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1 Introduction

1 Introduction

In this thesis we study strategies for nonlocal games and quantum nonlocal games.
Our main sources are [19], [25] and [4]. The strategies studied in this thesis for
quantum nonlocal games are called quantum no-signalling correlations and quantum
commuting quantum no-signalling correlations. Quantum no-signalling correlations
were first defined by Duan and Winter in 2016 [9] in a different setting from quan-
tum nonlocal games. Quantum commuting quantum no-signalling correlations and
quantum nonlocal games were first defined by Todorov and Turowska in 2020 [25].

Nonlocal games are tuples G = (X, Y,A,B, λ), where X and Y are the questions
for the two players Alice and Bob. These two players have to give an answer from
the answer sets A and B to their questions without communicating to the other
player. The referee then decides based on the function λ : X × Y × A×B → {0, 1}
whether Alice and Bob win. As Alice and Bob play cooperatively, they have to
agree on a strategy beforehand to maximize their chance to win. There are different
classes of strategies that limit the resources Alice and Bob can access. The two
classes of strategies mainly studied in this thesis are no-signalling strategies and
quantum commuting strategies. No-signalling strategies only limit Alice and Bob to
the rule that they cannot communicate. This means Alice’s answer is not dependent
on Bob’s question and vice versa. Quantum commuting strategies are a subclass of
no-signalling strategies in which Alice and Bob share a quantum system that they
can partially measure.

Quantum nonlocal games are generalizations of nonlocal games, where Alice
and Bob get ”quantum” questions and ”quantum” answers. This is modeled by
join-continuous, zero-preserving maps from the projections of a matrix algebra onto
the projections of another matrix algebra. The strategies for quantum nonlocal
games are given by quantum channels, which are maps that map quantum states
onto quantum states, that also prevent direct communication between Alice and
Bob.

In Section 2, we give a brief introduction to C∗-algebras and define positive
elements and maps of C∗-algebras. We also define universal C∗-algebras.

In Section 3, we introduce traceclass operators which are a subclass of bounded
operators on a Hilbert space. We then show that the traceclass operators are the
predual of the bounded operators.

In Section 4, we introduce operator systems as these are needed to study nonlocal
games. An operator system is a selfadjoint subspace of a unital C∗-algebra that
contains the unit. Operator systems can also be defined as an abstract notion that
we need in order to introduce their tensor products.

In Section 5, we give basic concepts of quantum information as these are needed
to define the different strategies for nonlocal games and quantum nonlocal games.

In Section 6, we give an introduction to nonlocal games and study no-signalling
and quantum commuting strategies. Then we classify perfect strategies, which are
strategies that always win, by the state space of an operator system in a C∗-algebra.
For mirror games, which are nonlocal games where for some questions Alice’s answer
is determined by Bob’s answer and vice versa, we can classify the perfect quantum
commuting strategies by traces from a given C∗-algebra. These classification results
were shown in [19].

In Section 7, we generalize nonlocal games to quantum nonlocal games and
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2 C∗-algebras

show that nonlocal games are a subclass of quantum nonlocal games. Then we
define quantum output mirror games, an analogue of mirror games for nonlocal
games with classical questions but quantum answers. After this, we introduce two
sets of strategies for quantum nonlocal games: quantum no-signalling correlations
and quantum commuting quantum no-signalling correlations. These strategies are
given by quantum channels which fulfill the no-signalling condition introduced in [9],
preventing communication through this channel. Lastly, we get classification results
similar to the ones, we have for nonlocal games: We can classify the strategies by the
state space of an operator system in a C∗-algebra. These results were presented in
[25]. For quantum output mirror games, we can classify perfect quantum commuting
no-signalling strategies by traces from a given C∗-algebra. This result was presented
in [4].

2 C∗-algebras

In this section, we introduce some basics on C∗-algebras. Most of these results can
be found in [2].

Definition 2.1. (i) Let A be an algebra. A map ∗ : A→ A is called involution if
for all v, w ∈ A and λ ∈ C it holds that:

(a) (v∗)∗ = v,

(b) (λv + w)∗ = λv∗ + w∗,

(c) (vw)∗ = w∗v∗.

(ii) A C∗-algebra is an algebra A with an involution ∗ : A→ A and a norm ∥ · ∥ on
A such that

(a) (A, ∥ · ∥) is complete,

(b) ∥xy∥ ≤ ∥x∥∥y∥ for all x, y ∈ A,

(c) ∥ · ∥ fulfills the C∗-identity, i.e. ∥xx∗∥ = ∥x∥2 for all x ∈ A.

A C∗-algebra is called unital if there exist a neutral element with respect to
the multiplication.

(iii) Let A be a C∗-algebra and M ⊆ A, then C∗(M) is the C∗-algebra such that
for all C∗-algebras B ⊆ A, we have C∗(M) ⊆ B.

(iv) Let A and B be C∗-algebras. An algebra homomorphism φ : A→ B is called
a ∗-homomorphism if φ(x∗) = φ(x)∗.

Example 2.2. (i) Let A be a finite set and define ℓ∞(A) = {(λa)a∈A;λ ∈ C} with
pointwise addition, multiplication and (λa)

∗
a∈A = (λa)a∈A. If we equip ℓ∞(A)

with the norm ∥(λa)a∈A∥ = maxa∈A|λa|, then ℓ∞(A) is a C∗-algebra.
(ii) Let H be a Hilbert space. Then

B(H) = {A : H → H;A is a bounded linear map}

with the operator norm ∥B∥ = suph∈H,∥h∥≤1 ∥B(h)∥ for B ∈ B(H) and the
adjoint map T 7→ T ∗ as involution, defines a C∗-algebra.

2



2 C∗-algebras

(iii) Let X be a finite set and equip CX = ⊕x∈XC with ∥x∥ =
√∑

i∈X x
2
i . The

matrices MX , equipped with operator norm ∥A∥ = supx∈CX ,∥x∥≤1 ∥Ax∥ for

A ∈ MX and ∗ : MX → MX , A 7→ A∗ = At, form a C∗-algebra. Also, the
diagonal matrices DX ⊆MX form a C∗-algebra. If X = {1, ..., n} for a natural
number n, we write Mn.

(iv) Let X be a compact Hausdorff space. Then

C(X) = {f : X → C; f is continuous}, ∥f∥∞ = sup{|f(x)|;x ∈ X}

with pointwise multiplication and addition and f ∗ = f , is a C∗-algebra.

The next theorem will give a classification of unital commutative C∗-algebras:

Proposition 2.3 (Gelfand-Naimark). Let A be a commutative unital C∗-algebra.
Then there exists a compact Hausdorff space X such that there is an isometric
*-isomorphism ϕ : A→ C(X).

Definition 2.4. Let A be a C∗-algebra and x ∈ A:

(i) x is called selfadjoint if x = x∗

(ii) x is called normal if x∗x = xx∗.
(iii) x is called a projection if x = x∗ = x2.
(iv) x is called a partial isometry if x = xx∗x.

The following lemma will give a nice characterization of partial isometries:

Lemma 2.5. Let A be a C∗-algebra and x ∈ A. Then the following are equivalent:

(i) x is a partial isometry,
(ii) xx∗ is a projection,
(iii) x∗x is a projection.

Now we define positive elements.

Definition 2.6. Let A be a unital C∗-algebra and x ∈ A.

(i) We define Sp(x) = {λ ∈ C;λ1 − x is not invertible in A}. The set Sp(x) is
called the spectrum of x.

(ii) An element x ∈ A is called positive if x = x∗ and Sp(x) ⊆ [0,∞) and we denote
it by x ≥ 0. We write A+ for the set of positive elements in A.

(iii) Let x, y be elements in A. We write x ≥ y if x− y ≥ 0.

Positive elements have multiple characterizations.

Lemma 2.7. Let A be a C∗-algebra and x ∈ A. The following are equivalent:

(i) x ≥ 0,
(ii) There is a selfadjoint element y ∈ A such that y2 = x,
(iii) There is a unique positive element

√
x ∈ A such that

√
x
√
x = x,

(iv) There exists an element z ∈ A such that x = z∗z.

Lemma 2.8. Let A be a C∗-algebra and x1, ..., xn ∈ A be positive elements. Then∑n
i=1 xi ≥ 0.
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The following characterization of the set of positive elements is given in [18].

Lemma 2.9. Let A be a C∗-algebra and let Asa = {x ∈ A;x = x∗}. Then A+ is a
convex cone, i.e.

(i) λx ∈ A+ for all λ ∈ C, x ∈ A+,
(ii) x+ y ∈ A+ for all x, y ∈ A+.

Moreover, Asa = {x− y;x, y ∈ A+}.

Definition 2.10. Let A be a C∗-algebra and H be a Hilbert space. A representation
of A on H is a ∗-homomorphism π : A→ B(H).

Proposition 2.11 (GNS-representation). Let A be a C∗-algebra and s : A→ C be
a state. There exists a Hilbert space Hs, a representation πs : A → B(Hs) and a
vector ξs ∈ Hs such that s(a) = ⟨πs(a)ξs, ξs⟩ for all a ∈ A. Moreover, if A is unital,
we have that πs is unital and thus ξs is a unit vector.

The next proposition follows from the GNS-construction and gives a classification
of C∗-algebras as norm-closed subalgebras of bounded operators:

Proposition 2.12. Let A be C∗-algebra. There exists a Hilbert space H and an
injective representation π : A→ B(H). Therefore A is isomorphic to C∗-subalgebra
of B(H). If A is unital the representation is unital, i.e. π(1) = 1.

The next concept, we introduce, is universal C∗-algebras. This is just a brief
introduction. A more complete introduction to the construction of universal C∗-
algebras is for example presented in [18]. Universal C∗-algebras allow to define
certain C∗-algebras in a more abstract way and this can be used to describe many
known C∗-algebras like Mn and also lets us define tensor products and free products
of C∗-algebras.

Definition 2.13. Let I be an index set and E = {xi; i ∈ I} be a set of generators.
Let P (E) be the set of ∗-polynomials in E and R ⊆ P (E) be a set of relations.
Denote J(R) for the two sided ideal generated by R. Define A(E,R) = P (E)/J(R)
and

∥x∥ = sup{p(x); p is a C∗-seminorm on A(E,R)}.

If for all x ∈ A(E,R) we have ∥x∥ <∞, we call

C∗(E|R) = A(E,R)/{x ∈ A(E,R); ∥x∥ = 0}
∥·∥

the universal C∗-algebra generated by E with relations R.

There exists a universal property for universal C∗-algebras. This is one of the most
important properties as this gives us the connection between universal C∗-algebras
and C∗-algebras in general.

Proposition 2.14. Let I be an index set and E = {xi; i ∈ I} be generators and
R ⊆ P (E) be relations. Let B be a C∗-algebra containing E ′ = {yi; i ∈ I} satisfying
the relations R. Then there exists a unique ∗-homomorphism φ : C∗(E|R) → B such
that φ(xi) = yi for all i ∈ I.

Definition 2.15. Let A,B be unital C∗-algebras.
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(i) Let I be a finite set, we define the free product as

Ai1 ∗1 ... ∗1 Ain = C∗(a ∈
⋃
i∈I

Ai|1Ai
= 1Aj

, relations from Ai for all i, j ∈ I)

(ii) Let RA, RB be sets of relations such that C∗(A|RA) ∼= A and C∗(B|RB) ∼= B.
Then we define

A⊗C∗max B = C∗(a ∈ A, b ∈ B|ab = ba, 1A = 1B, RA, RB).

Now we will give some examples of C∗-algebras that will be used later in this
thesis. For this, we need the free product of groups. A reference for the free product
of groups is for example [23].

Example 2.16. Let A be a finite set.

(i) Let G be a discrete group. We define

C∗(G) = C∗((ug)g∈G|ug is a unitary, uguh = ugh, u
∗
g = ug−1).

Let n be a natural number and (Gi)i∈{1,...,n} be finite groups. Then we have
C∗(G1) ∗1 .. ∗1 C∗(Gn) = C∗(G1 ∗ ... ∗Gn). A reference for this identity is for
example [2].

(ii) Let Zn be the cyclic group with n elements. Then C∗(Zn) ∼= ℓ∞(A) if |A| = n
by the isomorphism

uk 7→
n∑

a=1

exp(2πi
a

n
)ea

where ea denotes the standard basis of ℓ∞(A). This isomorphism is taken from
Remark 3.2 of [12].

