, d ∈ N and A(i) ∈ (Msa
d )ki where

i ∈ [2]. Let Pi⊆Rki be two polytopes for i ∈ [2]. Then

P1 ⊕ P2⊆D(A(1),A(2))(1) ⇔ Pi⊆DA(i)(1).

for all i ∈ [2].

Proof. Since Pi are two polytopes, we can characterize them and their direct sum
by their extreme points. By Lemma I.10 {w(i)

j }
mi
j=1 the set of the mi ∈ N extreme

points of Pi if and only if{
(w(1)

j1
, 0), (0, w(2)

j2
) : ji ∈ [mi],mi ∈ N, i ∈ [2]

}
are the extreme points of P1 ⊕ P2. Thus, the assertion follows directly.
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Inclusion of Free Spectrahedra and
Introduction of the Matrix Jewel

1 Inclusion of Free Spectrahedra

Our aim in this thesis is to give a connection between POVMs and the inclusion of
free spectrahedra at level one and the connection between compatibility of POVMs
and the inclusion of free spectrahedra in general. One can ask if the inclusion of
free spectrahedra holds at the first level, can we follow that the inclusion holds for
an arbitrary level. In general, this is not the case which we can see in the presented
example.

Example IV.1 ([HKM12, Example 3.1]). We set

A1 =
(

1 0
0 −1

)
, A2 =

(
0 1
1 0

)

and

B1 =

0 1 0
1 0 0
0 0 0

 , B2 =

0 0 1
0 0 0
1 0 0

 .

By calculation of the determinant we get

DA(1) =
{

(x1, x2) ∈ R2 :
(

1 0
0 −1

)
· x1 +

(
0 1
1 0

)
· x2 ≤

(
1 0
0 1

)}

=
{

(x1, x2) ∈ R2 :
(

1 + x1 x2
x2 1− x1

)
≥ 0

}
= {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1}

27
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and

DB(1) =

(x1, x2) ∈ R2 :

0 1 0
1 0 0
0 0 0

 · x1 +

0 0 1
0 0 0
1 0 0

 · x2 ≤

1 0 0
0 1 0
0 0 1




=

(x1, x2) ∈ R2 :

 1 x1 x2
x1 1 0
x2 0 1

 ≥ 0


= {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1}.

With this calculation we see that DA(1) = DB(1). Now, we want to see that DA(2) 6=
DB(2). The element

(X1, X2) =
((

1
2 0
0 0

)
,

(
0 3

4
3
4 0

))

is obviously an element of (Msa
2 )2. For this element, we calculate the matrix

A1 ⊗X1 +A2 ⊗X2 =
(

1 0
0 −1

)
⊗
(

1
2 0
0 0

)
+
(

0 1
1 0

)
⊗
(

0 3
4

3
4 0

)

=


1
2 0 0 3

4
0 0 3

4 0
0 3

4 −1
2 0

3
4 0 0 0


and its eigenvalues

−
√

10− 1
4 ,

−
√

10 + 1
4 ,

√
10− 1

4 and
√

10 + 1
4 .

We recognize that
√

10 + 1/4 > 1 such that (X1, X2) /∈ DA(2) =
∑2
i=1Ai⊗Xi ≤ I2.

We also calculate the matrix

B1 ⊗X1 +B2 ⊗X2 =

0 1 0
1 0 0
0 0 0

⊗ (1
2 0
0 0

)
+

0 0 1
0 0 0
1 0 0

⊗ (0 3
4

3
4 0

)

=



0 0 1
2 0 0 3

4
0 0 0 0 3

4 0
1
2 0 0 0 0 0
0 0 0 0 0 0
0 3

4 0 0 0 0
3
4 0 0 0 0 0


and its eigenvalues

−
√

13/4, −3/4, 0, 3/4 and
√

13/4

which are all less than 1. Thus, (X1, X2) is an element of DB(2) but not of DA(2).
The preceding example shows, there are sets A and B such that DA(1)⊆DB(1)

but DA 6⊆ DB. The idea is to shrink DA such that the inclusion DA⊆DB holds
true. Therefor, we introduce the scaled free spectrahedron.
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Definition IV.2. Let A ∈ (B(H)sa)g and DA a free spectrahedron. For an s =
(s1, ..., sg) ∈ Rg we define the (asymmetrically) scaled free spectrahedron as

s · DA := {(s1X1, ..., sgXg) : X = (X1, ..., Xg) ∈ DA}.

As you can see in the definition, we allow that s ∈ Rg (where g ∈ N). To shrink
a free spectrahedron it makes sense to choose an s ∈ [0, 1]g. Furthermore, taking
the scalar s ∈ Rg as a tuple of zeros would be a trivial choice, but often one can
choose tuple entries larger than zero. To determine how large s can be, we define
the inclusion set. For k ∈ N we notate (s)×k := (s, ..., s)︸ ︷︷ ︸

k times

.

Definition IV.3. Let n ∈ N, g ∈ N and A = (A(1), ..., A(g)) where A(i) ∈ (Msa
n )ki−1,

ki ∈ N and i ∈ [g]. Let DA be the associated free spectrahedron. The inclusion set
is defined as

∆DA(g, d, k) :=
{
s ∈ Rg+ :

∀B ∈ (Msa
d )
∑g

i=1(ki−1),DA(1)⊆DB(1)⇒ (s×(k1−1)
1 , ..., s×(kg−1)

g ) · DA⊆DB
}

where k = (k1, ..., kg) and d ∈ N.

We recognize that in the last definition A has
∑g
i=1(ki− 1) elements, but we only

take g scalars s1, ..., sg. For us, it is important that every tuple entry of Aki , i ∈ [g],
is multiplied by the same scalar.

Remark IV.4 ([BN18, Proposition 4.3]). Let us consider the conditions from Defini-
tion IV.3. Then ∆DA(g, d, k) is a convex set.

You can describe inclusions of free spectrahedra by a special unital map.

Definition IV.5. Let g ∈ N and n ∈ N. Let A = (A1, ..., Ag) ∈ (Msa
n )g such that

In and A1, ..., Ag are linearly independent define the free spectrahedron DA. Let
d ∈ N and B ∈ (Msa

d )g define the free spectrahedron DB. We define the unital map
Φ : OSA →Md as

Φ : Ai 7→ Bi

for all i ∈ [g].

Recognize, that the linearly independence is important to make the map well-
defined. Now, we present the connection between the positivity of Φ and the inclu-
sion of free spectrahedra.

Lemma IV.6 ([BN18, Lemma 4.4]). Let A = (A1, ..., Ag) ∈ (Msa
dA

)g such that IdA and
A1, ..., Ag are linearly independent define the free spectrahedra DA. Let B ∈ (Msa

d )g
define the free spectrahedra DB. Furthermore, let DA(1) be bounded and n ∈ N.
Then DA(n)⊆DB(n) if and only if Φ : OSA → MdB is n-positive. Furthermore,
DA⊆DB if and only if Φ : OSA →MdB is completely positive.

Proof. By definition, it is enough to show the equivalence DA(n)⊆DB(n) if and only
if Φ : OSA →MdB is n-positive for all n ∈ N. We show each direction seperately.
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For a fixed n ∈ N, assume that Φ : OSA → MdB is n-positive. The in-
clusion DA(n)⊆DB(n) can be shown by definition of a free spectrahedron. Let
X = (X1, ..., Xg) ∈ DA(n), then

IdA ⊗ In −
g∑
i=1

Ai ⊗Xi ≥ 0.

Since Φ is n-positive, we get

IdB ⊗ In −
g∑
i=1

Φ(Ai)⊗Xi = (Φ⊗ id)
(
IdA ⊗ In −

g∑
i=1

Ai ⊗Xi

)
≥ 0

such that X ∈ DB(n).

Let us show the other direction. Therefor, let Y ∈ Msa
n (OSA). We can write Y

as

Y = IdA ⊗X0 −
g∑
i=1

Ai ⊗Xi

for certain X̃ = (X0, ..., Xg) ∈ Mg
n. For positive Y we want to show (Φ⊗ id)Y ≥ 0

to verify that Φ is n-positive.
We first show that X0, ..., Xg are self-adjoint. For that we look at the equation

(IdA ⊗ e
∗
i )(Y − Y ∗)(IdA ⊗ ej) = 0 (IV.1)

for an orthonormal basis {ei}ni=1 of Cn. We transform the left-hand side as follows

(IdA ⊗ e
∗
i )(Y − Y ∗)(IdA ⊗ ej)

= (IdA ⊗ e
∗
i )(IdA ⊗ (X0 −X∗0 )−

k∑
i=1

Ai ⊗ (Xi −X∗i ))(IdA ⊗ ej)

= e∗i (X −X∗0 )ejIdA −
k∑
i=1

e∗i (Xi −X∗i )ejAi.

Since IdA and A1, ..., Ag are linearly independent, it follows with equation IV.1

e∗i (X∗k −Xk)ej = 0

for all i, j ∈ [n], k = 0, ..., g. Thus, X∗k = Xk for k = 0, ..., g such that each entry in
X̃ is self-adjoint.
Let us now assume that Y ≥ 0, then we can show that X0 ≥ 0. Assume, X0 < 0,

then there exists an x ∈ Cn such that 〈x,X0x〉 < 0. Since Y = ID⊗X0−
∑g
i=1Ai⊗Xi

is positive it follows

−
g∑
i=1
〈x,Xix〉Ai > 0

such that λ(〈x,X1x〉, ..., 〈x,Xgx〉) ∈ DA(1) for all λ ≥ 0. But this contradicts the
assumption that DA(1) is bounded.
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Let us assume that Y ≥ 0, then we know that X0 ≥ 0. It remains to show that
also (Φ ⊗ In)Y ≥ 0. Let us first consider that Y ≥ 0 and X0 > 0 such that X0 is
invertible. Since Y ≥ 0 it follows

IdA ⊗X
−1/2
0 X0X

−1/2
0 −

g∑
i=1

Ai ⊗X−1/2
0 XiX

−1/2
0 ≥ 0

and thus

X
−1/2
0 XX

−1/2
0 ∈ DA(n)

for X = (X1, ..., Xg) ∈ (Msa
n )g. By assumption, we have DA(n)⊆DB(n) such that

(Φ⊗ id)Y ≥ 0. For Y ≥ 0 and X0 ≥ 0 we exchange X0 by X0 + εIn while ε > 0. By
using the last argument and letting ε go to zero we get again (Φ ⊗ id)Y ≥ 0. This
completes the proof.

The next lemma tells us: If you are interested in having the inclusion DA⊆DB,
there is a better way than of checking the inclusion for all levels n ∈ N.

Theorem IV.7 ([BN18, Corollary 4.6]). Let g, n, d ∈ N. Let A ∈ (Msa
n )g and B ∈

(Msa
d )g define the free spectrahedra DA and DB. Let DA(1) be bounded. Then

DA(d)⊆DB(d) if and only if DA⊆DB.