(iii) Recall ℓ∞(A) from Example 2.2. Let X be another finite set. We can define
A(X,A) = ℓ∞(A) ∗1 ... ∗1 ℓ∞(A) for |X| copies of ℓ∞(A). Thus we get that
A(X,A) ∼= C∗(Z|A| ∗ ... ∗ Z|A|) with the free product containing |X| copies of
Z|A|. We denote (ex,a)x∈X,a∈A for the standard basis in the x-th copy of ℓ∞(A).
Since (ea)a∈A generates ℓ∞(A), we get that (ex,a)x∈X,a∈A generates A(X,A).

(iv) Let X be another finite set. We can also define BX,A =MA ∗1 ... ∗1MA for |X|
copies of MA. Note that {eae∗a′ ; a, a′ ∈ A} is a basis of MA where is the matrix
eae

∗
a′ : CA → CA, x 7→ eae

∗
a′x. Therefore we get that (ex,a,a′)x∈X,a,a′∈A, where

ex,a,a′ is eae
∗
a′ in the x-th copy of MA, generates BX,A.

(v) We define

M̃A = C∗(ea,a′ , a, a
′ ∈ A|e∗a,a′ = ea′,a, ea,a′ea′′,a′′′ = δa′,a′′ea,a′′′ for all a, a

′, a′′, a′′′).

Now we define positive maps as these will be used in Section 6.4 to classify
strategies for nonlocal games as states which are positive maps. They also play an
important role in Section 7 as they are both used to define strategies for quantum
nonlocal games as well as to classify these strategies.

Definition 2.17. Let A,B be C∗-algebras.

(i) A linear map ϕ : A→ B is called positive if ϕ(x) ≥ 0 for all x ≥ 0.
(ii) Let s : A→ C be a positive map. The map s is called a state if ∥s∥ = 1.
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(iii) Let τ : A→ C be a state. τ is called a trace (or a tracial state) if τ(ab) = τ(ba)
for all a, b ∈ A.

The following Lemma collects some useful results about positive maps:

Lemma 2.18. Let A be a unital C∗-algebra.

(i) A positive map s : A→ C is a state if and only if s(1) = 1.
(ii) Let ϕ : A → C be a positive map. Then ϕ is involutive, i.e. ϕ(x∗) = ϕ(x) for

all x ∈ A.
(iii) Let ϕ : A→ C be a positive map. Then ϕ is continuous.

3 Traceclass operators

This section introduces traceclass operators which are an important class of operators
as the set of traceclass operators is the predual of the bounded operators. This
identification will be used later on in this thesis to define quantum commuting quan-
tum no-signalling correlations in Section 7.3. The following approach to traceclass
operators is mainly taken from [7]. Although in the book it is restricted to separable
Hilbert spaces, the proofs from this book that we used in this thesis either pass
verbatim or just need slight adaptation for the non separable case. In this section,
we will use some results from functional analysis like the polar decomposition of an
operator and spectral decomposition of selfadjoint compact operators. These results
can be found in [8].

Lemma 3.1. Let H be a Hilbert space and let A ∈ B(H) be an operator such that
there exists an index set I and an orthonormal basis (ei)i∈I such that the sum satisfies∑

i∈I ∥Aei∥2 <∞. Then for every orthonormal basis (fj)j∈J , it follows that∑
i∈I

∥Aei∥2 =
∑
i∈I

∥A∗ei∥2 =
∑
i∈J

∥Afj∥2.

Proof. From Parsevals Identity, it follows that:∑
i∈I

∥Aei∥2 =
∑
i∈I

∑
j∈J

|⟨Aei, fj⟩|2 =
∑
i∈I

∑
j∈J

|⟨ei, A∗fj⟩|2 =
∑
j∈J

∥A∗fj∥2

For (fj)j∈J = (ei)i∈I it follows that
∑

i∈I ∥Aei∥2 =
∑

i∈I ∥A∗ei∥2 and therefore also∑
i∈I ∥Aei∥2 =

∑
j∈J ∥Afj∥2 for an arbitrary orthonormal basis (fj)j∈J .

Definition 3.2. Let H be a Hilbert space. An operator A ∈ B(H) is called
Hilbert-Schmidt operator if there exists an orthornomal basis (ei)i∈I such that∑

i∈I ∥Aei∥2 <∞. Define BHS to be the space of Hilbert-Schmidt operators equipped

with the norm ∥A∥HS =
√∑

i∈I ∥Aei∥2 for an orthonormal basis (ei)i∈I ∈ H.

Although it is not done in this thesis, it is straightforward to check that ∥ · ∥HS

actually defines a norm.

Definition 3.3. Let H be a Hilbert space. The set T (H) = {AB;A,B ∈ BHS(H)}
is called traceclass. An operator T ∈ T (H) is called traceclass operator.
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3 Traceclass operators

Lemma 3.4. Let T ∈ T (H). Then the sum∑
i∈I

⟨Tei, ei⟩ =
∑
j∈J

⟨Tfj, fj⟩ <∞

for any two orthonormal basis (ei)i∈I , (fj)j∈J ⊆ H.

Proof. As T ∈ T (H), there exist A,B ∈ BHS(H) such that T = AB. Lemma 3.1
shows that C = A∗ ∈ BHS(H). Therefore T = C∗B. Let (ej)j∈J be an orthonormal
basis of H.

4⟨Bej, Cej⟩
=(∥Bej + Cej∥2 − ∥Bej − Ce2∥) + i(∥Bej + iCej∥2 − ∥Bej − iCej∥2)
=(∥Bej + Cej∥2 + ∥Bej − Cej∥2) + i(∥Bej + iCej∥2 + ∥Bej − iCej∥2)
=2(∥Bej∥2 + ∥Cej∥2) + 2i(∥Bej∥2 + ∥iCej∥2)

Using this identity and the triangle inequality, it follows that:∑
j∈J

|⟨Tej, ej⟩| =
∑
j∈J

|⟨Bej, Cej⟩| ≤
∑
j∈J

(∥Bej∥2 + ∥Cej∥2) <∞

Now we show that
∑

i∈I⟨Tei, ei⟩ is independent of the choice of the orthonormal
basis, by using the identity at the start of the proof again:∑

j∈J

⟨Tej, ej⟩

=
∑
j∈J

⟨Bej, Cej⟩

=
∑
j∈J

2(∥Bej∥2 + ∥Cej∥2) + 2i(∥Bej∥2 + ∥iCej∥2)

=2
∑
j∈J

∥Bej∥2 + 2
∑
j∈J

∥Cej∥2 + 2i
∑
j∈J

∥Bej∥2 + 2i
∑
j∈J

∥iCej∥2

And from Lemma 3.1 it follows that all four sums are independent of the basis.

Lemma 3.4 shows that the following definition is well defined:

Definition 3.5. Let H be a Hilbert space and let (ei)i∈I ⊆ H be an orthonormal
basis. The map Tr: T (H) → C, T 7→

∑
i∈I⟨Tei, ei⟩ is called the trace functional.

Proposition 3.6. Let H be a Hilbert space and let A ∈ B(H) be an operator. The
following statements are equivalent:

(i) Tr |A| <∞
(ii) A ∈ T (H)
(iii) |A| ∈ T (H)

Proof. (i) ⇒ (ii) :
|A| is positive, therefore it follows from Lemma 2.7 that there exists a unique

7
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positive operator
√
|A| such that |A| =

√
|A|
√
|A|. And for any orthonormal basis

(ei)i∈I ∈ H:

∑
i∈I

∥
√
|A|ei∥2 =

∑
i∈I

⟨
√

|A|ei,
√

|A|ei⟩ =
∑
i∈I

⟨|A|ei, ei⟩ <∞

So
√

|A| ∈ BHS(H). Consider the polar decomposition ofA = W |A| = (W
√
|A|)(

√
|A|).

So it suffices to show that W
√

|A| ∈ BHS(H) to show (ii).

∑
i∈I

∥W
√
|A|ei∥2 ≤

∑
i∈I

∥W∥2∥
√

|A|ei∥2 <∞ (1)

(ii) ⇒ (iii) :
A ∈ T (H) implies that there exist B,C ∈ BHS(H) such that A = BC. And from the
polar decomposition, it also follows that |A| = W ∗A = (W ∗B)C and analogous to
(1), it follows that W ∗B ∈ BHS(H) and therefore (iii).
(iii) ⇒ (i) :
Follows from Lemma 3.4.

Remark 3.7. Proposition 3.6 explains the name traceclass operator for T (H) as
those are exactly the operators T ∈ B(H) such that Tr |T | <∞.

Example 3.8. Let n ∈ N be a natural number and Cn be the inner product
⟨u, v⟩ = vtu for u, v ∈ Cn. The trace Tr(M) =

∑n
i=1Mi,i for matrices M ∈ Mn, is

equal to
∑

i∈I⟨Mei, ei⟩ for the standard basis ei ∈ Cn and since we can identify Mn

as B(Cn), this shows that both definitions coincide.

Proposition 3.9. Let H be a Hilbert space. The set T (H) forms a normed vector
space equipped with the norm ∥T∥Tr = Tr(|T |).

Proof. It is straightforward to check that T (H) is a vector space and that ∥T∥Tr
defines a norm is Theorem 1.11 (a) in [7].

Lemma 3.10. Let H be a Hilbert space. For all A ∈ B(H), B ∈ BHS(H) and
T ∈ T (H), it holds:

(i) |Tr(A|T |)| ≤ ∥A∥∥T∥Tr
(ii) ∥AB∥HS ≤ ∥A∥∥B∥HS and ∥BA∥HS ≤ ∥B∥HS∥A∥
(iii) ∥AT∥Tr ≤ ∥A∥∥T∥Tr

Proof. Let (ei)i∈I ⊆ H be an orthonormal basis.
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3 Traceclass operators

(i)

|Tr(A|T |)| =

∣∣∣∣∣∑
i∈I

⟨A|T |ei, ei⟩

∣∣∣∣∣
≤
∑
i∈I

|⟨
√

|T |ei,
√
|T |A∗ei⟩|

≤
∑
i∈I

∥
√
|T |ei∥∥

√
|T |A∗ei∥

≤
√∑

i∈I

∥
√

|T |ei∥2
√∑

i∈I

∥
√

|T |A∗ei∥2

= ∥
√
T∥HS∥

√
TA∗∥HS

≤ ∥
√
T∥2HS∥A∥

≤

(∑
i∈I

∥
√
Tei∥

)
∥A∥

≤

(∑
i∈I

⟨
√

|T |ei,
√
|T |ei⟩

)
∥A∥

≤

(∑
i∈I

⟨|T |ei, ei⟩

)
∥A∥

≤ ∥T∥Tr∥A∥

(ii)

∥AB∥HS =

√∑
i∈I

∥ABei∥2 ≤
√∑

i∈I

(∥A∥∥Bei∥)2 = ∥A∥∥B∥HS

∥BA∥HS = ∥(A∗B∗)∗∥HS = ∥A∗B∗∥HS ≤ ∥A∗∥∥B∗∥HS = ∥A∥∥B∥HS

(iii) Let W1|T | = T be the polar decomposition of T and let W2|AT | = AT be the
polar decomposition of AT . Define S = W ∗

2AW1, then

∥AT∥Tr = Tr(W ∗
2AT )

= Tr(W ∗
2AW1|T |)

= Tr(S|T |)
≤ ∥T∥Tr∥S∥
≤ ∥T∥Tr∥W2∥∥A∥∥W1∥
= ∥T∥Tr∥A∥

Lemma 3.11. Let H be a Hilbert space. The map ϕB : T (H) → C, T 7→ Tr(BT )
defines a well defined continous linear function with ∥ϕB∥ ≤ ∥B∥ for every B ∈ B(H).
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3 Traceclass operators

Proof. Let S, T ∈ T (H), let λ ∈ C and let (ei)i∈I ⊆ H be an orthonormal basis. The
linearity follows from:

ϕB(S + λT ) =
∑
i∈I

⟨B(S + λT )ei, ei⟩

=
∑
i∈I

⟨BSei, ei⟩+
∑
i∈I

λ⟨BTei, ei⟩

= ϕB(S) + λϕB(T )

LetWT = |T | be the polar decomposition of T . Then ∥ϕB∥ ≤ ∥B∥ and the continuity
follow from:

|ϕB(T )| = |Tr(BW ∗|T |)|
≤ ∥B∥∥W∥∥T∥Tr
= ∥B∥∥T∥Tr

Let H be a Hilbert space. Then we denote the set of operators with finite
dimensional range by F (H) = {F ∈ B(H); dim(Im(F )) <∞}.

Lemma 3.12. Let H be a Hilbert space. Then it holds:

(i) ∀B ∈ BHS(H) : ∥B∥ ≤ ∥B∥HS

(ii) BHS(H) ⊆ K(H)
(iii) T (H) ⊆ K(H)
(iv) F (H) ⊆ T (H) and F (H) is dense in T (H).

Proof. (i) Let e be a unit vector. As there exists an orthonormal basis containing
e, it follows that

∥Ae∥ ≤ ∥A∥HS ∀e ∈ H, ∥e∥ = 1

⇒∥A∥ ≤ ∥A∥HS

(ii) Let A ∈ BHS(H) and let (ei)i∈I ⊆ H. For n ∈ N, there exists a finite set In ⊆ I
such that

|
∑
i∈I

∥Aei∥2 −
∑
i∈In

∥Aei∥2| <
1

n

Let An ∈ F (H) such that An(h) =
∑

i∈In⟨h, ei⟩Aei for all h ∈ H.

∥An − A∥ ≤ ∥An − A∥HS =

√∑
i∈I\In

∥Aei∥2 <
√

1

n

(iii) Since T (H) = {AB,A,B ∈ BHS(H)} and the compact operators form an ideal,
the statement follows directly from (ii).

(iv) Let F ∈ F (H) be a finite rank operator. Then there exists a set of λi ∈ C
and orthogonal sets of unit vectors (ei)

n
i=1, (ei)

n
i=1 ⊆ H such that we can write

10



3 Traceclass operators

F (h) =
∑n

i=1 λi⟨h, ei⟩fi for all h ∈ H. Extend (ei)
n
i=1 to an orthonormal basis

(ei)i∈I . Let W |F | = F be the polar decomposition of F .

∥F∥Tr =
∑
i∈I

⟨|F |ei, ei⟩ =
∑
i∈I

⟨WFei, ei⟩ =
n∑

i=1

⟨Wλifi, ei⟩ <∞

Let A ∈ T (H) be a traceclass operator. We first show that |A| can be
approximated by operators of finite rank. Since |A| is selfadjoint and also
compact, it follows that there exists a decomposition of (λ)∞i=1 ⊆ C and an
orthogonal set of unit vectors (ei)

∞
i=1 such that Ah =

∑∞
i=1 λi⟨h, ei⟩ei for all

h ∈ H. Define An as
∑n

i=1 λi⟨h, ei⟩ei. Then extend (ei)
∞
i=1 to an orthogonal

basis (ei)i∈I and use |A| − An =
∑∞

i=k+1 λn⟨h, en⟩en to get:

∥|A| − An∥Tr =
∞∑

i=k+1

⟨λiei, ei⟩ =
∞∑

i=k+1

λi
n→∞→ 0

since ∥A∥Tr =
∑∞

i=1 λi <∞. Let W |A| = A be the polar decomposition of A.
Then consider the sequence WAn ∈ F (H)

∥(A−WAn)∥Tr = ∥W (|A| − An)∥Tr ≤ ∥W∥∥|A| − An∥Tr
n→∞→ 0

Therefore A can also be approximated by operators of finite rank and therefore
F (H) is dense in T (H).

Proposition 3.13. Let H be a Hilbert space and let

T (H)d = {f : T (H) → C; f is continuous and linear}

be the topological dual space of T (H). The map D : B(H) → T (H)d, B 7→ ϕB is an
isometric isomorphism from (B(H), ∥ · ∥) to (T (H), ∥ · ∥Tr) and therefore T (H) is
the predual of B(H).

Proof. From Lemma 3.11 it follows that D is well defined and the linearity is easy
to check. ∥D(B)∥ ≤ 1 for all B ∈ B(H) follows directly from Lemma 3.11.
Now we show ∥D(B)∥ ≥ 1 for all B ∈ B(H):
Let 0 ̸= B ∈ B(H) be an operator and let ε > 0. Then there exists a unit vector g ∈ H

such that ∥Bg∥ > ∥B∥ − ε. Then consider the map F : H → H, h 7→
〈
h, Bg

∥Bg∥

〉
g.

Let (ei)i∈I ⊆ H be an orthonormal basis containing Bg
∥Bg∥ . Then ∥F∥Tr = 1.

∥D(B)∥ = ∥ϕB∥ ≥ |Tr(BF )| =

∣∣∣∣∣∑
i∈I

⟨B⟨ei,
Bg

∥Bg∥
⟩g, ei

∣∣∣∣∣ =
〈
Bg,

Bg

∥Bg∥

〉
= ∥Bg∥

As ∥Bg∥ = ∥B∥ − ε and ε > 0 arbitrary, it follows that ∥D(B)∥ ≥ ∥B∥ Therefore D
is an Isometry and thus also injective.
So it remains to show that D is surjective. The operators of finite rank are dense
in T (H) and therefore it is sufficient to show that for every ϕ ∈ T (H)d there
exists an operator Aϕ ∈ B(H) such that Tr(AϕF ) = ϕ(F ) for all F ∈ F (H) with
rank(F ) = 1. Let f, h ∈ H be vectors then all rank 1 operators can be written as

11



4.1 Basics on operator systems

f ⊗ g : H → H, h 7→ ⟨h, g⟩f . Now consider the map [f, g] = ϕ(f ⊗ g). It is easy to
check that this is a sesquilinear form. From the continuity of ϕ and the Lax-Milgram
theorem, it follows that the exists Aϕ such that ϕ(f ⊗ g) = [f, g] = ⟨Aϕf, g⟩. Let
(ei)i∈I be an orthonormal basis of H containing f

∥f∥ .

Tr(Aϕ(f ⊗ g)) =

〈
Aϕ

〈
f

∥f∥
, f

〉
g,

f

∥f∥

〉
= ⟨Aϕg, f⟩ = ϕ(f ⊗ g)

This shows that D is surjective and therefore that D is an isometric isomorphism.

This Proposition essentially states that T (H) is the predual of B(H) and defines
a map that identifies each element of B(H) with an element in T (H)d.

4 Operator systems

4.1 Basics on operator systems

Although the following theory was first introduced in [5], this section follows more
closely the corresponding sections in [15] and [20]. We will introduce abstract operator
systems and concrete operator systems and compare these two structures.

Definition 4.1. (i) A ∗-vector space is a complex vector space V and a map
∗ : V → V that is involutive (i.e. (v∗)∗ = v for all v ∈ V ) and conjugate linear.
We denote Vh = {v ∈ V ; v∗ = v} for the set of hermitian elements of V .

(ii) An ordered ∗-vector space is a pair (V, V +) consisting of a ∗-vector space v
and a subset V + ⊆ Vh satisfying the following conditions:

(a) V + is a cone in Vh, i.e for all u, v ∈ V +, λ ∈ C, λ ≥ 0, we have that
u+ v ∈ V +, λv ∈ V +.

(b) Denote −V + = {−v; v ∈ V +}, then V + ∩ (−V +) = {0}.
The elements v ∈ V + are called positive elements.

Lemma 4.2. Let (V, V +) be an ordered ∗-vector space. Then ≥ defines a partial
order on Vh by v ≥ w ⇔ v − w ∈ V + for v, w ∈ Vh.

As 0 is hermitian, we can see that for v ∈ Vh, it holds that v ≥ 0 ⇔ v ∈ V +.
This explains the name positive elements for v ∈ V +.

Definition 4.3. Let (V, V +) be an ordered ∗-vector space.

(i) An element e ∈ Vh is called order unit if for all v ∈ Vh, there exists a real
number r > 0 such that re ≥ v. e is called Archimedean order unit if it also
fulfills for all v ∈ V :

(∀r > 0 : re+ v ≥ 0) ⇔ v ∈ V +.

(ii) A triple (V, V +, e) is Archimedean ordered ∗-vector space (AOU space) if e is
an Archimedean order unit on (V, V +).

We denote by Mm,n(V ) the m× n matrices with entries in V . Let X ∈Ml,m be
a scalar matrix. Then we define XA as (XA)i,j =

∑m
k=1 xi,kak,j and BX analogous

for B ∈ Mn,l. Denote Mn(V ) = Mn,n(V ). Then we can also define an involution
∗ : Mn(V ) → Mn(V ), (ai,j)i,j 7→ (a∗j,i)i,j. With this operation Mn(V ) becomes a
∗-vector space.

12



4 Operator systems

Definition 4.4. Let V be a ∗-vector space. {Cn}∞n=1 is a matrix ordering on V if

(i) Cn is a cone in Mn(V )h for all n ∈ N,
(ii) Cn ∩ (−Cn) = {0} for all n ∈ N,
(iii) for all n,m ∈ N and X ∈Mn,m, we have X∗CnX ⊆ Cm.

If {Cn}∞n=1 is a matrix ordering on V , we call (V, {Cn}∞n=1) a matrix ordered ∗-vector
space.

Lemma 4.5. Let (V, {Cn}∞n=1) be a matrix ordered ∗-vector space. Then (Mn(V ), Cn)
is an ordered ∗-vector space for all n ∈ N.

Proof. Mn(V ) is a ∗-vector space with the involution defined above. If we set
Mn(V )+ = Cn conditions (i) and (ii) in the definition above are exactly the conditions
from Definition 4.1.

Definition 4.6. Let (V,C∞
n=1) be a matrix ordered ∗-vector space.

(i) Let e ∈ Vh be a selfadjoint element, we define the diagonal matrix

en : =

e . . .

e

 ∈Mn(V ).

e is called an archimedean matrix order unit if for all n ∈ N en is an archimedean
order unit for the ordered ∗-vector space (Mn(V ), Cn).

(ii) A triple (V, {Cn}∞n=1, e) is called abstract operator system if V is a ∗-vector
space, {Cn}∞n=1 is a matrix ordering on V and e ∈ Vh is an Archimedean matrix
order unit.

(iii) Let H be a Hilbert space. A concrete operator system S ⊆ B(H) is a subspace
such that I ∈ S and S = S∗ = {A∗;A ∈ S}.

Remark 4.7. Let (V, {Cn}∞n=1, e) be an abstract operator system, then we get that
(Mn(V ), Cn, en) is an AOU space, because (Mn(V ), Cn) is an ordered ∗-vector space
by Lemma 4.5 and en is an archimedean order unit for Mn(V ).

Definition 4.8. (i) Let (V, {Cn}∞n=1), (V
′, {C ′

n}∞n=1) be matrix ordered ∗-vector
spaces and ϕ : V → V ′ be a linear map. For each n ∈ N, define the map
ϕn : Mn(V ) → Mn(V

′), (vi,j)i,j 7→ (ϕ(vi,j))i,j. The map ϕ is called completely
positive if ϕn(Cn) ⊆ ϕ(C ′

n) for all n ∈ N. ϕ is called a complete order
isomorphism if ϕ is invertible and both ϕ and ϕ−1 are completely positive.

(ii) Let (V, {Cn}∞n=1, e), (V
′, {C ′

n, e
′}∞n=1) be abstract operator systems such that

V ⊆ V ′. We write V ⊆c.o.i. V
′ if the identity map V → V ′ is a complete order

isomorphism on its image.
(iii) Let (V, {Cn}∞n=1, e), (V

′, {C ′
n, e

′}∞n=1) be abstract operator systems. A linear
map ϕ : V → V ′ is called unital if ϕ(e) = e′.

Remark 4.9. Let (V, {Cn}∞n=1), (V
′, {C ′

n}∞n=1) be matrix ordered ∗-vector spaces
and ϕ : V → V ′ be a completely positive map. In Lemma 4.2, we gave a partial
order on Mn(V )h. Now let n ∈ N be a natural number and v, w ∈Mn(V )h such that
ϕ(v), ϕ(w) ∈Mn(V

′)h and v ≥ w, we have that ϕ(v) ≥ ϕ(w) because

ϕ(v)− ϕ(w) = ϕ(v − w) ∈Mn(V
′)+.

Therefore a completely positive map preserves the order on all matrix levels.
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4.2 Operator systems in C∗-algebras

Let H be a Hilbert space and S ⊆ B(H) be a concrete operator system. We
can identify Mn(B(H)) = B(Hn) where Hn =

⊕n
k=1H. By doing this we get an

involution onMn(B(H)) and an order structure from B(Hn). SoMn(S) is an ordered
∗-vector space. One can also show that (S, S+, I) defines an abstract operator system
and therefore every concrete operator system is an abstract operator system. The
converse is true as well. The following result was first shown in [5] and it is also
shown in [20].

Proposition 4.10 (Choi-Effros). Let H be a Hilbert space and S ⊆ B(H) be a
concrete operator system. Then (S, {Mn(S)

∗}∞n=1, I) is an abstract operator system.
Conversely let (V, {Cn}∞n=1, e) be an abstract operator system. Then there exists
a Hilbert space H̃, a concrete operator system S̃ ⊆ B(H̃) and a complete order
isomorphism φ : V → S̃ such that φ(e) = IH̃ .