Proof. From Lemma IV.6 we know that DA(d)⊆DB(d) is equivalent to Φ : OSA →
Md being d-positive. Since Φ maps toMd we can use [Pau02, Theorem 6.1] whereby
d-positive is equivalent to completely positive. Another application of Lemma IV.6
yields the claim.

2 The Matrix Jewel
In this section, we recall and discuss Example I.27 of the free spectrahedron. The
matrix jewel is necessary to have a connection between the inclusion of free spectra-
hedra and the POVMs what will be discussed in Chapter VI.

2.1 The general Definition of the Matrix Jewel
We recall the matrix jewel base from Example I.27 and extend the object for k =
(k1, ..., kg) ∈ Ng.

Definition IV.8. Let k ∈ N. We define the vectors v(k)
j ∈ Rk as

v
(k)
j (ε) := −2

k
+ 2δε,j

for all j ∈ [k− 1] and and for all ε ∈ [k]. Let k ∈ N and define the diagonal matrices

V
(k)
j := diag

(
v

(k)
j

)
= −2

k
diag(1, ..., 1,

j-th entry
↓

1− k , 1, ..., 1)

for j ∈ [k − 1]. Notate V (k) = (V (k)
1 , ..., V

(k)
k−1). The matrix jewel base Du,k =⋃∞

n=1Du,k(n) defined by

Du,k(n) := DV (k)(n) =

X ∈ (Msa
n )k−1 :

k−1∑
j=1

V
(k)
j ⊗Xj ≤ Ikn


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for all n ∈ N.
For k = (k1, ..., kg) ∈ Ng, we define the matrix jewel Du,k =

⋃∞
n=1Du,k(n) as the

direct sum of the free spectrahedra

Du,k(n) := Du,k1(n)⊕̂...⊕̂Du,kg(n)

for n ∈ N.

Remark IV.9. There is a equivalent definition of the matrix jewel base which is
sometimes useful too, for example in the proof of VI.5. For an g ∈ N we identify the
subalgebra of g × g diagonal matrices with Cg. After defining the vectors v(k)

j ∈ Ck
(k ∈ N) as

v
(k)
j (ε) := −2

k
+ 2δε,j

for all j ∈ [k − 1] and for all ε ∈ [k], we can define the matrix jewel base Du,k =⋃∞
n=1Du,k(n) defined by

Du,k(n) :=

X ∈ (Msa
n )k−1 :

k−1∑
j=1

v
(k)
j ⊗Xj ≤ Ikn


for all n ∈ N.
Remark IV.10 ([BN20, Remark 4.2]). Let g ∈ N and k = (k1, ..., kg). With Lemma
III.5 we can rewrite the jewel base Du,k(n), as

Du,k(n) =
{
X ∈ (Msa

n )
∑g

i=1(ki−1) :

g∑
i=1

ki−1∑
j=1

(I⊗(i−1)
ki

⊗ V (ki)
j ⊗ I⊗(g−i)

ki
)⊗Xi,j ≤ I(

∏g

s=1 ki)n

}

for n ∈ N and k ∈ Ng.
Remark IV.11. Let g ∈ N. The matrix jewel is a generalization of the matrix
diamond D�,g defined by

D�,g(n) =
{
X ∈ (Msa

n )g :
g∑
i=1

εiXi ≤ In ∀ε ∈ {−1,+1}g
}
.

Since

V
(2)

1 =
(

1 0
0 −1

)

we can choose k = (k1, ..., kg) = (2, ..., 2) to see the matrix jewel is indeed a general-
ization of the matrix diamond. In some cases the matrix diamond is enough to get
connections to the Quantum Information Theory ([BN22]). The next example can
seen as an example for both the matrix jewel Du,(2,2) and the matrix diamond D�,2.
Example IV.12. Let k = (2, 2). For fixed n ∈ N we want to calculate

Du,(2,2)(n) =
{

(X1, X2) ∈ (Msa
n )2 :

(
V

(2)
1 ⊗ I2

)
⊗X1 +

(
I2 ⊗ V (2)

1

)
⊗X2 ≤ I4n

}
.



CHAPTER IV. 33

For this, we first calculate

V
(2)

1 =
(

1 0
0 −1

)

to get for the left-hand side of the inequality

diag(1, 1,−1,−1)⊗X1 + diag(1,−1, 1,−1)⊗X2

= diag(X1 +X2, X1 −X2,−X1 +X2,−X1 −X2).

Thus,

Du,(2,2)(n) =
{

(X1, X2) ∈ (Msa
n )2 : ±X1 ±X2 ≤ In,±X1 ∓X2 ≤ In

}
.

2.2 The Matrix Jewel at the First Level
We want to discuss and visualize some matrix jewel at the first level. We know that
they are objects from convex analysis and we can specify that they are polytopes.
To see this, we start with the simplest case, namely that k is just a fixed, natural
number (and not a tuple of numbers).
Remark IV.13. For a fixed k ∈ N we can see that Du,k(1)⊆Rk−1 and recall

Du,k(1) =

x ∈ Rk−1 :
k−1∑
j=1

V
(k)
j · xj ≤ Ik


=

x ∈ Rk−1 : −2
k

k−1∑
j=1

diag (1, ..., 1,
j-th entry
↓

1− k , 1, ..., 1)︸ ︷︷ ︸
k entries

xj ≤ Ik

 .
The next lemma shows that Du,k(1) is bounded. One can be argued with the

linear independence of the defining matrices of the free spectrahedra but we show it
more detailed.

Lemma IV.14. The jewel base Du,k(1)⊆Rk−1, k ∈ N, is a polytope.

Proof. With the Definition I.1 we directly see, that the jewel base is a polyhedron.
Since by Lemma I.2 a bounded polyhedron is a polytope we show that Du,k(1) is
bounded via induction. Since Du,1(1) is an empty set, we start with Du,2. By

Du,2(1) = {x ∈ R : diag(−x, x) ≤ I2}

it follows that −1 ≤ x ≤ 1 and thus Du,2(1) is bounded. Assume now that Du,k is
bounded for fixed k ≥ 2. We calculate

Du,k+1(1) =

x ∈ Rk : − 2
k + 1

k∑
j=1

diag (1, ..., 1,
j-th entry
↓

1− (k + 1), 1, ..., 1)︸ ︷︷ ︸
k+1 entries

xj ≤ Ik+1

 .
In the last column we have the inequality −2/(k + 1)

∑k
j=1 xj ≤ 1. Thus, we get

by the induction hypothesis that xk+1 is bounded from above. In the penultimate
column we have −2/(k + 1)(

∑k−1
j=1 xj − kxj+1) ≤ 1 whereby xk+1 is bounded from

below by the same argument. Thus, Du,k+1 is bounded, which proves the claim.



34

An important property of polytopes is that they can be represented by finitely
many extreme points. We can calculate them for the matrix jewel at level one.

Lemma IV.15 ([BN20, Lemma 4.3]). Let k ∈ N. The extreme points of the jewel
base Du,k(1) ∈ Rk−1 are

x
(k)
i := −k2ei for i ∈ [k − 1] and

x
(k)
k := k

2 (1, ..., 1)︸ ︷︷ ︸
k−1 times

where ei are the elements of the standard orthonormal basis in Rk−1.

Proof. By Lemma IV.14 we know that Du,k(1) is a polyhedron. The hyperplanes
(v1(ε), ..., vk−1(ε))kε=1 are such that each k − 1 of them linearly span Rk−1. Thus,
we can use [Bar02, II.(4.2)] and show that each point fulfills k− 1 of the constraints
with equality: We calculate for a fixed ε ∈ [k]

k−1∑
j=1

Vj(ε)
(
x

(k)
i

)
j

=
k−1∑
j=1

Vj(ε)
(
−k2ei

)
j

= −k2Vi(ε) = 1− kδε,i

for i ∈ [k − 1] and

k−1∑
j=1

Vj(ε)
(
x

(k)
k

)
j

=
k−1∑
j=1

Vj(ε)
k

2 (1, ..., 1)j = 1− k

1−
k−1∑
j=1

δε,j

 = 1− kδε,k

which proves the claim.

Example IV.16. With the explicit representation of the extreme points by Lemma
IV.15, we want to visualize Du,k(1) for k ∈ [4]. We recognize that there are exactly
k extreme points for Du,k(1)⊆Rk−1. Thus, the objects are not only polytopes but
also simplexes. Furthermore, it is now easy to visualize Du,k(1) for small k ∈ N.
Since the extreme points of Du,2(1) are x1 = −1 and x2 = 1, the set is an interval
between −1 and 1. For k = 3, we can calculate the extreme points

x1 = −3
2

(
1
0

)
, x2 = −3

2

(
0
1

)
and x3 = 3

2

(
1
1

)
.

For k = 4 we get the extreme points

x1 = −2

1
0
0

 , x2 = −2

0
1
0

 , x3 = −2

0
0
1

 and x4 = 2

1
1
1

 .
The objects Du,3(1) and Du,4(1) are visualized in Figure IV.1.
We can ask how the first level of the matrix jewel base differs when considering

k ∈ Ng (g ∈ N) instead of k ∈ N.

Lemma IV.17. For g ∈ N and k = (k1, ..., kg) we get

Du,k(1) = Du,k1(1)⊕ ...⊕Du,kg(1).
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(a) Du,3(1)

−2 −1 0 1 2−2

0

2
−2

0

2

(b) Du,4(1)

Figure IV.1.: Du,k(1) for k ∈ [2, 3].

Proof. Since by Lemma IV.14 Du,ki(1) is a polytope for all i ∈ [g] and Du,ki(1) =
Wmax(Du,ki(1)) it follows from Lemma III.8

Du,k(1) =Wmax(Du,k1(1)⊕ ...⊕Du,kg(1))
=Wmax(Du,k1(1))⊕̂...⊕̂Wmax(Du,kg(1)) = Du,k1(1)⊕ ...⊕Du,kg(1).

With the preceding lemma we can also express Du,k(1) for k ∈ Ng (g ∈ N) by
extreme points.
Example IV.18. Let g ∈ N and k ∈ Ng, then Du,k(1) can be represented by a direct
sum. We recall with Lemma I.10 that we can use the extreme points of Du,ki(1)
(i ∈ [g]) to calculate the extreme points of Du,k(1). For

Du,(2,2)(1) = Du,2(1)⊕Du,2(1)

we can use the results of Example IV.16 to calculate the extreme points(
−1
0

)
,

(
1
0

)
,

(
0
−1

)
, and

(
0
1

)
to get a square. Similar we get for Du,(2,2,2)(1) = Du,2(1)⊕Du,2(1)⊕Du,2(1) an
octahedron with extreme points−1

0
0

 ,
1

0
0

 ,
 0
−1
0

 ,
0

1
0

 ,
 0

0
−1

 , and

0
0
1

 .
For Du,(2,3)(1) = Du,2(1)⊕Du,3(1) we get the extreme points−1

0
0

 ,
1

0
0

 ,
 0
−3/2

0

 ,
 0

0
−3/2

 , and

 0
3/2
3/2


and for Du,(3,2)(1) = Du,3(1)⊕Du,2(1)−3/2

0
0

 ,
3/2

0
0

 ,
3/2

3/2
0

 ,
 0

0
−1

 , and

0
0
1

 .
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(b) Du,(2,2,2)(1)
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(d) Du,(3,2)(1)

Figure IV.2.: Du,k(1) for different k.