From this proposition, we get a connection between abstract operator systems
and concrete operator systems similar to the the connection we get from the GNS-
construction between C∗-algebras and C∗-subalgebras of bounded operators on a
Hilbert space.

From Proposition 4.10 follows that we get that we just need the term operator
system and we can use either use the abstract or concrete operator system description,
depending on what is needed in that case.

In Section 3 of [22] the concept of Archimedeanization of an matrix ordered
∗-vector space (V, {Cn}∞n=1 with an matrix order unit e was introduced. The
Archimedeanization (V, {Cn}∞n=1, e) turns into an operator system but in general the
Archimedeanization of V does not have V as the underlying space but V/N , where
N is a subspace that is closed under the ∗-operation. In this thesis, it is sufficient
to consider the Archimedeanization of a matrix ordered ∗-vector space (V, {Cn}∞n=1)
with a matrix order unit e such that (V,C1, e) is an AOU space. By Proposition 3.20
in [22], we get the result:

Lemma 4.11. Let (V, {Cn}∞n=1, e) be a matrix ordered ∗-vector space with matrix
order unit e and (V,C1, e) is an AOU space. Then there exists an operator system
Varch = (V,Carch

n , e), where the matrix ordering Carch
n is given by Carch

1 = C1 and

Carch
n = {A ∈Mn(V ); ren + A ∈ Cn ∀r > 0}, n ≥ 2.

4.2 Operator systems in C∗-algebras

In the previous subsection, we established a connection between abstract and concrete
operator systems from Proposition 4.10. In this section, we will introduce operator
systems in C∗-algebras and identify these as operator systems from Section 4.1.

Definition 4.12. Let A be a unital C∗-algebra and S ⊆ A be a subspace such that
S = S∗ and 1 ∈ S. Then we call S an operator system.

Lemma 4.13. Let A be a unital C∗-Algebra and S ⊆ A be an operator system. Then
there exists a concrete operator system S̃ ⊆ B(H) and a representation π : A→ B(H)
such that S̃ ∼= S.

Proof. By Proposition 2.12, we get that there exists a unital, injective representation
π : A → B(H). Consider S̃ = π(S), then 1 = π(1) ∈ S̃ and π(x)∗ = π(x∗) ∈ S̃.
Therefore S̃ is a concrete operator system and since π is faithful S ∼= S̃.
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4 Operator systems

From this lemma, we get a canonical way to identify operator systems of a unital
C∗-Algebra A as operator systems from Section 4.1. B(H) is a unital C∗-Algebra
and therefore we also get a way to identify the operator systems from Section 4.1 in
the C∗-algebraic way.

Let S ⊆ A be an operator system in a unital C∗-algebra A. Then we can also
show that (S, S+, 1) where S+ are the positive elements of A that belong to S, form
an abstract operator system. Hence all three notions are equivalent.

Now we want to define completely positive maps in C∗-algebras and introduce
some of their properties. A good reference for this is [20]. For this we need to see
that Mn(A) is also a C∗-algebra:

Let H be a Hilbert space and let A be a C∗-algebra. Now let π : A → B(H)
be an injective representation of A. We can identify Mn(B(H)) = B(Hn) where
Hn =

⊕n
k=1H. Thus we can define

πn : Mn(A) → B(Hn) ∼= Mn(B(H)), (ai,j) 7→ (π(ai,j)).

From this we get a C∗-Norm by ∥(ai,j)∥ = ∥π(ai,j)∥.

Definition 4.14. Let A,B be unital C∗-algebras, S ⊆ A be an operator system and
ϕ : S → B be a linear map. Let Mn(S) ⊆Mn(A) be the matrices with entries in S.
And for a linear map ϕ : S → B, we define

ϕn : Mn(S) →Mn(B), (ai,j) 7→ (ϕ(ai,j)).

In this situation, we get:

(i) ϕ is called positive if ϕ(x) ≥ 0 for all x ∈ S+ = S ∩ A+.
(ii) ϕ is called a state if ϕ is positive and ϕ(1) = 1.
(iii) ϕ is called n-positive if ϕn is positive.
(iv) ϕ is called completely positive if ϕn is positive for all n ∈ N.

Remark 4.15. In Definition 4.8, we already defined the completely positive for
maps between abstract operator systems. These two definitions coincide if we choose
the abstract operator space (S, S+, 1) for the operator system S.

Analogous to Lemma 2.18 we get:

Lemma 4.16. Let A be a unital C∗-algebra and S ⊆ A an operator system.

(i) Let ϕ : S → C be a positive map. Then ϕ is involutive, i.e. ϕ(x∗) = ϕ(x) for
all x ∈ A.

(ii) Let ϕ : S → C be a positive map. Then ϕ is continuous.

A useful characterization of completely positive maps is given by Choi’s Theorem
which is proven in [20, Theorem 3.14]:

Proposition 4.17 (Choi’s Theorem). Let B be a C∗-algebra, let ϕ : Mn → B. The
following are equivalent:

(i) ϕ is completely positive,
(ii) ϕ is n-positive
(iii) The Choi Matrix of ϕ, which is given by (ϕ(eie

∗
j))

n
i,j=1, is positive in Mn(B).
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Proposition 4.18 (Krein’s Theorem). Let A be a unital C∗-algebra, S ⊆ A be an
operator system and ϕ : S → C be positive. Then there exists a positive extension
Φ: A→ C such that Φ|S = ϕ.

In general, there are positive maps that are not completely positive. One example
of this is the transpose map and this is shown in Chapter 1 of [20]. The following
result is Theorem 3.9 and Theorem 3.11 in [20].

Proposition 4.19. Let A be a commutative C∗-algebra, B be a unital C∗-algebra
and S ⊆ B be an operator system

(i) Let ϕ : A→ B be a positive map. Then ϕ is completely positive.
(ii) Let ψ : S → A be a positive map. Then ψ is completely positive.

The following lemma is Theorem 12.8 in [20] and will be useful in a proof in
Section 6.4 as it gives an extension of completely positive maps to the maximal
tensor product:

Lemma 4.20. Let A1, A2, B be unital C∗-algebras and ϕ1 : A1 → B and ϕ2 : A2 → B
be completely positive maps with commuting ranges. Then there exists a completely
positive map

ϕ1 ⊗C∗max ϕ2 : A1 ⊗C∗max A2 → B s.t. ϕ2 : A1 ⊗C∗max A2(a1 ⊗ a2) = ϕ1(a1)ϕ(a2).

Lastly in this subsection, we define the coproduct of operator systems and give
an example of this which will be used in Section 6.4.

Lemma 4.21. Let A1, ..., An be unital C∗-Algebras and S1 ⊆ A1, ..., Sn ⊆ An be
operator systems. Then the set

S = span({s1 + ...+ sn; si ∈ Si, i = 1, ..., n}) ⊆ A1 ∗1 ... ∗1 An

is an operator system.

Proof. Since 1A1 ∈ Si and in A1 ∗1 ... ∗1 An, we have 1 = 1A1 , we get 1 ∈ S. That S
is a linear subspace follows from the definition and since S1, ..., Sn are selfadjoint and
sums of selfadjoint elements are selfadjoint, we get that S is an operator system.

Definition 4.22. Let A1, ..., An be unital C∗-Algebras and S1 ⊆ A1, ..., Sn ⊆ An

be operator systems. Then we call the operator system S, defined in Lemma 4.21,
coproduct of the operator systems S1, ..., Sn.

Now we give an example of a coproduct of operator systems that will be used in
Section 6.4:

Example 4.23. Let X,A be finite sets.

(i) Recall ℓ∞(A) from Example 2.2 and A(X,A) from Example 2.16. If we choose
the operator systems to be |X| copies of ℓ∞(A), we get that the coproduct of
these operator systems is

SX,A = span{ex,a;x ∈ X, a ∈ A} ⊆ A(X,A)

where ex,a is the a-th element of the standard basis of the x-th copy of ℓ∞(A).
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(ii) Recall BX,A from Example 2.16. Similar to the last example, if we choose the
operator system to be |X| copies of MA, we get that the coproduct of these
operator systems is

RX,A = span{ex,a,a′ ;x ∈ X, a, a′ ∈ A} ⊆ B(X,A)

where ex,a,a′ is eae
∗
a′ in the x-th copy of MA.

In the literature, the coproduct of operator systems is usually defined by its
universal property. For example in Section 8 in [14] or Section 5 in [10]. From the
results in Section 5 in [10], we get that these two definitions coincide. Thus we get
the following lemma:

Lemma 4.24. Let A1, ..., An, B be unital C∗-algebras and S1 ⊆ A1, ..., Sn ⊆ An be
operator systems and let S be the coproduct of S1, ..., Sn. Let T ⊆ B be an operator
system and ϕ1 : S1 → T, ..., ϕn : Sn → T be unital completely positive maps. For
m ∈ {1, ..., n}, denote by im : Sm → S the inclusion map of Sm into the coproduct.
Then there exists a unique unital completely positive map ϕ : S → T such that
ϕm = ϕ ◦ im for all m ∈ {1, ..., n}.

4.3 Tensor products of operator systems

The theory from this section is mainly taken from [15]. Let S and T be operator
systems. We denote by S ⊗ T the algebraic tensor product. Let n,m ∈ N be
natural numbers, then we can use the Kronecker identification of Mn ⊗Mm

∼= Mnm

by identifying (xi,j)i,j ⊗ (yk,l)k,l with (xi,jyk,l)(i,k),(j,l). Using this we can identify
Mn(S)⊗Mm(T ) byMnm(S⊗T ) by identifying (si,j)i,j⊗(tk,l)k,l with (si,j⊗tk,l)(i,k),(j,l).
With this, we can define tensor products of operator systems that keep the operator
system structure:

Definition 4.25. (i) Let (S, {Pn}∞n=1, e1) and (T, {Qn}∞n=1, e2) be operator sys-
tems and let τ = {Cn}∞n=1 be a family of cones with Cn ⊆Mn(S ⊗ T ). We say
S ⊗τ T has operator system tensor structure on S ⊗ T if it satisfies:

(a) (S ⊗ T, {Cn}∞n=1, e1 ⊗ e2) is an operator system denoted S ⊗τ T ,

(b) Pn ⊗Qm ⊆ Cnm for all n,m ∈ N,
(c) If ϕ : S →Mn and ψ : T →Mm are unital completely positive maps, then

ϕ⊗ ψ : S ⊗τ T →Mmn is a unital completely positive map.

We will write M+
n (S ⊗τ T ) = Cn.

(ii) Let O be the class of operator systems. An operator system tensor product is
a map τ : O ×O → O such that for all operator systems S, T ∈ O, we have
that S ⊗τ T = τ(S, T ) has operator system tensor structure on S ⊗ T .

(iii) Let τ1, τ2 be operator system tensor structures on S ⊗ T . τ1 is greater than τ2
if the identity map id: S ⊗τ1 T → S ⊗τ2 T is completely positive.

Remark 4.26. Let S, T be two operator systems and τ1, τ2 be operator system
tensor structures on S ⊗ T .

(i) A difference to other tensor product constructions is that the elements of S⊗τ1T
and S ⊗τ2 T are always the same, as well as order unit. The difference is that
the tensor products classify the positive elements of S ⊗ T and Mn(S ⊗ T ) for
all n ∈ N.

17



4.3 Tensor products of operator systems

(ii) We defined τ1 is greater than τ2 if the if the identity map id: S⊗τ1 T → S⊗τ2 T
is completely positive. This is exactly the case if Mn(S ⊗τ1 T ) ⊆Mn(S ⊗τ2 T )
for all n ∈ N.

Definition 4.27. Let O denote the class of operator systems and τ : O ⊗O → O
be an operator system tensor product.

(i) We call τ functorial if for any four operator systems S1, S2, T1, T2 and unital
completely positive maps ϕ : S1 → S2,ψ : T1 → T2, it follows that the map
ϕ⊗ ψ : S1 ⊗ T1 → S2 ⊗ T2 is unital completely positive.

(ii) We call τ symmetric if for all operator systems S, T the linear extension of the
map θ : S ⊗τ T → T ⊗τ S, x⊗ y → y ⊗ x is a complete order isomorphism.

(iii) We call τ associative if for any three operator systems R, S, T the natural
isomorphism from (R⊗τ S)⊗τ T to R⊗τ (S ⊗τ T ) is a complete order isomor-
phism.

(iv) We call τ injective if for all operator systems S1 ⊆ S2 and T1 ⊆ T2 the inclusion
map S1 ⊗τ T1 ⊆ S2 ⊗τ T2 is a complete order isomorphism on its range.