These objects are visualized in Figure IV.2. We recognize that the objects are
still polytopes but no longer simplexes.

3 Inclusion of Free Spectrahedra and Matrix Jewel
We use this section to get a little summary and outlook to Chapter VI. Our main
goal is to connect the Quantum Information Theory with the inclusion of free sets
by employing the matrix jewel. To get more concrete, we show that we can express
POVMs with the inclusion

Du,k(1)⊆DE(1)

for k ∈ N and given d-dimensional tuple E ∈ (Msa
d )k−1. Therefore, it is useful

to express the polytope Du,k by its extreme points. Analogously, we can express
compatible POVMs with the inclusion

Du,k⊆DE

for k = (k1, ..., kg) ∈ Ng, g ∈ N and given d-dimensional tuple (E(1), ..., E(g)) ∈
(Msa

d )ki−1. Therefore, we need the connection to the unital, completely positive
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maps. Furthermore, we connect the scalar s = (s1, ..., sg) ∈ [0, 1]g which solves

Du,k(1)⊆DE(1) ⇒ sDu,k⊆DE

with the amount to make POVMs compatible, where again k = (k1, ..., kg) ∈ Ng,
g ∈ N and given a d-dimensional tuple (E(1), ..., E(g)) ∈ (Msa

d )ki−1. This scaling
problem can be solved by an SDP ([HKM12, section 4.4]).

Notation IV.19. Let d ∈ N the dimension, g ∈ N and k = (k1, ..., kg). We notate the
short-cut

∆(g, d, k) := ∆Du,k(g, d, k).

Now, we have all preliminaries from the free spectrahedra and focus on Quantum
Information Theory before combining the two topics in Chapter VI.





Chapter V.

Introduction to Quantum Information

1 Introduction in the Two-state System and Density
Matrices

Many objects in mathematics can be easily ‘translated’ in the quantum information
theory which is the theory about states in a quantum system. In this section, we
will give an idea of quantum systems by looking at one of the simplest ones, the
two-state system. This theory and the generalization can be found in [Wil16, page
72-76]. The two states are just the standard base normally notated in the ‘ket’
notation:

|0〉 :=
(

1
0

)
, |1〉 :=

(
0
1

)
.

We can represent a general qubit by

|φ〉 := α |0〉+ β |1〉

where α, β ∈ C with |α|2 + |β|2 = 1. Thus, we can also write a qubit as

|φ〉 := cos(θ) |0〉+ eiϕ sin(θ) |1〉

where 0 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ 2π. This is the common representation of the
Bloch sphere (see Figure V.1a). We can also represent the Bloch sphere by the
Pauli matrices ([Wil16, Page 84]).

Definition V.1 ([Wil16, Page 82]). We define the Pauli matrices as

σX =
(

0 1
1 0

)
, σY =

(
0 −i
i 0

)
and σZ =

(
1 0
0 1

)
.

A qubit then has the same representation as a density operator.

Definition V.2 ([Wil16, Definition 4.13]). A density operator is a positive semi-
definite operator with trace equal to one.

The next example is a density matrix that we use as a standard example in this
thesis.

39
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|φ〉

rX

rY

rZ

ϕ

θ

|0〉

|1〉

(a) Bloch sphere in R3.

ρ

rX

rZ

θ = π/3

(b) Bloch sphere of Example V.4.

Figure V.1.: Bloch sphere.

Example V.3. Let

ρ :=
(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)

with θ ∈ [0, π/2]. This is an example of a density matrix since the tr(ρ) = 1 and
det(ρ) = 0 ≥ 0.

Every density matrix ρ in the Bloch sphere can be represented by the Pauli ma-
trices by finding radii rX , rY and rZ such that

ρ = 1
2 (I2 + rXσX + rY σY + rZσZ)

while ri is the radius in the σi direction for i ∈ {X,Y, Z} with r2
X + r2

Y + r2
Z ≤ 1. If

r2
X + r2

Y + r2
Z = 1 then the point is on the boundary of the Bloch sphere.

Example V.4. We can represent ρ from the last example as

ρ = 1
2
(
I2 + 2 sin(θ) cos(θ)σX +

(
cos2(θ)− sin2(θ)

)
σZ
)

where θ ∈ [0, π/2]. With this, we can represent ρ in the Bloch sphere. We recognize
that we are not using σY such that we can represent our example in two dimensional
pictures. This example is visualized in Figure V.1b for θ = π/3.

I would like to thank Dr. Andreas Buchheit for highlighting the helpful connection
to the Pauli matrices and the density matrices.

2 POVMs
Quantum measurements are fundamental aspects in the QIT. An often used type of
measurement is the positive operator-valued measure (POVM).
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Definition V.5. Let d ∈ N. We define the effect operators by

Effd = {E ∈Msa
d : 0 ≤ E ≤ Id}.

We say E is an effect if E ∈ Effd. For k ∈ N, we define the corresponding POVM
as a set of effects {Ej}j∈[k], Ej ∈ Effd for all j ∈ [k], such that∑

j∈[k]
Ej = Id.

Remark V.6. In much of the literature POVMs are introduced by a collection of
positive operators which sum up to the identity matrix. This is enough, since it
follows that the the eigenvalues are also less than 1. Thus, the operators are effects
as defined above.
Example V.7. For fixed θ ∈ [0, π/2] let

E =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}
.

Since E1 and E2 are self-adjoint matrices with eigenvalues 0 and 1, they are effects
of dimension 2. They also sum up to the identity matrix. Thus, this set of effects is
a POVM.

3 Jointly Measurable POVMs
For given POVMs one can ask, if one can present them by using only one POVM.
There is an equivalent definition of jointly measurable POVMs by consider these
POVMs as marginals of one other POVM (see [HMZ16, 2.1 and 2.2] for an intro-
duction). The connection of the two different definitions is described for example in
[GHK+23, II.B].

Definition V.8 ([BN20, Definition 3.30]). Let g ∈ N, ki ∈ N (i ∈ [g]) and d ∈ N.
Let {{E(i)

j }j∈[ki]}i∈[g] a collection of d-dimensional POVMs. The POVMs are jointly
measurable or compatible, if there exists a d-dimensional joint POVM {Rj1,...jg}ji∈[ki]
such that

E(u)
v =

∑
ji∈[ki],i∈[g]\{u}

Rj1,...,ju−1,v,ju+1,...,jg

for all u ∈ [g] and v ∈ [ku].
A collection of POVMs which is not compatible is called not jointly measurable

or incompatible.

Notation V.9. Let g ∈ N, i ∈ [g] and ki ∈ N. Let E(i)
j be the j-th effect in the i-th

POVM. In this thesis, we generally notate by E(i) the collection of the ki effects of
the i-th POVM, which means E(i) := {E(i)

j }j∈ki .

Remark V.10. To gain an understanding of the sum, consider only two compatible
POVMs E(1) and E(2). We can reduce the sum to

E(1)
v =

∑
j2∈[k2]

Rv,j2 and E(2)
v =

∑
j1∈[k1]

Rj1,v
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while {Ri,j} is a POVM. Then we can also visualize the sum in a rectangle as follows:

R1,1 + R1,2 + . . . + R1,k2 = E
(1)
1

+ + +
...

...
...

...
+ + +

Rk1,1 + Rk2,2 + . . . + Rk1,k2 = E
(1)
k1

= = =

E
(2)
1 E

(2)
2 . . . E

(2)
k2

Remark V.11. We simplify the preceding remark to the case g = 2 and k = (2, 2).
To know if the POVMs E(1) = {E(1)

j }j∈[2] and E(2) = {E(2)
j }j∈[2] are compatible,

we try to find a POVM which solve the equations

R1,1 + R1,2 = E
(1)
1

+ +
R2,1 + R2,2 = E

(1)
2

= =

E
(2)
1 E

(2)
2

(V.1)

Since we use such examples in this thesis, we try to simplify these equations. There-
fore, we recognize that for i ∈ [2] the sets E(i) are POVMs and thus E(i)

2 = I −E(i)
1 .

Furthermore, we can replace R1,2 = E
(1)
1 −R1,1 and R2,1 = E

(2)
1 −R1,1. For R2,2 we

calculate

R2,2 = E
(2)
2 −R1,2 = I − E(2)

1 − E(1)
1 +R1,1.

We can visualize this by

R1,1 + (E(1)
1 −R1,1) = E

(1)
1

+ +
(E(2)

1 −R1,1) + (I − E(2)
1 − E(1)

1 +R1,1) = I − E(1)
1

= =

E
(2)
1 I − E(2)

1

Now, we can reformulate the problem to: We try to find a self-adjoint matrix R1,1
such that

R1,1, E
(1)
1 −R1,1, E

(2)
1 −R1,1 and I − E(2)

1 − E(1)
1 +R1,1

are simultaneously positive semi-definite. An equivalent formulation using a block
diagonal matrix is: We try to find a self-adjoint matrix R1,1 such that

diag
(
R1,1, E

(1)
1 −R1,1, E

(2)
1 −R1,1, I − E(2)

1 − E(1)
1 +R1,1

)
≥ 0.

In the preceding remark we have seen how we can understand the definition of
compatible POVMs. We have also seen very detailed the case where we have two
effects with two POVMs respectively. In this thesis, we take this case as a guiding
example since it is still easy enough to be accessible to a detailed analysis and at
the same time illustrative but in general not trivial. However, if we choose one of
the two POVMs to have all effects be proportional to the identity, we get a trivial
case. You can verify this in the next example.
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Example V.12. Take

E(1) =
{

1
2

(
1 0
0 1

)
,
1
2

(
1 0
0 1

)}

and the arbitrary POVM E(2) = {E(2)
1 , E

(2)
2 }. Then {E(1), E(2)} are compatible,

since we can choose

R1,1 = R2,1 = 1
2E

(2)
1 and R1,2 = R2,2 = 1

2E
(2)
2

to get

1
2E

(2)
1 + 1

2E
(2)
2 = 1

2

(
1 0
0 1

)
+ +

1
2E

(2)
1 + 1

2E
(2)
2 = 1

2

(
1 0
0 1

)
= =

E
(2)
1 E

(2)
2

Since the E(2)
j (j ∈ [2]) are self-adjoint and positive semi-definite, so are the Ri,j

(i, j ∈ [2]). Since the E(2)
j (j ∈ [2]) sum up to the identity matrix, the Ri,j (j ∈ [2])

sum up to E(1)
i for a fixed i ∈ [2].

Remark V.13. We recognize in Example V.12 that the POVM {1/2I2, 1/2I2} is
a good choice to get a compatible collection of POVMs. The reason is that it
is independent of the state of the system. You can see this in the Bloch sphere
(Figure V.1) since the matrix 1/2I2 is the origin. Actually, you can generalize
the 2-dimensional case to a d-dimensional case. We say that we have a trivial
measurement of dimension d, if the collection of POVMs are of the form {E(i)}i∈[g] =
{{E(i)

j }j∈[ki]}i∈[g] where E
(i)
j := 1/kiId and ki ∈ N is the number of effects in each

POVM of a collection of g ∈ N POVMs.
In the next example we see that not every choice of a collection of POVMs is

compatible.
Example V.14. Recall Example V.7 for the angles 0 and fixed θ ∈ (0, π/2) to get the
two POVMs

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}

and

E(2) =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}
.

We could solve the problem by solving systems of linear equations. We want to show
that E(1) and E(2) are not compatible and use a proof of contradiction. We assume
that E(1) and E(2) are compatible. Thus, there is a joint POVM {R1, R2, R3, R4} :=
{R1,1, R1,2, R2,1, R2,2} such that the equations in (V.1) are fulfilled. Since E(i)

j only
has real entries for all i, j ∈ [2], we may suppose that Rk only has real entries for all
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k ∈ [4]. Furthermore, we recall that every Rk (k ∈ [4]) is self-adjoint. Thus, every
matrix Rk (k ∈ [4]) has three unknown, real variables r(k)

1,1 , r
(k)
1,2 , r

(k)
2,2 such that

Rk =
(
r

(k)
1,1 r

(k)
1.2

r
(k)
1,2 r

(k)
2,2

)

for k ∈ [4]. With these, we can set up three systems of linear equations. We put the
k-th variable in the k-th row. For the entries r(k)

1,1 , k ∈ [4] extract from the equations
in (V.1) the following system of linear equations:

r
(1)
1,1 + r

(2)
1,1 + 0 + 0 = 1

0 + 0 + r
(3)
1,1 + r

(4)
1,1 = 0

r
(1)
1,1 + 0 + r

(3)
1,1 + 0 = cos2(θ)

0 + r
(2)
1,1 + 0 + r

(4)
1,1 = sin2(θ).

By using elementary row operations, we calculate
1 1 0 0 1
0 0 1 1 0
1 0 1 0 cos2(θ)
0 1 0 1 sin2(θ)

  


1 0 0 −1 cos2(θ)
0 1 0 1 sin2(θ)
0 0 1 1 0
0 0 0 0 0

 .

Analogously, we calculate for the entries r(k)
1,2 (k ∈ [4])

1 1 0 0 0
0 0 1 1 0
1 0 1 0 sin(θ) cos(θ)
0 1 0 1 − sin(θ) cos(θ)

  


1 0 0 −1 sin(θ) cos(θ)
0 1 0 1 − sin(θ) cos(θ)
0 0 1 1 0
0 0 0 0 0

 .

The case r(k)
2,2 (k ∈ [4]) is very similar to r(k)

1,1 . For brevity, we notate r1,1 := r
(4)
1,1,

r1,2 := r
(4)
1,2 and r2,2 := r

(1)
2,2. For Rk (k ∈ [4]), we get the representations

R1 =
(

cos2(θ) + r1,1 sin(θ) cos(θ) + r1,2
sin(θ) cos(θ) + r1,2 r2,2

)
,

R2 =
(

sin2(θ)− r1,1 − sin(θ) cos(θ)− r1,2
− sin(θ) cos(θ)− r1,2 −r2,2

)
,

R3 =
(
−r1,1 −r1,2
−r1,2 sin2(θ)− r2,2

)
and R4 =

(
r1,1 r1,2
r1,2 cos2(θ) + r2,2

)
.

Since Rk (k ∈ [4]) are positive semi-definite, we know that the leading principal
minors are non-negative. Thus, the first entry of each matrix has to be non-negative.
From R3 and R4 it follows that r1,1 = 0. By the leading principal minors, the
determinants of R3 and R4 have to be positive. With r1,1 = 0 we calculate −r1,2 ≥ 0
such that follows r1,2 = 0. So far, we have

R1 =
(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) r2,2

)
, R2 =

(
sin2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) −r2,2

)
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We use again that the determinants have to be non-negative. We calculate

det(R1) = cos2(θ)r2,2 − sin2(θ) cos2(θ) = cos2(θ)(r2,2 − sin2(θ))

and

det(R2) = − sin2(θ)r2,2 − sin2(θ) cos2(θ) = sin2(θ)(−r2,2 − cos2(θ)).

Since sin2(θ) ≥ 0 and cos2(θ) ≥ 0 we get r2,2 = 0. In conclusion, we have that
r1,1 = r1,2 = r2,2 = 0 and

R1 =
(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) 0

)
, R2 =

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) 0

)
,

R3 =
(

0 0
0 sin2(θ)

)
and R4 =

(
0 0
0 cos2(θ)

)
.

Again we use that the determinant of Rk (k ∈ [4]) has to be non-negative. But since

det(R1) = − sin2(θ) cos2(θ) < 0

for θ ∈ (0, π/2) we have a contradiction. Consequently, {E(1), E(2)} are not com-
patible.
Remark V.15. We see that the calculation in the second part of Example V.14 is
very laborious. Thus, in general you would use a semi-definite programming (SDP).
We will present this in Chapter VII.

4 Adding Noise to make POVMs Compatible
As you can see in Example V.14 that there are collections of POVMs which are not
compatible. But they can make compatible by adding enough noise. Therefore, we
take a convex combination of a POVM and a trivial measurement which we discussed
in Remark V.13.

Definition V.16. Let g, d ∈ N and ki ∈ N for i ∈ [g]. By adding noise of a noise
level s ∈ [0, 1]g to a collection of d-dimensional POVMs E = {E(i)}i∈[g] we mean to
replace E by a new collection of d-dimensional POVMs{{

siE
(i)
j + (1− si)Id/ki

}
j∈[ki]

}
i∈[g]

.

Furthermore, for a collection of d-dimensional POVMs E = {E(i)}i∈[g] we define the
set

Γ{E(i)}i∈[g]
:=
{
s ∈ [0, 1]g : {siE(i)

j + (1− si)Id/ki}i∈[g] is compatible
}
.

The set Γ{E(i)}i∈[g]
, defined as above, is similar to the compatibility region. This

set has the advantage that it presents the noise level for a given collection of POVMs.
We will calculate the set explicitly in Chapter VII. One remarkable property of the
set is its convexity. This statement is similar to [BN18, Proposition 3.2].

Lemma V.17. Let g ∈ N, i ∈ [g], ki ∈ N and d ∈ N. Let {E(i)}i∈[g] a collection of
d-dimensional POVMs. Then Γ{E(i)}i∈[g]

is a convex set.
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Proof. Take s, t ∈ Γ{E(i)}i∈[g]
and λ ∈ [0, 1]. We want to show that λs + (1 − λ)t ∈

Γ{E(i)}i∈[g]
, that means

{
(λsi + (1− λ)ti)E(i) + (1− (λsi + (1− λ)ti))Id/ki

}
i∈[g]

is compatible. Since s, t ∈ Γ{E(i)}i∈[g]
, we know that

{
siE

(i) + (1− si)Id/ki
}
i∈[g]

and
{
tiE

(i) + (1− ti)Id/ki
}
i∈[g]

are both compatible. By definition this means that there are POVMs {Rj1,...,jg}ji∈[ki]
and {R̃j1,...,jg}ji∈[ki] such that

suE
(u)
v + (1− su)Id/ku =

∑
ji∈[ki],i∈[g]\{u}

Rj1,...,ju−1,v,ju+1,...,jg

and

tuE
(u)
v + (1− tu)Id/ku =

∑
ji∈[ki],i∈[g]\{u}

R̃j1,...,ju−1,v,ju+1,...,jg .

By using this representation, we can calculate

(λsu + (1− λ)tu)E(u) + (1− (λsu + (1− λ)tu))Id/ku
= λsuE

(u) + λ(1− su)Id/ku + (1− λ)tuE(u) + (1− λ)(1− tu)Id/ku

=

 ∑
ji∈[ki],i∈[g]\{u}

λRj1,...,ju−1,v,ju+1,...,jg + (1− λ)R̃j1,...,ju−1,v,ju+1,...,jg

 .
But since {Rj1,...,jg}ji∈[ki] and {R̃j1,...,jg}ji∈[ki] are POVMs, also

{λRj1 + (1− λ)R̃j1 , ..., λRjg + (1− λ)R̃jg}ji∈[ki]

is a POVM, so we see that this is a joint POVM for{
(λsi + (1− λ)ti)E(i) + (1− (λsi + (1− λ)ti))Id/ki

}
i∈[g]

and thus the claim holds true.

Example V.18. We take two POVMs from Example V.7 for θ = 0 and θ = π/3

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}
and E(2) =

{
1
4

(
1
√

3√
3 3

)
,
1
4

(
3
√

3√
3 1

)}

which are by Example V.14 not compatible. We are interested in Γ{E(1),E(2)}. There-
fore, we are writing an SDP in Mathematica. You can convince the idea and the
program in Chapter A. With this we visualize the problem for several s1, s2 ∈ [0, 1]
in Figure V.2. The curve is the boundary which separates s = (s1, s2) for which s we
can make {E(1), E(2)} compatible and for which we cannot. We call this curve criti-
cal curve. The set Γ{E(1),E(2)} is everything below the curve. We see that Γ{E(1),E(2)}
is a convex set.
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Figure V.2.: Visualization of Example V.18

Often we are not just interested in making a given collection of POVMs compatible
but we want to know which noise level we need to make arbitrary collections of
POVMs compatible. We only set the size and dimension of the collection.

Definition V.19 ([BN20, Definition 3.32]). Let k ∈ Ng, d, g ∈ N. Then, we call

Γ(g, d, k) :={
s ∈ [0, 1]g : siE(i) + (1− si)Id/ki compatible ∀ POVM E(i) ∈ (Msa

d )ki
}

the (balanced) compatibility region for g POVMs in dimension d with ki outcomes,
i ∈ [g].

Remark V.20. Let k ∈ Ng, d, g ∈ N. We can write Γ(g, d, k) as the intersection of
all Γ{E(i)}i∈[g]

where {E(i)}i∈[g] has dimension d and g POVMs with ki effects in the
i-th POVM, that means

Γ(g, d, k) =
⋂

{E(i)}i∈[g]

Γ{E(i)}i∈[g]
.

Like in Lemma V.17 we can see that the compatibility region is convex.

Lemma V.21. Let k ∈ Ng, d, g ∈ N. Then Γ(g, d, k) is convex.

Proof. This statement follows directly from Lemma V.17, since we can choose the
POVMs arbitrary.

There are several options to define noise. In [BN18, Page 5] you can find some
more types of compatibility regions. In this thesis we just look at the balanced
compatibility region. Thus, when we speak about the compatibility region, we
always mean the balanced one.