Remark 4.28. Let O denote the class of operator systems and τ : O ⊗O → O be
an operator system tensor product. τ is injective if and only if

Mn(S1 ⊗ T1) ∩Mn(S2 ⊗τ T2)
+ =Mn(S1 ⊗τ T1)

+.

Now we give three examples of operator system tensor products that were
constructed in [15]. We will omit to prove that all these define operator system
tensor products as this was shown in [15].

Definition 4.29. Let S, T be two operator systems and let eS and eT denote the
Archimedean order unit of S and T respectively. Define

Cmin
n (S, T ) = {(pi,j) ∈Mn(S ⊗ T ); ((ϕ⊗ ψ)(pi,j))i,j ∈M+

nkm, for all unital

completely positive maps ϕ : S →Mk, ψ : T →Mm∀ k,m ∈ N}.

The minimal tensor product is the mapping

min: O ×O → O, (S, T ) 7→ (S ⊗ T, {Cmin
n (S, T )}∞n=1, eS ⊗ eT )

and we denote it by S ⊗min T .

The following proposition is Theorem 4.5 in [15] and gives the reason for the
name of this tensor product construction:

Proposition 4.30. Let O denote the class of operator systems. The mapping
min : O ×O → O is an injective, associative, symmetric, functorial operator system
tensor product and for all operator systems S, T with an operator system tensor
structure S ⊗τ T , we have τ is larger than min.

The next construction from [15] is the maximal tensor product. Let S, T be
operator systems with units eS, eT and define the cones

Dmax
n (S, T ) = {α(P ⊗Q)α∗;P ∈Mk(S)

+, Q ∈Mm(T )
+, α ∈Mn,km, k,m ∈ N}. (2)

Proposition 5.3 in [15] shows that {Dmax
n (S, T )}∞n=1 is a matrix ordering on S ⊗ T

with order unit eS ⊗ eT . So if (S ⊗ T,Dmax
1 (S, T ), eS ⊗ eT ) is an AOU space, there

exists an Archimedeanization of {Dmax
n (S, T )}∞n=1 with underlying space S ⊗ T . For

this it remains to show that:
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4 Operator systems

Lemma 4.31. Let S, T be operator systems with units eS, eT . Then eS ⊗ eT is an
Archimedean order unit on (S ⊗ T,Dmax

1 (S, T )).

This lemma is needed such that the next definition is well defined and the following
definition is Definition 5.4 in [15]. This lemma was neither proven in the literature
nor were we able to prove it in this thesis.

Definition 4.32. Let S, T be two operator systems and let eS and eT denote the
archimedean order unit of S and T respectively. Let {Cn}∞n=1 be the Archimedeaniza-
tion of the matrix ordering defined in (2). The maximal tensor product is the
mapping

max: O ×O → O, (S, T ) 7→ (S ⊗ T, {Cmax
n (S, T )}∞n=1, eS ⊗ eT )

and we denote it by S ⊗max T .

This is Proposition 5.5 in [15] and shows that max is actually maximal:

Proposition 4.33. Let O denote the class of operator systems. The mapping
max : O ×O → O is an associative, symmetric, functorial operator system tensor
product and for all operator systems S, T with an operator system tensor structure
S ⊗τ T , we have max is larger than τ .

Another nice property of the maximal tensor product is that it behaves well with
the maximal tensor product for C∗-algebras. Recall that the notation ⊆c.o.i. was
defined in Definition 4.8. This property is given in Theorem 5.12 of [15].

Proposition 4.34. Let A and B be C∗-Algebras. Then A⊗maxB ⊆c.o.i. A⊗C∗maxB.

Now we will briefly introduce the notion of jointly completely positive as this will
be needed in the proof of Theorem 6.24.

Definition 4.35. Let H be a Hilbert space and S, T be operator systems. A bilinear
map ϕ : S × T → B(H) is called jointly completely positive if for all n,m ∈ N, we
have that ϕ(n,m)(P,Q) is a positive element of Mnm(B(H)), for all P ∈Mn(S)

+ and
Q ∈Mm(T )

+.

Let S, T be operator systems and ϕ : S × T → C be a bounded bilinear map. We
can define

L(ϕ) : S → T d, L(ϕ)(s) 7→ (t 7→ ϕ(s, t)),

R(ϕ) : T → Sd, L(ϕ)(t) 7→ (s 7→ ϕ(s, t)).

The following two results are Lemma 5.7 and Theorem 5.8 in [15].

Lemma 4.36. Let S, T be operator systems and let ϕ : S×T → C be a bilinear map.
Then the following are equivalent:

(i) ϕ is jointly completely positive.
(ii) L(ϕ) : S → T d is completely positive.
(iii) R(ϕ) : T → Sd is completely positive.

Lemma 4.37. Let S and T be operator systems and ϕ : S × T → C be a jointly
completely positive map, then its linearization ϕ : S ⊗ T → C is completely positive
on S ⊗max T .
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The last example of an operator system tensor product will be the commuting
tensor product. In [15], it was shown that on the level of C∗-algebras, the commuting
tensor product coincides with the maximal tensor product. The commuting tensor
product is, therefore, a different extension of the maximal tensor product for C∗-
algebras. The commuting tensor is characterized by the property for unital completely
positive maps ϕ, ψ that we get a unital completely positive map ϕ · ψ from the
commuting tensor product. For the construction of the commuting tensor product
define for two operator systems S, T :

cp(S, T ) = {(ϕ, ψ);H is a Hilbert space, ϕ : S → B(H), ψ : T → B(H) are

completely positive maps such that ϕ(S) and ψ(T ) commute}

and for ϕ : S → B(H), ψ : T → B(H) and ϕ : S → B(H), ψ : T → B(H) such that
(ϕ, ψ) ∈ cp(S, T ), define ϕ · ψ : S ⊗ T → B(H) as the linear extension of the map
x⊗ y 7→ ϕ(x)ψ(y).

Definition 4.38. Let S, T be two operator systems and let eS and eT denote the
archimedean order unit of S and T respectively. Define

Pn = {u ∈Mn(S ⊗ T ); (ϕ · ψ)n(u) ≥ 0 ∀(ϕ.ψ) ∈ cp(S, T )}.

The commuting tensor product is the mapping

c : O ×O → O, (S, T ) 7→ (S ⊗ T, {Pn(S, T )}∞n=1, eS ⊗ eT )

and we denote it by S ⊗c T .

Proposition 4.39. Let O denote the class of operator systems. The mapping
c : O ×O → O is a symmetric, functorial operator system tensor product.

Although this was not shown yet, we will see later in this thesis that the maximal
tensor product is not injective and thus for two C∗-algebras A,B and two operator
systems S ⊆ A, T ⊆ B, the inclusion map S ⊗max T ⊆ A ⊗max B is not always
completely order isomorphic on its range. For the commuting tensor product, we
have two inclusions into the maximal tensor product on the level of C∗-algebras.

First, we need to introduce the maximal C∗-algebra of an operator system. The
maximal C∗-algebra of an operator system was first introduced in [17] as the universal
C∗-algebra of an operator system. In this article, the authors also prove that this
object exists for every operator system and is unique up to ∗-isomorphism.

Definition 4.40. Let S be an operator system. The unital C∗-algebra C∗
u(S) is

called maximal C∗-algebra of S if there exists a unital completely positive map
ι : S → C∗

u(S) such that ι(S) generates C∗
u(S) as a C∗-algebra and for all unital

completely positive maps ϕ : S → B(H), there exists a unique ∗-homomorphism
π : C∗

u(S) → B(H) such that π ◦ ι = ϕ.

Proposition 4.41. Let S, T be operator systems and A,B be unital C∗-algebras such
that C∗

u(S) = A and C∗
u(T ) = B. Then

S ⊗c T ⊆c.o.i. A⊗max B ⊆c.o.i. A⊗C∗max B.

Proof. The first inclusion follows from Theorem 6.4 in [15]. The second inclusion
then follows from Proposition 4.34.
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4 Operator systems

The next Proposition is Lemma 2.8 in [21] and an application of Proposition 4.34
and it is the second inclusion into the maximal tensor product.

Proposition 4.42. Let A1, ..., An and B1, ..., Bm be unital C∗-algebras, S be the
coproduct of A1, ..., An and T be the coproduct of B1, ..., Bm. Then

S ⊗c T ⊆c.o.i. (A1 ∗1 ... ∗1 An)⊗max (B1 ∗1 ... ∗1 Bm)

⊆c.o.i. (A1 ∗1 ... ∗1 An)⊗C∗max (B1 ∗1 ... ∗1 Bm)

The following Lemma is Theorem 6.6 on [15]:

Lemma 4.43. Let A,B be unital C∗-algebras, then A⊗c B = A⊗max B.

4.4 Dual of an operator system

In this subsection, all operator systems are assumed to be finite dimensional. One
way to show that the dual of a finite dimensional operator system is an operator
system is given in [11]:

Let S be an operator system. Since S is a ∗-vector space, we can turn the dual
Sd = {f : S → C; f is a linear} into a ∗-vector space with the involution ∗ : Sd → Sd

such that f ∗(s) = f(s∗). Mn(S
d) ∼= Mn(S)

d by the isomorphism

Φ: Mn(S
d) →Mn(S)

d, (gi,j)i,j 7→ ((si,j)i,j 7→
n∑

i,j=1

gi,j(si,j))

From this we can define M+
n (S

d) = {G ∈Mn(S
d);ϕ(G) ≥ 0 ∀x ∈Mn(S)

+}. These
define a matrix ordering on Sd. If we choose e to be a faithful state in Sd(i.e. for all
a ∈ S+ e(a) = 0 ⇒ a = 0), we get that (Sd, {Mn(S

d)}∞n=1, e) is an operator system.
This statement is Corollary 4.5 in [5]:

Proposition 4.44. Let S be a finite dimensional operator system, then Sd is com-
pletely order isomorphic to an operator system.

Proposition 4.45. Let S be a finite dimensional operator system. Then there exists
a complete order isomorphism such that (Sd)d ∼= S.

Proof. Since S is finite dimensional, we have that dim(S) = dim(Sd) = dim((Sd)d).
The rest follows from Proposition 6.2 in [16].

For two operator systems S, T , there is also a useful connection between Sd⊗maxT
d

and (S ⊗min T )
d given in Proposition 1.16 in [11]:

Proposition 4.46. Let S, T be finite dimensional operator systems, then there is a
complete order isomorphism such that Sd ⊗max T

d ∼= (S ⊗min T )
d.

5 Foundations of quantum information

This section is a brief introduction to some of the most basic concepts of quantum
information: quantum states, channels and measurements. Most of this section is
taken from [26].

Let X, Y be finite index sets. In this section CX will be the Hilbert space equipped
with the inner product ⟨v, w⟩ = w∗v with being w∗ = wt for v, w ∈ CX . Note that
w∗ is also the corresponding element to w in (CX)d. Also, recall from Example 3.8
that the trace can be defined in multiple ways. We denote (ex)x∈X for the standard
basis of CX and we denote the matrix units of MX by exe

∗
x′ .
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5.1 Quantum States

5.1 Quantum States

Quantum states can be generally described in two ways. One is vectors of a finite
dimensional Hilbert space and the other, more general, approach are density matrices.
This is also the approach of this thesis.

Definition 5.1. An euclidean space X is one of the two following:

1. X = CX for some finite set X.

2. X = X1 ⊗ ...⊗Xn for some n ∈ N and euclidean spaces X1, ...Xn.

Definition 5.2. Let X be an euclidean space.

(i) A quantum state is a matrix ρ ∈ SQ(X ) = {ρ ∈ L(X ); ρ ≥ 0 ∧ Tr(ρ) = 1}.
(ii) A quantum state ρ is called a pure state if there exists a vector v ∈ X such

that vv∗ = ρ.

Remark 5.3. Recall that the definition of a state (Definition 2.17) and the trace
norm from Proposition 3.9. The quantum states are then exactly the states in the
trace norm as X is always finite dimensional and therefore T (X ) = B(X ) = L(X ).

The next proposition gives the connection to the aforementioned other description
of quantum states:

Proposition 5.4. Let X be a euclidean space. Then {vv∗; v ∈ X , ∥v∥ = 1} is the
set of all pure states. Also for two unit vectors u, v ∈ X , the associated pure states
uu∗ and vv∗ are equal iff there exists α ∈ C with |α| = 1 such that u = αv.

Proof. Let ρ ∈ SQ(X ) be a pure state. Therefore there exists a vector v ∈ X such
that ρ = vv∗.