5 Commutativity and Compatibility of two POVMs
Commutativity is often discussed in Quantum Information. We will bring commu-
tativity in connection with compatibility of two POVMs.
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Definition V.22. Let d ∈ N and ki ∈ N for i ∈ [2]. We say the two d-dimensional
POVMs {E(1)

1 , ..., E
(1)
k1
} and {E(2)

k1
, ..., E

(2)
k2
} commute if [E(1)

j1
, E

(2)
j2

] = 0 for all j1 ∈
[k1] and j2 ∈ [k2].

Remark V.23. We do not consider that effects from the same POVM commute, that
means it is possible that [E(1)

j , E
(1)
j′ ] 6= 0 for j, j′ ∈ [k1].

The next lemma described the connection between commutativity and compati-
bility of POVMs.

Lemma V.24 ([HW10, Section 2.4]). Two commutative POVMs are compatible.

Example V.25. We take the same matrices as in Example V.12 and Example V.14

1. Take E(1) = {1/2I2, 1/2I2} and the arbitrary POVM E(2) = {E(2)
1 , E

(2)
2 }.

Since 1/2I2 is commuting with every 2-dimensional matrix, we know with
Lemma V.24 that E(1) and E(2) are compatible.

2. Let

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}

and

E(2) =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}

for θ ∈ (0, π/2). These are not jointly measurable by Example V.14. With
Lemma V.24 we know that they can’t be commutative. We can verify this by
calculate the commutator for the first tuple entries. The commutator is

[
E

(1)
1 , E

(2)
1

]
= E

(1)
1 · E(2)

1 − E(2)
1 · E(1)

1 =
(

0 sin(θ) cos(θ)
− sin(θ) cos(θ) 0

)
6= 0

for all θ ∈ (0, π/2) and thus, E(1) and E(2) are not commutative.

The converse direction of Lemma V.24 is not always true. In the next example
we see a collection of POVMs which is compatible but not commutative.
Example V.26. Let

E(1) =
{

1
2

(
1 0
0 0

)
,
1
2

(
0 0
0 1

)}
and E(2) =

{
1
4

(
1
√

3√
3 3

)
,
1
4

(
3
√

3√
3 1

)}
.

We try to find an s = (s1, s2) ∈ [0, 1]2 such that Ẽ(i) = siE
(i) + (1 − si)I2/ki is

compatible for i ∈ [2]. Fix s = (s1, s2) ∈ [0, 1]2 and calculate

Ẽ
(1)
1 := s1

(
1 0
0 0

)
+ 1− s1

2

(
1 0
0 1

)
= 1

2

(
1 + s1 0

0 1− s1

)

and

Ẽ
(2)
1 := s2 ·

1
4

(
1
√

3√
3 3

)
+ 1− s2

2

(
1 0
0 1

)
= 1

4

(
2− s2

√
3s2√

3s2 2 + s2

)
.
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The commutator [
Ẽ

(1)
1 , Ẽ

(2)
1

]
= 1

4

(
0

√
3s1s2

−
√

3s1s2 0

)

is zero if and only s1 = 0 or s2 = 0. But by Lemma V.17 we know that Γ{E(1),E(2)}
is a convex set, such that at least every convex combination of (s1, s2) = (0, 1) and
(s1, s2) = (1, 0) is compatible.





Chapter VI.

Connection between POVMs and the
Inclusion of Free Spectrahedra

1 Connection between a Single POVM and the In-
clusion of Spectrahedra at the first Level

Now, we have all required preliminaries to see and show the connection between
of POVMs and the inclusion of free spectrahedra. We start with the simplest case
which is the inclusion of spectrahedra by using the first jewel base with k ∈ N. We
compare this inclusion to a single POVM.

Theorem VI.1 ([BN20, Proposition 5.1]). For dimension d ∈ N and k ∈ N, let
E = (E1, .., Ek−1) ∈ (Msa

d )k−1 and define Ek := Id − E1 − ... − Ek−1. Then,
{E1, ..., Ek} is a POVM if and only if

Du,k(1)⊆D2E− 2
k
Id

(1).

Proof. By Lemma IV.14 the matrix jewel base Du,k(1) is a polytope. Thus, we only
need to check the assertion on the extreme points as given by Lemma IV.15. For a
fixed i ∈ [k − 1] we take

−k2ei ∈ D2E− 2
k
Id

(1).

This holds by definition if and only if

−k2

(
2Ei −

2
k
Id

)
≤ Id

but this is the same as Ei ≤ 0. Analogously, it holds

k

2 (1, ..., 1)T ∈ D2E− 2
k
Id

(1)

if and only if

k

2

k−1∑
i=1

(
2Ei −

2
k
Id

)
≤ Id.

51
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We calculate

k

2

k−1∑
i=1

(
2Ei −

2
k
Id

)
≤ Id ⇔ k

k−1∑
i=1

Ei − (k − 1)Id ≤ Id

which is nothing else than
∑k−1
i=1 Ei ≤ Id. Since we defined Ek = Id −

∑k−1
i=1 Ei we

get
∑k
i=1Ei = Id, so the conditions for a POVM (Definition V.5) is fulfilled.

Example VI.2. We recall Example V.7. For a fixed θ ∈ [0, π/2] we saw that

{E, I2 − E} =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}
is a POVM. Now, we want to prove it by using Theorem VI.1. We want to show
that the extreme points of Du,2(1) are elements of D2E−I2(1). By Example IV.16,
we know that the extreme points of Du,2(1) are x = −1 and x = 1. We calculate

D2E−I2(1) =
{
x ∈ R : I2 − x

(
2 cos2(θ)− 1 2 sin(θ) cos(θ)
2 sin(θ) cos(θ) 2 sin2(θ)− 1

)
≥ 0

}
.

Since the matrices

I2 ± 1
(

2 cos2(θ)− 1 2 sin(θ) cos(θ)
2 sin(θ) cos(θ) 2 sin2(θ)− 1

)
have the eigenvalues 0 and 2, the matrices are positive semi-definite. Thus, the
inclusion Du,2(1)⊆D2E−I2(1) holds and {E, I2 − E} is a POVM.

2 Connection between POVMs and the Inclusion of
Spectrahedra at the first Level

Normally, we do not have one single POVM, but a collection of POVMs. Once
again, we compare this collection again with the inclusion of free spectrahedra, this
time by using the first jewel base with k = (k1, ..., kg) ∈ N where g ∈ N instead of
just a k ∈ N.

Theorem VI.3 ([BN20, Theorem 5.2(1)]). Let d ∈ N and g ∈ N. For i ∈ [g],
take E(i) = (E(i)

1 , ..., E
(i)
ki−1

) ∈ (Msa
d )ki−1 and set E(i)

ki
:= Id − E

(i)
1 ... − E(i)

ki−1. Let
k = (k1, ..., kg) and define

E :=
(

2E(1) − 2
k1
Id, ..., 2E(g) − 2

kg
Id

)
.

It holds Du,k(1)⊆DE(1) if and only if {E(i)
1 , ..., E

(i)
ki
}, i ∈ [g], are POVMs.

Proof. We know with Lemma IV.17

Du,k(1) = Du,k1(1)⊕ ...⊕Du,kg(1).

Since Du,ki(1) is a polytope for all i ∈ [g] (Lemma IV.14), we know with Lemma
III.9 that

Du,k1(1)⊕ ...⊕Du,kg(1)⊆DE(1)

if and only if Du,ki(1)⊆DEki for all i ∈ [g]. But with Proposition VI.1 this holds if
and only if {E(i)

1 , ..., E
(i)
ki
} are POVMs.
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Example VI.4. We recall again Example V.7 for θ = 0 and θ = π/3. This means, let

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}
and E(2) =

{
1
4

(
1
√

3√
3 3

)
,
1
4

(
3
√

3√
3 1

)}
.

In Example V.7 we showed that they are POVMs. The inclusion Du,(2,2)(1)⊆DE(1)
is visualized in Figure VI.1. You can see that Du,(2,2)(1) is completely contained in
DE(1). The program of the visualization is contained in the Chapter A.

Figure VI.1.: Visualization of Example VI.4: The set DE(1) is visualized in orange
and Du,(2,2)(1) in blue.

3 Connection between the Compatibility of POVMs
and the Inclusion of Spectrahedra

Theorem VI.5 ([BN20, Theorem 5.2(2)]). Let d ∈ N and g ∈ N. For i ∈ [g], take
E(i) = (E(i)

1 , ..., E
(i)
ki−1

) ∈ (Msa
d )ki−1 and set E(i)

ki
:= Id − E

(i)
1 − ... − E

(i)
ki−1. Let

k = (k1, ..., kg) and define

E :=
(

2E(1) − 2
k1
Id, ..., 2E(g) − 2

kg
Id

)
.

It holds Du,k⊆DE if and only if {E(i)
1 , ..., E

(i)
ki
}, i ∈ [g], are jointly measurable

POVMs.

Proof. Denotate V (k) = (V (k)
1 , ..., V

(k))
k−1 ) the diagonal matrices defining Du,k =

DV (k) . We show the equivalence by using the unital function

Φ : OS{
W

(i)
j

}
i∈[g],j∈[ki−1]

→Md, W
(i)
j 7→ 2E(i)

j −
2
ki
Id

where

W
(i)
j := Ik1 ⊗ ...⊗ Iki−1 ⊗ V

(ki)
j ⊗ Iki+1 ⊗ ...⊗ Ikg
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for i ∈ [g] and j ∈ [ki − 1]. Since we can see the diagonal matrices as a subalgebra
(recall Remark IV.9), we can write Φ as

Φ : OS{
w

(i)
j

}
i∈[g],j∈[ki−1]

→Md

where w(i)
j ⊆Cki is the diagonal of W (i)

j for i ∈ [g] and j ∈ [ki− 1]. This map Φ can
express the inclusion Du,k⊆DE and is important for the translation to the jointly
measurable POVMs.

We recognize that the (W (i)
j )i∈[g],j∈[ki−1] = (I⊗(i−1)

ki
⊗ V (ki)

j ⊗ I⊗(g−i)
ki

)i∈[g],j∈[ki−1]
and I∏g

i=1 ki
are linearly independent. Furthermore, Du,k(1) is bounded. Thus,

we can use Lemma IV.6 to deduce that Du,k⊆DE if and only if Φ is completely
positive. It holds

OS{
w

(i)
j

}
i∈[g],j∈[ki−1]

⊆Ck1·...·kg .

By Arveson’s extension theorem ([Pau02, Theorem 6.2]) we can extend Φ to a (uni-
tal) completely positive map Φ̃ : Ck1·...·kg →Md. With the theorem of Stinespring
[Pau02, Theorem 3.11] the map Φ̃ is completely positive if and only if Φ̃ is positive.
Thus, it remains to show that Φ̃ is a positive extension if and only if the E(i) are
jointly measurable POVMs.