Tr(vv∗) =
∑
i∈I

⟨vv∗ei, ei⟩ =
∑
i∈I

⟨v, ei⟩⟨ei, v⟩ = ∥v∥2 (3)

shows that v is a unit vector. Therefore vv∗ ∈ {uu∗;u ∈ CX , ∥u∥ = 1}. Now let
u ∈ X be a unit vector. Then analogous to (3) follows that Tr(uu∗) = 1. Since uu∗

is a projection, it is also positive and therefore a pure state.
Let u, v ∈ X be unit vectors such that uu∗ = vv∗. Then

u = uu∗u = vv∗u = ⟨v, u⟩v

and since v and u are unit vectors |⟨v, u⟩| = 1. Now let α be in C and let u, v ∈ CX

be unit vectors such that u = αv.

uu∗ = αv(αv)∗ = |α|2vv∗

This shows the second statement of the proposition.

Now we give some examples of quantum states and the connection to probabilistic
states:

Example 5.5. Let X be a finite set.
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5 Foundations of quantum information

(i) Let ρ ∈ DX be a quantum state in MX . As ρ is positive semidefinite and its
eigenvalues are its diagonal entries, it follows that the diagonal entries are all
≥ 0. Also Tr ρ = 1 so the function p : X → [0, 1], x 7→ ρx,x gives a probability
distribution over X. Analogous a we can define a probability distribution
p : X → [0, 1], x 7→ ρx,x which gives rise to a density matrix ρ =

∑
x∈X p(x)exe

∗
x.

Therefore the quantum states in DX can be interpreted as the classical states.
(ii) Define Jcl

X =
∑

x∈X exe
∗
x ⊗ exe

∗
x ∈ MX ⊗MX . Then the normalisation of Jcl

X ,
being 1

|X|J
cl
X , is also a state that is not a pure state.

A concept in quantum information is that we are also interested in the state in
one of the two situations:

1. The resulting state after removing a part of the system.

2. The situation that the states is actually just part of a bigger system.

For the first situation, we will define the mapping that will define the resulting state:

Definition 5.6. Let k, n ∈ N be a natural number and X1, ...,Xn be euclidean spaces.
The linear extension of the map

TrXk
: L(X1)⊗ ...⊗ L(Xn) → L(X1)⊗ ...⊗ L(Xk−1)⊗ L(Xk+1)⊗ ...⊗ L(Xn),

A1 ⊗ ...⊗ An 7→ Tr(Ak)A1 ⊗ ...⊗ Ak−1 ⊗ Ak+1 ⊗ ...⊗ An

is called partial trace.

For the second situation, we can show that there exists a bigger system for every
state such that the state in the bigger system is a pure state. This follows from the
following proposition that is Theorem 2.10 in [26]:

Proposition 5.7. Let X and Y be finite sets and let P ∈ L(X ) be a positive
semidefinite matrix. There exists a vector u ∈ X ⊗ Y such that TrY(uu

∗) = P iff
dimY ≥ rank(P ).

Corollary 5.8. Let X be a finite set and let ρ ∈ SQ(X ) be a quantum state. There
exists a euclidean space Y such that there exists a unit vector u ∈ X ⊗ Y such that
uu∗ is a pure state and TrY(uu

∗) = ρ.

Proof. Let Y be a finite set with |Y | ≥ dim(Y). Then it follows from Proposition
5.8 that there exists a vector u ∈ X ⊗ CY such that TrCY (uu∗) = ρ.

1 = Tr(ρ) = Tr(TrCY (uu∗)) = Tr

(
TrCY

(∑
i∈I

λiAi

))
=
∑
i∈I

Tr(TrCY (λiAi)) =
∑
i∈I

Tr(λiAi)) = Tr(uu∗) = ∥u∥2

Another important concept of quantum information is entanglement of states.
Without entanglement, a lot of the surprising phenomena would not be possible. We
give the mathematical description of this concept as it also plays an important role
in the mathematical theory:
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5.2 Quantum Channel

Definition 5.9. Let X1, ...,Xn be euclidean spaces and u ∈ X1 ⊗ ...⊗Xn be a unit
vector such that uu∗ is a state. The state uu∗ is called separable if there exist
u1 ∈ X1, ..., un ∈ Xn such that u = u1 ⊗ ...⊗ un. States that are not separable are
called entangled.

Example 5.10. Let X be a finite set and define

JX =
∑
x,x′

exe
∗
x′ ⊗ exe

∗
x′ ∈MX ⊗MX .

The pure state

1

|X|
JX =

1√
|X|

(∑
x∈X

ex ⊗ ex

)(∑
x∈X

ex ⊗ ex

)∗

is called the maximally entangled state.

5.2 Quantum Channel

In the last section, we defined quantum states which describe a state of a quantum
system. Quantum channels describe the possible changes of a system as these are
the maps that quantum states to quantum states.

Let X1, ..., Xn be finite sets, we write MX1...Xn for MX1 ⊗ ...⊗MXn and DX1...Xn

for DX1 ⊗ ...⊗DXn

Definition 5.11. Let X ,Y be euclidean spaces. Let ϕ : L(X ) → L(Y) be a linear
map.

(i) ϕ is called trace preserving if

∀M ∈ L(X ) : Tr(ϕ(M)) = Tr(M)

(ii) The map ϕ is called a quantum channel if it is trace preserving and completely
positive.

(iii) A positive trace preserving map N : DX1...Xn → DY1...Ym is called a classical
channel.

(iv) A positive trace preserving map E : DX1...Xn →MY1...Ym is called a classical-to-
quantum channel.

Both classical and classical-to-quantum channels are just required to be positive
instead of completely positive. But in this case, positive maps and completely positive
maps coincide which can be seen in the following remark:

Remark 5.12. (i) Let N : DX1...Xn → DY1...Ym be a classical channel. Since
DX1...Xn is commutative, it follows from Proposition 4.19 that N is also com-
pletely positive.

(ii) Let E : DX1...Xn →MY1...Ym be a classical-to-quantum channel. Since DX1...Xn

is commutative, it follows from Proposition 4.19 that E is also completely
positive.

(iii) In [26] Example 2.7, it is shown that there exists a basis of the matrices in the
density matrices. Therefore by linear extension of a map ϕ : SQ(X ) → SQ(X )
it is uniquely defined on L(X ) → L(Y).
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5 Foundations of quantum information

Quantum channels are maps that map quantum states to quantum states. This
requires the map to be positive and trace preserving. It does not have to be completely
positive. The requirement of complete positivity comes from the fact that one often
wants to look at a state in a bigger system. This is shown in the following Remark:

Remark 5.13. Let X ,Y be euclidean spaces, let ϕ : L(X ) → L(Y) be a channel
and let ρ ∈ SQ(X ) be a state. Consider another state σ ∈ SQ(Ck). By Lemma 2.7,
there exists M ∈MX such that ρ =M∗M and N ∈Mk such that σ = N∗N . Then
the ρ⊗ σ = (M ⊗N)(M ⊗N)∗ is also a state. Then ϕ(ρ)⊗ σ is also a state because
ϕ⊗ I(ρ⊗ σ) = ϕ(ρ)⊗ σ and ϕ is completely positive.

Now we give examples of some quantum channels that will be used in Section 7
of this thesis:

Example 5.14. (i) Let X be a finite set and define ∆X : Mx → Mx, (ax,x′) 7→∑
x∈X ax,x′exe

∗
x. This map is trace preserving and also positive as the eigenvalues

of ∆ are its diagonal entries and Ax,x ≥ 0 for all x ∈ X. Since the image of ∆
is in DX , we get by Proposition 4.19 that ∆ is completely positive. Therefore
∆X is a channel. It is called the completely dephasing channel. For finite sets
X1, ..., Xn, we will write ∆X1...Xn for ∆X1 ⊗ ...⊗∆Xn .

(ii) This identification is taken from [25]. Let X1, ..., Xn, A1, ..., An be finite sets,
X = X1 × ... × Xn, A = A1 × ... × An and ϕ : MX1...Xn → MA1...An be a
quantum channel. Then ϕ is called a (X,A)-classical (quantum) channel if
ϕ = ∆A1...An ◦ ϕ ◦∆X1...Xn . A (X,A)-classical channel ϕ gives rise to a classical
channel Nϕ : DX1...Xn → DA1...An ,Nϕ = ∆A1...An ◦ ϕ|DX1...Xn

. Conversely a
classical channel N : DX1...Xn → DA1,...An gives rise to a (X,A)-classical channel
ϕN = N ◦∆X1...Xn .

5.3 Measurements

Definition 5.15. (i) Let m ∈ N be natural number and H be a Hilbert space.
A positive operator valued measurement (POVM) is a finite set of positive
operators {Ai ∈ B(H)+; i ∈ {1, ...,m}} such that

∑m
i=1Ai = I.

(ii) Let n ∈ N be a natural number and (Ai)
n
i=1 be a POVM. (Ai)

n
i=1 is called

projective valued measurement (PVM) if Ai is a projection for all i ∈ {1, ..., n}.

Let {Ai ∈M+
n ; i ∈ {1, ...,m}} be a POVM, ρ ∈ S(X ) be a state and B,C ∈ L(X )

then we can turn L(X ) into a Hilbert space by using ⟨B,C⟩ = Tr(C∗B) as inner
product. With this, we get:

m∑
i=1

⟨ρ,Ai⟩ = ⟨ρ,
m∑
i=1

Ai⟩ = ⟨ρ, I⟩ = 1

and from the spectral theorem follows that there exist vectors ϕi ∈ X , λi ∈ R∗ for
i ∈ {1, ..., d} such that ρ =

∑d
i=1 λiϕiϕ

∗
i for d = dim(X ).

⟨ρ,Ai⟩ =

〈
d∑

k=1

λiϕkϕ
∗
k, Ai

〉
=

d∑
k=1

⟨λiϕkϕ
∗
k, Ai⟩

=
d∑

k=1

λi Tr(Aiϕkϕ
∗
k) =

d∑
k=1

λiϕ
∗
kAiϕk ≥ 0
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6.1 Basics on nonlocal games

because Ai ≥ 0. Therefore p : {1, ...,m} → [0, 1], i 7→ ⟨ρ,Ai⟩ is a well defined
probability distribution. And therefore POVMs ”measure” a state in the form that
there is an outcome i with probability p(i).

6 Nonlocal Games

6.1 Basics on nonlocal games

The contents of this subsection are mainly inspired by Lecture 6 of [13] and [1]. A
nonlocal game is a two player game where two cooperating players Alice and Bob
each receive a question from a referee and they each give an answer to their question
but they cannot communicate with each other after they received their question.
The referee then evaluates whether the given answers to the questions are correct.

Referee

BobAlice

x y
a b

Definition 6.1. A nonlocal game is a 5-tuple (A,B,X, Y, λ) where

(i) A,B,X, Y are finite nonempty sets,
(ii) λ : X × Y × A×B → {0, 1} is a function.

In this definition X and Y are the question sets for Alice and Bob respectively,
A and B are the answer sets for Alice and Bob respectively and λ is the function
that evaluates whether the answers are correct.

Remark 6.2. In some literature (e.g. [1]) the definition of a nonlocal game includes
a probability distribution over the question sets π : X × Y → {0, 1}. This is not
needed, in the context of this thesis, as we try to find perfect strategies so a question
that has probability greater than 0 needs to be answered correctly and questions
whose probability is 0 can be excluded from the question set.

Definition 6.3. Let G = (A,B,X, Y, λ) be a non local game. G is called a mirror
game if there exist functions f : X → Y, g : Y → X such that for every x ∈ X, y ∈ Y
the sets {(a, b) ∈ A×B;λ(x, f(x), a, b) = 1} and {(a, b) ∈ A×B;λ(g(y), y, a, b) = 1}
are graphs of bijections.

Example 6.4. (i) Graph homomorphism game:
Let G,H be graphs, let VG, VH be the vertex set of G and H respectively and
let EG, EH be the edge set of G and H respectively. Let X = Y = VG be the
question sets and let A,B = VH be the answer sets.

λ(x, y, a, b) =


0, if x = y ∧ a ̸= b

0, if x ∼ y ∧ a ≁ b

1, else
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6 Nonlocal Games

The game G = (X, Y,A,B, λ) is called graph homomorphism game. The
winning conditions can be reformulated to x = y ⇒ a = b and x ∼ y ⇒ a ∼ b.
By taking the function to be the identity map we can see that G is a mirror
game.

(ii) Graph isomorphism game:
Let G,H be graphs such that |VG| = |VH |, where VG, VH be the vertex set of G
and H respectively. Let EG, EH be the edge set of G and H respectively. Let
X = Y = VG be the question sets and let A,B = VH be the answer sets.