For i ∈ [g] and j ∈ [ki− 1] we define [k] := ×gi=1[ki] as Cartesian product to write
{w(i)

j }i∈[g],j∈[ki−1] as the function

w
(i)
j : [k]→ OS{

w
(i)
j

}
i∈[g],j∈[ki−1]

, ε 7→ − 2
ki

+ 2δε(i),j .

We denote by ε(i) the i-th tuple entry in [k]. We define gη ∈ Ck1·...·kg by η ∈ [k] and
gη(ε) = δε,η. These vectors form a basis of Ck1·...·kg Thus, we can rewrite the map
as

w
(i)
j (ε) = − 2

ki

∑
η∈[k]

gη(ε) + 2
∑

η∈[k],η(i)=j
gη(ε).

We recognize the following properties of gη∑
η∈[k]

gη(ε) = 1 and
∑

η∈[k], η(i)=j
gη(ε) = δε(i),j . (VI.1)

Now, let us define Rη := Φ̃(gη) and reformulate the remaining assertion of the
proof to: The map Φ̃ is a positive extension of Φ if and only if the collection of
matrices Rη is a joint POVM for E(i). For the remaining proof, we show each
direction separately.

Let us assume that Φ̃ is a positive extension of Φ. We want to show that Rη∈[k] is
a joint POVM. Since Φ̃ is positive, it follows that Rη ≥ 0 for all η ∈ [k]. With the
property that Φ̃ is unital we can calculate

Id = Φ̃(1) = Φ̃

∑
η∈[k]

gη

 =
∑
η∈[k]

Rη.
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to see that {Rη}η∈[k] sum up to the identity matrix. Thus, the collection {Rη}η∈[k]
is a POVM. It remains to show that this is the joint POVM which can represent the
POVMs {E(i)

1 , ..., E
(i)
ki
}. Therefor, we start with

Φ̃(w(i)
j ) = 2E(i)

j −
2
ki
Id. (VI.2)

On the other side we can write w(i)
j as −2/ki + 2δε(i),j to rewrite w(i)

j as the sum of
gη(ε) like in (VI.1). That means

Φ̃
(
w

(i)
j

)
= Φ̃

− 2
ki

∑
η∈[k]

gη(ε) + 2
∑

η∈[k], η(i)=j
gη(ε)

 .
Now, we can use the linearity of Φ̃ and that Rη is defined as Φ̃(gη) to get

Φ̃
(
w

(i)
j

)
= − 2

ki

∑
η∈[k]

Rη + 2
∑

η∈[k], η(i)=j
Rη.

We already know that Rη sum up to the identity matrix, so in conclusion we get

2E(i)
j −

2
ki
Id = Φ̃(w(i)

j ) = − 2
ki
Id + 2

∑
η∈[k], η(i)=j

Rη.

Thus, we have a joint POVM for {E(i)}i∈[g], that is

E
(i)
j =

∑
η∈[k], η(i)=j

Rη.

Now, let {Rη}η∈[k] be a joint POVM for {E(i)
1 , ..., E

(i)
ki
}. First we use the fact, that

{Rη}η∈[k] is a POVM. This tells us that Φ̃ is positive and unital. It remains to show
that Φ̃ is an extension of Φ. By similar calculations as above we get

Φ̃(w(i)
j ) = − 2

ki
Id + 2

∑
η∈[k],η(i)=j

Rη.

But since ∑
η∈[k],η(i)=j

Rη = E
(i)
j

we get

Φ̃(w(i)
j ) = 2E(i)

j −
2
ki
Id

which means that Φ̃ is an extension of Φ.
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4 Equivalence between the Inclusion Set and the
Compatibility Region

For a given collection of POVMs we may want to determine how large the noise
level must be to make then compatible. For this problem, we again want to give a
connection to the inclusion of free spectrahedra. In this setting we are asking how
much we have to shrink the matrix jewel. Before we show the connection we need
an auxiliary lemma.

Lemma VI.6. Let d, g ∈ N, k = (k1, ..., kg) ∈ Ng and s ∈ [0, 1]g. For the d-
dimensional POVM

{
E

(i)
1 , ..., E

(i)
ki

}
, i ∈ [g], it holds

(s×(k1−1)
1 , ..., s×(kg−1)

g )D(2s1E(1)− 2s1
k1
Id,...,2sgE(g)− 2sg

kg
Id) = D(2E(1)− 2

k1
Id,...,2E(g)− 2

kg
Id).

Proof. With the Definition I.21 of the free spectrahedron we get:

D(2s1E(1)− 2s1
k1
Id,...,2sgE(g)− 2sg

kg
Id)

=
∞⋃
n=1

X ∈ (Msa
n )
∑g

i=1(ki−1) :
g∑
i=1

ki−1∑
j=1

(
2siE(i) − 2si

ki
Id

)
⊗Xi,j ≤ Idn


=
∞⋃
n=1

X ∈ (Msa
n )
∑g

i=1(ki−1) :
g∑
i=1

ki−1∑
j=1

(
2E(i)

j −
2
ki
Id

)
⊗ siXi,j ≤ Idn

 .
When we now multiply with (s×(k1−1)

1 , ..., s
×(kg−1)
g ), we get

∞⋃
n=1

{
X ∈ (Msa

n )
∑g

i=1(ki−1) :
g∑
i=1

ki−1∑
j=1

(
2E(i)

j −
2
ki
Id

)
⊗Xi,j ≤ Idn

}
for the right-hand side, which is nothing else than

D(2E(1)− 2
k1
Id,...,2E(g)− 2

kg
Id).

Thus, the assertion holds true.

You can find the statement of the next Theorem in the proof of [BN20, Theorem
5.5]. The advantage of this theorem is, that we have the connection not only for an
arbitrary collection of POVMs but for a given collection of POVMs.

Theorem VI.7. Let d ∈ N, g ∈ N, k = (k1, ..., kg) ∈ Ng and s ∈ [0, 1]g. For the given
d-dimensional POVMs

{
E

(i)
1 , ..., E

(i)
ki

}
, i ∈ [g] we have, that s ∈ Γ{E(i)}i∈[g]

if and
only if

(s×(k1−1)
1 , ..., s×(kg−1)

g )Du,k⊆D(2E(1)− 2
k1
Id,...,2E(g)− 2

kg
Id)

holds true.

Proof. With Theorem VI.5 we know,{
siE

(i) + (1− si)Id/ki
}
i∈[g]
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are compatible POVMs if and only if

Du,k⊆D(2(s1E
(1)
1 +(1−s1)Id/k1)− 2

k1
Id,...,2(sgE(g)

g +(1−sg)Id/kg)− 2
kg
I)

= D(2s1E
(1)
1 −

2s1
k1
Id,...,2sgE

(g)
g −

2sg
kg

Id)

holds true. By Lemma VI.6 the inclusion is equivalent to

(s×(k1−1)
1 , ..., s×(kg−1)

g )Du,k⊆D(2E(1)− 2
k1
Id,...,2E(g)− 2

kg
Id).

We could also ask how large the noise level must be for arbitrary POVMs of fixed
size and dimension. We see that the compatibility region (recall Definition V.19) is
the same as the inclusion set (recall Definition IV.3 and Notation IV.19).

Theorem VI.8 ([BN20, Theorem 5.5]). Let d, g ∈ N and k ∈ Ng. Then

Γ(g, d, k) = ∆(g, d, k).

Proof. For an s ∈ Rg+ it holds s ∈ Γ(g, d, k) if and only if siE(i) + (1 − si)Id/ki is
compatible for any d-dimensional POVMs with ki outcomes for the i-th POVM with
i ∈ [g]. So, when we have a POVM {E(i)

1 , ..., E
(i)
ki
} then{

siE
(i)
1 + (1− si)Id/ki, ..., siE

(i)
ki

+ (1− si)Id/ki
}

is compatible. Set E = (2E(1) − 2/k1Id, ..., 2E(g) − 2/kgId), then we know with
Theorem VI.7 and Theorem VI.3 this is true if and only if the inclusion

Du,k(1)⊆DE(1) ⇒ (s×(k1−1)
1 , ..., s×(kg−1)

g )Du,k⊆DE (VI.3)

holds true. Since A 7→ 2A− (2/k)Id, k ∈ N is a bijective map onMsa
d , we can write

any Fi ∈ (Msa
d )ki−1 as Fi = 2E(i) − (2/ki)Id for E(i) ∈ (Msa

d )ki−1 for all i ∈ [g].
Thus, the implication VI.3 holds true if and only if

Du,k(1)⊆DF (1) ⇒ (s×(k1−1)
1 , ..., s×(kg−1)

g )Du,k⊆D(F (1),...,F (g))

for all F ∈ (Msa
d )
∑g

i=1(ki−1).
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Further Ideas for a given POVM

In this chapter we look at the two POVMs

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}

and

E(2)(θ) =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos2(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}

for θ ∈ [0, π/2]. We want to know, how the set Γ{E(1),E(2)(θ)} looks like for different
angles θ ∈ [0, π/2].

1 Choice of angle
You may ask why the angle is only between [0, π/2]. First, we recognize that
cos2(θ) = cos2(θ + π), sin(θ) cos(θ) = sin(θ + π) cos(θ + π), sin2(θ) = sin2(θ + π)
such that E(2)(θ) = E(2)(θ + zπ) for all z ∈ Z. You also can see this in the Bloch
sphere (see Figure V.1a). Furthermore, we recognize that

E(2) (θ + π/2)

=
{(

cos2(θ) − sin(θ) cos(θ)
− sin(θ) cos2(θ) sin2(θ)

)
,

(
sin2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) cos2(θ)

)}
.

Thus, we know that {E(1), E(2)(θ)} is compatible if and only if {E(1), E(2)(θ+π/2)}
is compatible. Consequently, it is enough to look at θ ∈ [0, π/2].

2 Using SDP
In this section, we approximate the critical curve like in Example V.18 but for several
angles θ ∈ [0, 2π]. For that, we replace the effects of the POVMs by effects E(1) and
E(2)(θ) with noise level (s1, s2) ∈ [0, 1]2, that means

Ẽ(1) = s1E
(1) + (1− s1)I2/2 and Ẽ(2)(θ) = s2E

(2)(θ) + (1− s2)I2/2.

59
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We use the idea of Remark V.11. For the POVMs {Ẽ(1)
1 , Ẽ

(1)
2 } and {Ẽ

(2)
1 (θ), Ẽ(2)

2 (θ)},
we try to find an

R :=
(
a0 + d3 d1 + id2
d1 − id2 a0 − d3

)
, a0, d1, d2, d3 ∈ R

such that the matrix

M := diag
(
R, Ẽ

(1)
1 (θ)−R, Ẽ(2)

1 (θ)−R, I − Ẽ(2)
1 (θ)− Ẽ(1)

1 (θ) +R
)

is positive semi-definite. By an SDP we can get for given θ and (s1, s2) a representa-
tion ofM such that we maximize the smallest eigenvalue ofM . We explain in detail
the idea in Chapter A. We are interested in the critical curve, which separates the
set Γ{E(1),E(2)(θ)} from the set [0, 1]2 \ Γ{E(1),E(2)(θ)} for different angles θ ∈ [0, π/2].
We recall Example V.18 where we showed the critical curve for θ = π/3. In Figure
VII.1 we see the critical curve for θ ∈ {π/12, π/6, π/4}.