λ(x, y, a, b) =



0, if x = y ∧ a ̸= b

0, if x ̸= y ∧ a = b

0, if x ∼ y ∧ a ≁ b

0, if x ≁ y ∧ a ∼ b

1, else

The game G = (X, Y,A,B, λ) is called graph isomorphism game. The winning
conditions can be reformulated to x = y ⇔ a = b and x ∼ y ⇔ a ∼ b. By
taking the function to be the identity map we can see that G is a mirror game.

(iii) CHSH game:
Let (X, Y,A,B, λ) be the nonlocal game with X = Y = A = B = {0, 1} and
λ : {0, 1}4 → {0, 1}, (x, y, a, b) 7→ x⊕ y = a∧ b. This means that for the pair of
questions (1, 1), Alice and Bob have to answer either (0, 1), (1, 0) and if the pair
of questions is not (1, 1), Alice and Bob need to answer (0, 0) or (1, 1). This game
is a mirror game as the sets {(a, b) ∈ {0, 1}2;λ(0, 0, a, b)} = 1} = {(0, 0), (1, 1)}
and {(a, b) ∈ {0, 1}2;λ(1, 1, a, b)} = 1} = {(0, 1), (1, 0)} are graph bijections.

6.2 Strategies for nonlocal games

As mentioned before the aim of Alice and Bob is to win in a given nonlocal game.
Thus they are allowed to form a strategy beforehand. These strategies need some
restrictions as Alice and Bob are unable to communicate. We will now give some of
the common strategies:

Definition 6.5. Let G = (X, Y,A,B, λ) be a nonlocal game.

(i) A deterministic strategy for G are two functions f : X → A and g : Y → B.
The winning probability of the strategy is defined as

1

|X||Y |
∑

x∈X,y∈Y

λ(x, y, f(x), g(y)).

(ii) A classical strategy for G is a finite set R and two probability distributions
p1 : X ×R → [0, 1], p2 : Y ×R → [0, 1] and two functions f : X ×R → A and
g : Y ×R → B. The winning probability of the strategy is defined as

1

|X||Y |
∑

x∈X,y∈Y,r∈R

p1(x, r)p2(y, r)λ(x, y, f(x, r), g(y, r)).
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6.2 Strategies for nonlocal games

(iii) A quantum strategy for G consists of sets of POVM {Ex,a ∈ Md; a ∈ A}x∈X
with d ∈ N and {Fy,b ∈ Md; b ∈ B}y∈Y , a quantum state ψ ∈ Cd ⊗ Cd. The
winning probability of the strategy is defined as

1

|X||Y |
∑

x∈X,y∈Y,a∈A,b∈B

(ψ∗(Ex,a ⊗ Fy,b)ψ)λ(x, y, a, b).

(iv) Let H be a Hilbert space. A quantum commuting strategy G consists of a unit
vector ξ ∈ H and POVMs of operators (Ex,a)a∈A ⊆ B(H) and (Fy,b)b∈B ⊆ B(H)
such that for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B: Ex,aFy,b = Fy,bEx,a. The winning
probability of the strategy is given as

1

|X||Y |
∑

x∈X,y∈Y,a∈A,b∈B

⟨Ex,aFy,bξ, ξ⟩λ(x, y, a, b).

For classical, deterministic and quantum strategies, one can immediately see
that the summands of the winning probability are all non-negative. For quantum
commuting strategies, it is not that immediate but will be proven in the following
lemma:

Lemma 6.6. Let E,F ⊆ B(H) be positive operators such that EF = FE. Then
EF is also positive and in particular ⟨EFξ, ξ⟩ ≥ 0 for all ξ ∈ H.

Proof. Consider the C∗-Algebra C∗(E,F, 1). Since E,F, 1 are all selfadjoint and
commute and (EF )∗ = F ∗E∗ = EF , we get that C∗(E,F, 1) is commutative.
Thus by Proposition 2.3 there exists a ∗-isomorphism ϕ : C∗(E,F, 1) → C(X) for
some compact Hausdorff space X. Since F is positive, ϕ(F ) ≥ 0. If we define√
F = ϕ−1(

√
ϕ(F )), then

√
F ≥ 0 since ∗-homomorphisms are positive and

√
F

2
= ϕ−1(

√
ϕ(F ))ϕ−1(

√
ϕ(F )) = ϕ−1(

√
ϕ(F )

√
ϕ(F )) = F.

So
√
F is the unique positive square root of F and it commutes with E since√

F ∈ C∗(E,F, 1). For ξ ∈ H, we get:

⟨EFξ, ξ⟩ = ⟨
√
FE

√
Fξ, ξ⟩ = ⟨E(

√
Fξ), (

√
Fξ)⟩ ≥ 0.

Now we look at some possible strategies for the CHSH game we defined earlier:

Example 6.7. Let be G be the CHSH-game from Example 6.4. Consider the
deterministic strategy f = g = 0 or the strategy f = g ≡ 1. As λ(x, y, 0, 0) = 0
iff x = 1 = y, the winning probability is 0.75. Let f, g now be any deterministic
strategy, then to answer the questions (0, 1), (1, 1), (1, 0) correctly, it has to hold
that f(0) = g(1) = f(1) = g(0), so deterministic strategies can not reach a winning
probability of 1. As classical strategies are just convex combinations of deterministic
strategies, they can not achieve 1 either. Now consider the quantum strategy, which
is given in [6]. Alice and Bob share the state ψ = 1√

2
(e0 ⊗ e0 + e1 ⊗ e1) and the

POVM are

X0,a = ϕa(0)ϕa(0)
∗

X1,a = ϕa(
π
4
)ϕa(

π
4
)∗

Y0,b = ϕb(
π
8
)ϕb(

π
8
)∗

Y1,b = ϕb(−π
8
)ϕb(−π

8
)∗
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6 Nonlocal Games

for ϕ0(θ) = cos(θ)e0 + sin(θ)e1 and ϕ0(θ) = − sin(θ)e0 + cos(θ)e1. This strategy
achieves a winning probability of cos2(π

8
) > 0.85. So the quantum strategies contain

strategies that are not included in the classical strategies and those can also have a
higher winning probability.

Remark 6.8. (i) Sometimes quantum strategies are defined by sets of PVMs
instead of POVMs. Obviously, every PVM is a POVM so these strategies are
still quantum strategies in the sense of Definition 6.5. The converse is not
true but from Naimark’s theorem ([26, 2.42,2.43]) follows that there exists a
strategy that has the same winning probability. A similar statement holds for
quantum commuting strategies. We will show this later in this thesis.

(ii) Consider a quantum strategy {Ex,a ∈ Md; a ∈ A}x∈X with a separable state
ψ = ψ1 ⊗ ψ2 ∈ Cd ⊗ Cd. Define the classical strategy

p1 : X × A×B → [0, 1], (x, a, b) 7→ (ψ∗
1Ex,aψ1),

p2 : Y × A×B, (y, a, b) 7→ (ψ∗
2Fy,bψ2)

and f : X × A×B → A, (x, a, b) 7→ a, g : Y × A×B → A, (x, a, b) 7→ b.

1

|X||Y |
∑

x∈X,y∈Y,a∈A,b∈B

(ψ∗Ex,a ⊗ Fy,bψ)λ(x, y, a, b)

=
1

|X||Y |
∑

x∈X,y∈Y,a∈A,b∈B

(ψ∗
1Ex,aψ1)⊗ (ψ∗

2Fy,bψ2)λ(x, y, a, b)

=
1

|X||Y |
∑

x∈X,y∈Y,a∈A,b∈B

p1(x, a, b)p2(y, a, b)λ(x, y, a, b)

=
1

|X||Y |
∑

x∈X,y∈Y,a∈A,b∈B

p1(x, a, b)p2(y, a, b)λ(x, y, f(x, a, b).g(x, a, b)).

So just quantum strategies with an entangled state are interesting as the
quantum strategies with a separable state are just classical strategies.

6.3 Strategies as Correlations

Strategies for nonlocal games are more commonly expressed as correlations. The
definitions of multiple classes of correlations can be found in [19]. The most general
set of strategies, that is usually studied, are no-signalling correlations. These are
always defined through correlations.

Definition 6.9. Let G = (X, Y,A,B, λ) be a nonlocal game and let p be a set
{p(a, b|x, y);x ∈ X, y ∈ Y, a ∈ A, b ∈ B}.

(i) p is called a correlation if p(·, ·|x, y) is a probability distribution over A× B
for every (x, y) ∈ X × Y .

(ii) A correlation p is called no-signalling if∑
b∈B

p(a, b|x, y) =
∑
b∈B

p(a, b|x, y′) ∀x ∈ X, y, y′ ∈ Y, a ∈ A,

and ∑
a∈A

p(a, b|x, y) =
∑
a∈A

p(a, b|x′, y) ∀x, x′ ∈ X, y ∈ Y, b ∈ B.

The set of quantum correlations will be denoted as Cns(G).
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6.3 Strategies as Correlations

(iii) A correlation p is called a quantum correlation if there exists a quantum strategy
ψ ∈ Cd ⊗ Cd, {Ex,a ∈Md; a ∈ A}x∈X , {Fy,b ∈Md; b ∈ B}y∈Y such that

p(a, b|x, y) = ψ∗(Ex,a ⊗ Fy,b)ψ.

The set of quantum correlations will be denoted as Cq(G).
(iv) A correlation p is called a quantum commuting correlation if there exists a

quantum commuting strategy consisting of a Hilbert space H, a unit vector
ξ ∈ H and POVMs of operators (Ex,a)a∈A ⊆ B(H) and (Fy,b)b∈B ⊆ B(H) such
that

p(a, b|x, y) = ⟨Ex,aFy,bξ, ξ⟩.

The set of quantum commuting correlations will be denoted as Cqc(G).

Remark 6.10. Let G = (X, Y,A,B, λ) be a nonlocal game

(i) Let ψ ∈ Cd⊗Cd, {Ex,a ∈Md; a ∈ A}x∈X , {Fy,b ∈Md; b ∈ B}y∈Y be a quantum
strategy for G. Now consider the Hilbert space H = Cd⊗Cd with the canonical
inner product and define the sets of commuting POVMs

{Ex,a ⊗ idCd ∈Md ⊗Md; a ∈ A}x∈X , {idCd ⊗ Fy,b ∈Md ⊗Md; b ∈ B}y∈Y .

This is a quantum commuting strategy as

p(a, b|x, y) = ψ∗(Ex,a ⊗ Fy,b)ψ

= ⟨(Ex,a ⊗ Fy,b)ψ, ψ⟩
= ⟨(Ex,a ⊗ idCd)(idCd ⊗ Fy,b)ψ, ψ⟩.

Therefore Cq(G) ⊆ Cqc(G).
(ii) Correlations of the set Cns(G) are called no-signalling because the conditions

imply that the probability distribution of

p1 : A×X → [0, 1], (a, x) 7→
∑
b∈B

p(a, b|x, y)

for some y ∈ Y are well defined as they are independent of the chosen y ∈ Y .
Analogous is the probability distribution

p2 : B × Y → [0, 1], (b, y) 7→
∑
a∈A

p(a, b|x, y)

for some x ∈ X well defined by the second condition. Therefore Alice and Bob
can not communicate classical information as their answers are independent
on the question and answer of the other person.

Recall the CHSH-game defined in Example 6.4 and the strategies for the CHSH
game from Example 6.7. In Lecture 7 of [13], it is actually shown that there cannot
exist a quantum strategy that exceeds the winning probability of the one given in the
previous example. But there exists a no-signalling strategy that wins with probability
1:

Remark 6.11. Let G be the CHSH game defined in Example 6.4. Now consider
the strategy given by the correlation p such that p(0, 1|1, 1) = p(1, 0|1, 1) = 1

2
and

p(a, a|x, y) = 1
2
for a ∈ {0, 1} and (x, y) ∈ {(0, 0), (0, 1), (1, 0)}. It is easy to check

that this is actually a no-signalling correlation and the probability to win is 1.
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6 Nonlocal Games

6.4 Perfect Strategies for nonlocal games

The objective of this section is to classify perfect strategies of a nonlocal game within
certain classes of correlation, namely quantum commuting and no-signalling. The
results in this section are taken from [19]. This article also contains the classification
of more classes of correlations than quantum commuting and no-signalling.

Definition 6.12. Let G = (X, Y,A,B, λ) be a nonlocal game. A correlation p is
called perfect if {(a, b, x, y);λ(a, b, x, y) = 0} ⊆ {(a, b, x, y); p(a, b|x, y) = 0}. And
denote Cp

ns(G) for the set of perfect no-signalling correlations and Cp
qc(G) for the set

of perfect quantum commuting correlations.