Figure VII.1.: Critical curve for θ ∈ {π/12, π/6, π/4}.

We hypothesize that the set Γ{E(1),E(2)(θ)} is for θ = π/4 smaller than for θ 6= π/4.
To see it more directly, we plot for θ ∈ [0, π/2] the point of the critical curve where
s := s1 = s2. In Figure VII.2 the value s is probably minimal in θ = π/4. Since we
can not be sure, we want to calculate the same problem analytically.

3 Using an Analytical Calculation
We recall the two POVMs

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}

and

E(2)(θ) =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos2(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}
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Figure VII.2.: The noise level s for different degree.

for θ ∈ [0, π/2]. In this section we show that the critical curves which we showed
approximated in Figure VII.1 can be calculated explicitly by

rθ(φ) · (cos(φ), sin(φ)) for φ ∈ [0, π/2]

where

rθ : [0, π/2]→ [0,∞), φ 7→ 2√
1 + sin(2φ) cos(2θ) +

√
1− sin(2φ) cos(2θ)

and θ ∈ [0, π/2].

3.1 Calculation of the Critical Curve
We replace the effects of the POVMs by effects with noise level (s1, s2) ∈ [0, 1]2:

Ẽ
(1)
1 = 1

2I2 + 1
2s1σZ ,

Ẽ
(1)
2 = 1

2I2 −
1
2s1σZ ,

Ẽ
(2)
1 (θ) = 1

2I2 + 1
2s2 sin(2θ)σX + 1

2s2 cos(2θ)σZ ,

Ẽ
(2)
2 (θ) = 1

2I2 −
1
2s2 sin(2θ)σX −

1
2s2 cos(2θ)σZ ,

where σi (i ∈ {X,Y, Z}) are the Pauli matrices (recall Definition V.1. For the
POVMs {Ẽ(1)

1 , Ẽ
(1)
2 } and {Ẽ(2)

1 (θ), Ẽ(2)
2 (θ)}, let {R1,1(θ), R1,2(θ), R2,1(θ), R2,2(θ)}

be a set of effects such that

R1,1(θ) + R1,2(θ) = Ẽ
(1)
1

+ +
R2,1(θ) + R2,2(θ) = Ẽ

(1)
2

= =

Ẽ
(2)
1 (θ) Ẽ

(2)
2 (θ)

is fulfilled. We choose to represent Ri,j(θ) (i, j ∈ [2]) with help of the Pauli matrices.
For R1,1(θ) there are a0, d1, d2, d3 such that

R1,1(θ) = a0I2 + d1σX + d2σY + d3σZ .
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With the representation of R1,1(θ) we can calculate R1,2(θ), R2,1(θ) and R2,2(θ)
(recall V.11):

R1,2(θ) =
(1

2 − a0

)
I2 − d1σX − d2σY +

(1
2s1 − d3

)
σZ ,

R2,1(θ) =
(1

2 − a0

)
I2 +

(1
2s2 sin(2θ)− d1

)
σX − d2σY +

(1
2s2 cos(2θ)− d3

)
σZ ,

R2,2(θ) = a0I2 −
(1

2s2 sin(2θ)− d1

)
σX + d2σY −

(1
2s2 cos(2θ) + 1

2s1 − d3

)
σZ .

The set {R1,1(θ), R1,2(θ), R2,1(θ), R2,2(θ)} is then the joint POVM if the eigenval-
ues of all effects are non-negative. For R1,1(θ) this means

a0 ±
√
d2

1 + d2
2 + d2

3 ≥ 0.

We can follow that a0 ≥ 0. Furthermore, we can write this inequality as ‖d−w1,1‖ ≤
a0 where ‖ · ‖ is the Euklidean norm and d = (d1, d2, d3)T ∈ R3. We use the same
idea for the other effects. For a given vector d = (d1, d2, d3)T ∈ R3 we calculate

R1,1(θ) ≥ 0 ⇔ ‖d− w1,1‖ ≤ a0 where w1,1 =

0
0
0

 ,
R1,2(θ) ≥ 0 ⇔ ‖d− w1,2‖ ≤

1
2 − a0 where w1,2 = 1

2

 0
0
s1

 ,
R2,1(θ) ≥ 0 ⇔ ‖d− w2,1‖ ≤

1
2 − a0 where w2,1 = 1

2

s2 sin(2θ)
0

s2 cos(2θ)

 ,
R2,2(θ) ≥ 0 ⇔ ‖d− w2,2‖ ≤ a0 where w2,2 = 1

2

 s2 sin(2θ)
0

s2 cos(2θ) + s1

 .
We recognize that w2,1 and w2,2 depends of θ. Furthermore, it follows that a0 ∈
[0, 1/2π].
Remark VII.1. We can interpret the conditions geometrically: We remark that we
can consider d2 = 0 since we are interested that the set (s1, s2) are as large as
possible. Then we can interpret wi,j (i, j ∈ [2]) as vertices of a parallelogram in the
d1-d3-plane. We can interpret the norm inequalities as circles around the vertices.
The radius of the circles around w1,1 and w2,2 is a0 and the radius of the circles
around w1,2 and w2,1 is 1/2 − a0. There exists a point w in the intersection of the
four circles

‖w2,2 − w1,1‖ ≤ 2a0 and ‖w1,2 − w2,1‖ ≤ 2
(1

2 − a0

)
.

Furthermore, we can calculate the point of intersection of diagonals

w = 1
2 (w2,2 + w1,1) = 1

2(w1,2 + w2,1) = 1
4

 s2 sin(2θ)
0

s2 cos(2θ) + s1

 .
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With the previous inequalities and the triangle inequality it follows

‖w2,2 − w1,1‖ ≤ ‖d− w1,1‖+ ‖d− w2,2‖ ≤ 2a0

and

‖w1,2 − w2,1‖ ≤ ‖d− w1,2‖+ ‖d− w2,1‖ ≤ 2
(1

2 − a0

)
.

By insertion of wi,j (i, j ∈ [2]) we get

‖w2,2 − w1,1‖ = 1
2

√
s2

2 sin2(2θ) + s2
2 cos2(2θ) + 2s2

2 sin(2θ) cos(2θ) + s2
1 ≤ 2a0

or equivalently

s2
1 + 2s1s2 cos(2θ) + s2

2 ≤ 16a2
0.

Analogously, we get

s2
1 − 2s1s2 cos(2θ) + s2

2 ≤ 16a2
0.

We use the parameterization(
s1
s2

)
= r

(
cos(φ)
sin(φ)

)
where r ≥ 0 and φ ∈ [0, π/2]

to get the two inequalities

r2(1 + sin(2φ) cos(2φ)) ≤ 16a2
0 ⇔ r ≤ 4a0√

1 + sin(2φ) cos(2θ)

r2(1− sin(2φ) cos(2φ)) ≤ 16
(1

2 − a0

)2
⇔ r ≤ 4(1/2− a0)√

1− sin(2φ) cos(2θ)
.

We try to find the maximal value of r. Thus, we set

4a0√
1 + sin(2φ) cos(2θ)

= 4(1/2− a0)√
1− sin(2φ) cos(2θ)

and solve the equation for a0. The equation is equivalent to

4a0

(
1√

1 + sin(2φ) cos(2θ)
+ 1√

1− sin(2φ) cos(2θ)

)
= 2√

1− sin(2φ) cos(2θ)

which is

a0 = 1
2

1

1 +
√

1−sin(2φ) cos(2θ)√
1+sin(2φ) cos(2θ)

.

With this representation of a0 we get the maximal value of r, that is when

r = 4(1/2− a0)√
1 + sin(2φ) cos(2θ) +

√
1− sin(2φ) cos(2θ)

.
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For a fixed φ ∈ [0, π/2], we conclude that the maximal value of r is given by

rθ := 2√
1 + sin(2φ) cos(2θ) +

√
1− sin(2φ) cos(2θ)

where θ ∈ [0, π/2]. The critical curve is then given by

rθ(φ) · (cos(φ), sin(φ)) for φ ∈ [0, π/2]

where

rθ : [0, π/2]→ [0,∞), φ 7→ 2√
1 + sin(2φ) cos(2θ) +

√
1− sin(2φ) cos(2θ)

and θ ∈ [0, π/2]. With this we get the exact solution

Γ{E(1),E(2)(θ)} =

(s1, s2) ∈ (0, 1] :
√
s2

1 + s2
2 ≤ rθ

cos−1

 s1√
s2

1 + s2
2

 ∪ {0}
for a fixed θ ∈ [0, π/4].
Remark VII.2. In the given example it was possible to calculate the set Γ{E(i)}i∈[g]

for a given POVM {E(i)}i∈[g] explicit. In general, this is not possible. Thus, one
could use an SDP to get an approximated result.

3.2 Calculation of the Critical Points
Like previous, we set s = s1 = s2 for calculating how the maximal noise level s is
changing for different angles. We use again the parametrization(

s1
s2

)
= rθ

(
cos(φ)
sin(φ)

)
where rθ ≥ 0 and φ ∈ [0, π/2]

where θ ∈ [0, π/2]. By setting s1 = s2 it follows that we have to set φ = π/4. Then
we get the map

[0, π/2]→ [0, 1], θ 7→ rθ

(
π

4

)
=

√
2√

1 + cos(2θ) +
√

1− cos(2θ)
is the exact solution of Figure VII.2. We see that the minimum is given in the point
(π/4,

√
2).

3.3 Connection to the Quarter Circle
We recall the exact solution

Γ{E(1),E(2)(θ)} =

(s1, s2) ∈ (0, 1] :
√
s2

1 + s2
2 ≤ rθ

cos−1

 s1√
s2

1 + s2
2

 ∪ {0}
where

rθ : [0, π/2]→ [0,∞), φ 7→ 2√
1 + sin(2φ) cos(2θ) +

√
1− sin(2φ) cos(2θ)

and calculate

Γ{E(1),E(2)(π/4)} =
{

(s1, s2) ∈ [0, 1] :
√
s2

1 + s2
2 ≤ 1.

}
This set is the same as the quarter circle for g = 2:
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Figure VII.3.: The critical curve for θ = π/4 is equal to the boundary of the Quarter
Circle.

Definition VII.3. For g ∈ N we define the quarter-circle by

QCg :=
{
s ∈ Rg+ :

g∑
i=1

s2
i ≤ 1

}
.

The curve is visualized in Figure VII.3. This is indeed the smallest set we could
get for the compatibility set Γ(2, 2). In [BN18] Bluhm and Nechita have proven that
the quarter-circle is a subset of the inclusion set. They generalize the assertion in
[BN20].

Theorem VII.4 ([BN20, Theorem 7.2]). Let g, d ∈ N and k = (k1, ..., kg) ∈ Ng.
Then, (

1
(k1 − 1)2 , ...,

1
(kg − 1)2

)
QC∑g

i=1(ki−1)⊆∆(g, d, k).

The proof of Theorem VII.4 is based on the theory about the inclusion of free
spectrahedra but with the connection to the POVMs this gives us information about
the inclusion set.





Chapter A.

Appendix

For computation and visualization I use the program ‘Mathematica’, [Inc]. Every
command I used can be found on the website https://reference.wolfram.com/
language/.

Example VI.4
We want to plot the two sets Du,(2,2)(1) and DE(1) to see that

Du,(2,2)(1)⊆DE(1).

We start to present the code for the set

Du,(2,2) = {(x1, x2) : I4 − x1V ⊗ I2 − x2I2 ⊗ V ≥ 0}

where

V =
(

1 0
0 −1

)

which was calculated in Example IV.12.
V = {{1, 0}, {0, −1}};
RegionPlot[Eigenvalues[IdentityMatrix[4] − x1∗KroneckerProduct[V, IdentityMatrix[2] ] −

x2∗KroneckerProduct[IdentityMatrix[2], V] ] �0, {x1, −2, 2}, {x2, −2, 2}]

In the algorithm, we fix x1, x2 ∈ [−2, 2] since we can not visualize an infinite space.
For the set

DE(1) = D2E(1)
1 −I2,2E(2)

1 −I2
(1)

we first have to the define the two matrices

E
(1)
1 =

(
1 0
0 0

)
and E

(2)
1 = 1

4

(
1
√

3√
3 3

)
.

We rename them as ρ1 := E
(1)
1 − 2E(1)

1 and ρ2 := E
(2)
1 and plot the set{

(x1, x2) ∈ R2 : I2 − x1ρ1 − x2 ∗ (2 ∗ ρ2 − I2) ≥ 0
}
.

67

https://reference.wolfram.com/language/
https://reference.wolfram.com/language/
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ρ1 = {{1, 0}, {0, 0}};
ρ2 = 2∗Transpose[{{Cos[Pi/3], Sin[Pi/3]}}] . {{Cos[Pi/3], Sin[Pi/3]}} − IdentityMatrix [2];
RegionPlot[Eigenvalues[IdentityMatrix[2] − x1∗ρ1 −

x2∗(2∗ρ2 − IdentityMatrix[2])] � 0, {x1, −2, 2}, {x2, −2, 2}]

To plot the sets together you could use the command Show or put the inequalities
together in the command RegionPlot.

How to solve the compatibility problem by an SDP
The documentation of the semi-definite optimization can be found in https://
reference.wolfram.com/language/ref/SemidefiniteOptimization.html.

Preliminaries
First, we take two POVMs from Example V.14

E(1) =
{(

1 0
0 0

)
,

(
0 0
0 1

)}

and

E(2) =
{(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

(
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ)

)}

where θ ∈ (0, π/2). By adding noise we can make the POVMs compatible. For the
program it is enough to look at E(1)

1 and E(2)
1 . We set

ρ1 = s1E
(1)
1 + (1− s1)I2 and ρ2 = s1E

(2)
1 + (1− s2)I2

for arbitrary s1, s2.

ρ1[s1_] = s1∗{{1, 0}, {0, 0}} + (1 − s1)∗DiagonalMatrix[{1/2, 1/2}];
ρ2[θ_, s2_] = s2∗Transpose[{{Cos[θ], Sin[θ]}}] . {{Cos[θ],Sin[θ]}}

+ (1 − s2)∗DiagonalMatrix[{1/2, 1/2}];

We use the idea of Remark V.11. We recall that it is enough to find an

R :=
(
a0 + d3 d1 + id2
d1 − id2 a0 − d3

)
, a0, d1, d2, d3 ∈ R

such that the matrix

M := diag
(
R, E

(1)
1 −R, E(2)

1 −R, I − E(2)
1 − E(1)

1 +R
)

is positive semi-definite.

R[a0_, d1_, d2_, d3_] = {{a0 + d3, d1+ I d2}, {d1 − I d2, a0− d3}};
M[θ_, a0_, d1_, d2_, d3_, s1_, s2_] = ArrayFlatten[{{R[a0, d1, d2, d3], 0, 0, 0}, {0, ρ2[θ, s1]
− R[a0, d1, d2, d3], 0, 0}, {0,0, ρ1[s2] − R[a0, d1, d2, d3], 0}, {0, 0, 0,IdentityMatrix[2]
+R[a0, d1, d2, d3] − ρ2[θ, s1] − ρ1[s2]}}];

https://reference.wolfram.com/language/ref/SemidefiniteOptimization.html
https://reference.wolfram.com/language/ref/SemidefiniteOptimization.html
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SDP
The idea is to find a0, d1, d2, d3 which for given θ, s1, s2 maximize the smallest eigen-
value λ of the matrix M . We reformulate the problem to λI8 ≤M . To maximize λ,
we minimize −λ using a semi-definite optimization.
For the matrix M we can choose θ, s1 and s2 to get λ, a0, d1, d2 and d3. The

numbers a0, d1, d2 and d3 are the calculated best choice to get the smallest possible
λ. If λ ≥ 0 then the two POVMs are compatible, otherwise they are not. In the
algorithm we decide to set for example θ = π/3, s1 = s2 = 1/2 like we did in
Example V.18.
SemidefiniteOptimization[−λ, λIdentityMatrix[8] �

S8
+

M[Pi/3, a0, d1, d2, d3, 0.5, 0.5],

{λ, a0, d1, d2, d3}]

The result of this example is

{λ→ 0.0792468, a0→ 0.204247,d1→ 0.108253, d2→ 0.,d3→ 0.0625}.

We see that λ ≥ 0 and thus, the POVMs are compatible. We also have a possible
representation for

R =
(
a0 + d3 d1 + id2
d1 − id2 a0 − d2

)

such that set {R, E(1)
1 − R, E(2)

1 − R, I − E(2)
1 − E(1)

1 + R} is a POVM. To verify
this, we can output the set of eigenvalues of M

{0.512259, 0.512259, 0.329247, 0.329247, 0.0792472, 0.0792468, 0.0792467, 0.0792466}

to see that every eigenvalue is positive.

Graphic for the Critical Curve for Different Angles
We want to visualize the critical curve for the angles θ ∈ {π/12, π/6, π/4} like in
Chapter VII. To using the angles in a loop, we set the starting angle θ0 = π/12, the
ending angle θm = π/4 and the number of all angles m = 3. Since we can not test
the program for every (s1, s2) ∈ [0, 1], we take a discretization, that means we test
the program for (s1, s2) ∈ {(1/i, 1/i : i ∈ [n]} where n ∈ N fixed. We are choosing
n = 1000.
n = 1000;
θ0= Pi/12;
θm= Pi/4;
m = 3;
diff = (θm − θ0)/(m − 1);

We can use the SDP to find out, if two POVMs for given (s1, s2) and angle θ are
compatible. Since we do not need the whole representation of the best choice of
matrix M, we read out the value of λ with the command Part. Furthermore, we are
not interested in the concrete value of λ but if λ is positive or negative. Thus, we
use the HeavisideTheta command which returns λ̃ := 0 for λ < 0 and λ̃ := 1 for λ > 0.
We let us give out a table T with the values of θ, s1, s2 and λ̃.
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T = ParallelTable[{θ, s1, s2, HeavisideTheta[λ /.
Part[SemidefiniteOptimization[−λ, λIdentityMatrix[8] �

S8
+

, M[θ, a0, d1, d2, d3, s1, s2],

{λ, a0, d1, d2, d3}], 1] ]}, {θ, θ0, θm, diff}, {s1, 0, 1, 1/n}, {s2, 0, 1, 1/n}];

To plot the critical curve, we search for each s1 from 0 to 1 the first value of s2 for
which λ̃ = 0. We are saving the values of s1 in the first n + 1 entries of vector1 and
the values of s2 in vector2. We are using the same idea in the horizontal direction,
that means: For each s2 from 0 to 1 we are looking for the first λ̃ = 0. These date
are saved in the last n+ 1 entries of vector1 and vector2. Then we can plot the vectors
with the command ListPlot.
vector1 = ConstantArray[1, 2 n + 2];
vector2 = ConstantArray[0, 2 n + 2];
Show[Table[

For[i1 = 1, i1≤n + 1, i1++,
For[i2 = 1, i2≤n + 1, i2++,
If [TJ(θ − θ0)/diff + 1KJi1KJi2KJ4K == 0,
vector1 = ReplacePart[vector1, i1→TJ(θ − θ0)/diff + 1KJi1KJi2KJ2K];
vector2 = ReplacePart[vector2, i1→TJ(θ − θ0)/diff + 1KJi1KJi2KJ3K];
Break[] ] ] ];

For[i2 = 1, i2≤n + 1, i2++,
For[i1 = 1, i1≤n + 1, i1++,
If [TJ(θ − θ0)/diff + 1KJi1KJi2KJ4K == 0,
vector1 = ReplacePart[vector1, i2+ n + 1 →TJ(θ − θ0)/diff + 1KJi1KJi2KJ2K];
vector2 = ReplacePart[vector2, i2+ n + 1 →TJ(θ − θ0)/diff + 1KJi1KJi2KJ3K];
Break[] ] ] ];

ListPlot [Transpose@{vector1, vector2}], {θ, θ0, θm, diff}K

Graphic for the Critical Points where s1 = s2

Let s := s1 = s2. Then we get for all angle θ a critical point s such that the POVM
is compatible for every noise level less than s and incompatible for all noise level
greater s. We can choose the number of the angles num between 0 and π/4. With
this value we can calculate the difference radians and degrees.
num = 1 + 90∗10;
diff1 = 90∗1/(num − 1);
diff2 = 2 Pi/360∗diff1;

Since we want to use Listplot again, we declare two vectors vθ and vs, both of the
length num. In vector vθ we are saving the angles. In the vector vs we will overwrite
the calculated values of s.
vθ= Range[0, 90, diff1 ];
vs= ConstantArray[1, num];

Now, we are ready to use the SDP. We are showing the values θ, s and λ̃ in a table.
Remark, that λ̃ ∈ {0, 1} is explained previously.
T = ParallelTable[{θ, s , HeavisideTheta[λ /.

Part[SemidefiniteOptimization[−λ, λIdentityMatrix[8] �
S8

+

M[θ, a0, d1, d2, d3, s, s],

{λ, a0, d1, d2, d3}], 1] ]}, {θ, 0, Pi/2, diff2 }, {s, 0, 1, 1/n}];

At least we want to save the values of s in the vector vs. Then we can plot the
vectors vθ and vs with ListPlot.
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For[θ = 1, θ ≤num, θ++,
For[ i = 1, i ≤n + 1, i++,

If [TJθKJiKJ3K == 0,
vs= ReplacePart[vs, θ→TJθKJiKJ2K];

Break[] ] ] ];
ListPlot [Transpose@{vθ, vs}]
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