Remark 6.13. We can see that a correlation is perfect iff the corresponding strategy
has winning probability 1. This follows from

1

|X||Y |
∑

a∈A,b∈B,X∈X,y∈Y

p(a, b|x, y)λ(x, y, a, b)

=
1

|X||Y |
∑

(a,b,x,y)∈A×B×X×Y,λ(x,y,a,b) ̸=0

p(a, b|x, y)

Since 1
|X||Y |

∑
(a,b,x,y)∈A×B×X×Y p(a, b|x, y) = 1 and therefore p can just give rise to a

perfect strategy if {(a, b, x, y); p(a, b|x, y) ̸= 0} ⊆ {(a, b, x, y);λ(a, b, x, y) ̸= 0}.

Let X, Y,A,B. be finite sets. Recall in Definition 4.23, we defined the operator
system SX,A ⊆ A(X,A) and the basis (ex,a)x∈X,a∈A. Now for SX,A and SY,B, we
denote this basis of SX,A by (ex,a)x∈X,a∈A and for SY,B by (fy,b)y∈Y,b∈B

Lemma 6.14. Let X, Y,A,B be finite sets and p : A × B × X × Y → C be a
no-signalling function, i.e.∑

b∈B

p(a, b, x, y) =
∑
b∈B

p(a, b, x, y′) ∀x ∈ X, y, y′ ∈ Y, a ∈ A, (4)

and ∑
a∈A

p(a, b, x, y) =
∑
a∈A

p(a, b, x′, y) ∀x, x′ ∈ X, y ∈ Y, b ∈ B. (5)

Then there exists a continuous linear bijection between

{p : A×B ×X × Y → C; p is no-signalling} and (SX,A ⊗ SY,B)
d.

For a no-signalling p : A×B ×X × Y → C, the corresponding sp ∈ (SX,A ⊗ SY,B)
d

is given by
sp(ex,a ⊗ fy,b) = p(a, b, x, y)

and conversely for s ∈ (SX,A ⊗ SY,B)
d the corresponding no-signalling function ps is

given by
ps(x, y, a, b) = s(ex,a ⊗ fy,b).

Proof. Linearity is obvious and therefore since the spaces are finite dimensional we
also get continuity.

First we show that for a given a no-signalling p : A × B × X × Y → C that
sp ∈ (SX,A ⊗ SY,B)

d. Since (ex,a)a∈A are the basis of the x-th copy of ℓ∞(A) and
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6.4 Perfect Strategies for nonlocal games

respectively (fy,b)b∈B are the basis of the y-th copy of ℓ∞(B), it suffices to show that
sp that sp(ex,a⊗1) and sp(1⊗fy,b) are well defined for all x ∈ X, a ∈ A, x ∈ X, y ∈ Y .
For any x, x′ ∈ X:

sp(1⊗ ey,b) = sp

(∑
a∈A

ex,a ⊗ fy,b

)
=
∑
a∈A

p(x, y, a, b)

=
∑
a∈A

p(x′, y, a, b)

= sp

(∑
a∈A

ex′,a ⊗ fy,b

)
= sp(1⊗ ey,b).

Therefore sp(ex,a ⊗ 1) is well defined. The fact that sp(1⊗ fy,b) is well defined can
be shown analogous from (4). Therefore sp is well defined.

Now let s ∈ (SX,A ⊗ SY,B)
d. Then we need to show that ps is no-signalling. For

any x, x′ ∈ X: ∑
a∈A

ps(x, y, a, b) =
∑
a∈A

s(ex,a ⊗ fy,b)

= s(1⊗ fy,b)

= s

(∑
a∈A

ex′,a ⊗ fy,b

)
=
∑
a∈A

ps(x
′, y, a, b).

Therefore condition (5) holds and (4) can be shown analogous by using∑
b∈B

ex,a ⊗ fy,b =
∑
b∈B

ex,a ⊗ fy′,b

for any y, y′ ∈ Y, x ∈ X, a ∈ A.

This Lemma gives a characterization of overall functions p : A×B×X × Y → C.
To characterize the correlations we still need these functions to be probability
distributions. But if p is a probability distribution we get that sp is a state in
(SX,A ⊗ SY,B)

d as sp(ex,a ⊗ fy,b) ≥ 0 for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B and
sp(1⊗ 1) = 1. The main objective is classifying the perfect correlations of a nonlocal
game. Therefore define for a nonlocal game G = (X, Y,A,B, λ):

J(G) = span{ex,a ⊗ fy,b;λ(x, y, a, b) = 0}

Also, define
Pτ (G) = {s ∈ (SX,A ⊗τ SY,B)

d; s is a state}

and
Pp

τ (G) = {s ∈ (SX,A ⊗τ SY,B)
d; s is a state with J(G) ⊆ ker(s)}.

32



6 Nonlocal Games

for τ ∈ {c,max}.
The following is Theorem 3.1 in [19] and gives the classification of the no-signalling

and quantum commuting strategies as states:

Theorem 6.15. Let G = (X, Y,A,B, λ) be a nonlocal game. The map defined in
Lemma 6.14 defines a continuous map M such that for all λ ∈ [0, 1], we have

M(λa+ (1− λ)b) =M(λa) +M((1− λ)b) for all a, b ∈ dom(M) (6)

and M is a bijection between

(i) Pmax(G) and Cns(G),
(ii) Pc(G) and Cqc(G).

Proof. (i) Define

RX,A =

{
(zx,a)x∈X,a∈A ∈ ℓ∞(X × A);

∑
a∈A

zx,a =
∑
a∈A

zx′,a ∀x, x′ ∈ X

}
.

RX,A is a selfadjoint vector space and 1 = (1)x∈X,a∈A ∈ RX,A, therefore RX,A

is an operator system. From Proposition 4.44 we get that Rd
X,A is also an

operator system. From Theorem 5.2 and Theorem 5.9 in [10] we get that
SX,A

∼= Rd
X,A by the complete order isomorphism

ϕ : SX,A → Rd
X,A, ex,a 7→ ((zx′,a′)x′∈X,a′∈A 7→ zx,a).

RX,A is finite dimensional, therefore we get RX,A
∼= (Rd

X,A)
d ∼= Sd

X,A by
Proposition 4.45. By Proposition 4.46 we get,

(SX,A ⊗max SY,B)
d ∼= Sd

X,A ⊗min Sd
Y,B

∼= RX,A ⊗min RY,B.

By the injectivity of the minimal tensor product, we get that the inclusion

RX,A ⊗min RY,B ⊆c.o.i. ℓ
∞
X,A ⊗min ℓ

∞
Y,B

is a complete order isomorphism. Since ℓ∞X,A is finite dimensional we get by
Proposition 4.34

ℓ∞X,A ⊗ ℓ∞Y,B = ℓ∞X,A ⊗max ℓ
∞
Y,B = ℓ∞X,A,Y,B.

From Proposition 4.30, we get that there exists a complete order isomorphism
from ℓ∞X,A ⊗min ℓ

∞
Y,B to ℓ∞X,A,Y,B. Therefore there exists an operator system

S ⊆ ℓ∞X,A,Y,B that is completely order isomorphic to (SX,A ⊗max SY,B)
d. From

Lemma 6.14, we get that all elements in S will be no-signalling. As all
p(x, y, a, b) ≥ 0 for a correlation, s ∈ (SX,A ⊗max SY,B)

d has to be positive as
well. Since s has to be positive, the condition

∑
a∈A,b∈B p(a, b, x, y) = 1 is

equivalent to s(1) = 1. Therefore s needs to be a state. Since SX,A ⊗max SY,B

is greater than all other operator system tensor products, sp is positive in
SX,A ⊗max SY,B. This shows statement (i).
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(ii) Let s̃ : SX,A ⊗c SY,B → C be a state. By Proposition 4.42, we get

SX,A ⊗c SY,B ⊆c.o.i. AX,A ⊗C∗max AY,B

because C∗(SX,A) = A(X,A) and C∗(SY,B) = A(Y,B). Therefore it follows
from Krein’s theorem (Proposition 4.18) that s̃ can be extended to a state on
s : AX,A ⊗C∗max AY,B → C. Now this proof follows the arguments of the proof
of 3.4 (b) in [12]:
Let (Hs, πs, ξs) be the GNS-representation of s which was given in Lemma 2.11.
Let a ∈ A, b ∈ B, y ∈ Y, b ∈ B be any element of the corresponding set. Since
ex,a⊗1 and 1⊗fy,b are projections and

∑
a∈A ex,a⊗1 = 1 and

∑
b∈B 1⊗fy,b = 1,

we get that Ex,a = πs(ex,a ⊗ 1) and Fy,b = πs(1 ⊗ fy,b) are projections such
that

∑
a∈AEx,a = 1 =

∑
b∈B Fy,b. Also ex,a and fy,b commute, therefore we get

that (Ex,a)a∈A and (Fy,b)b∈B are commuting sets of PVMs. Since ξs is a unit
vector, we get that (Ex,a)a∈A and (Fy,b)b∈B combined with ξ form a quantum
commuting strategy such that

s(ex,a ⊗ fy,b) = ⟨Ex,aFy,bξs, ξs⟩.

Now let p ∈ Cqc(G) be a correlation such that there exists a Hilbert space
H and POVMs (Ex,a)a∈A(Fy,b)b∈B and a unit vector ξ such that p(a, b|x, y) =
⟨Ex,aFy,bξ, ξ⟩. The maps defined by

ϕx : ℓ
∞(A) → B(H), ea 7→ Ex,a

ϕy : ℓ
∞(B) → B(H), fb 7→ Fy,b

are positive, since Ex,a ≥ 0 and Fy,b ≥ 0. Because ℓ∞(A), ℓ∞(B) are commu-
tative, it follows from Proposition 4.19 that all ϕx, ϕy are completely positive.
The maps ϕx are also unital as

ϕx(1) =
∑
a∈A

ϕx(ea) =
∑
a

Ex,a = 1.

Analogous we get that the ϕy are unital. Thus by Section 3 in [3], we get
that there exist unital completely positive maps ΦX : A(X,A) → B(H) and
ΦY : A(X,A) → B(H) that ΦX(ex,a) = Ex,a and ΦY (fy,b) = Fy,b. By Lemma
4.20, we get that ΦX ⊗C∗max ΦY is completely positive and it is unital as both
ΦX and ΦY are unital. Now define

s : A(X,A)⊗ A(Y,B) → C, a 7→ ⟨ΦX ⊗ ΦY (a)ξ, ξ⟩.

Since ΦX ⊗ ΦY is unital and completely positive and ∥ξ∥ = 1, s is also
positive and unital. Thus s is a state and s(ex,a ⊗ fy,b) = p(a, b|x, y) for all
a ∈ A, b ∈ B, x ∈ X, y ∈ Y . Since SX,A ⊗c SY,B ⊆c.o.i. A(X,A)⊗ A(Y,B), we
can just restrict s|SX,A⊗cSY,B

. This shows the statement.

In Remark 6.8, we could see that one can define quantum strategies by restricting
to PVMs instead of POVMs. The following corollary shows that the same holds true
for quantum commuting strategies.
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6 Nonlocal Games

Corollary 6.16. Let G = (X, Y,A,B, λ) be a nonlocal game and let p ∈ Cqc(G) be a
quantum commuting correlation. Then there exists a Hilbert space H, a unit vector
ξ ∈ H and PVMs of operators (Ex,a)a∈A ⊆ B(H) and (Fy,b)b∈B ⊆ B(H) such that

p(a, b|x, y) = ⟨Ex,aFy,bξ, ξ⟩.

Proof. In the proof of Theorem 6.15 (ii), we could see that the quantum commuting
strategy that was constructed for a state already consisted of PVMs instead of
POVMs. Thus follows the statement.

Corollary 6.17. Let G = (X, Y,A,B, λ) be a nonlocal game and let p ∈ Cns(G) be a
no-signalling correlation. The following are equivalent:

(i) p ∈ Cqc(G)
(ii) p(a, b|x, y) = s(ex,a ⊗ fy,b) for some state s ∈ S(A(X,A)⊗C∗max A(Y,B))
(iii) p(a, b|x, y) = s(ex,a ⊗ fy,b) for some state s ∈ S(SX,A ⊗c SY,B)

Proof. This follows directly from the proof of Theorem 6.15 (ii).

Proposition 6.18. The set Cqc(G) is closed and convex.

Proof. This argument is taken from the proof of Theorem 3.4(b) of [12]: The state
space of S(A(X,A)⊗C∗max A(Y,B)) is convex and bounded. The state space can be
written as

{s : A(X,A)⊗C∗maxA(Y,B); s(1⊗1) = 1}∩{s : A(X,A)⊗C∗maxA(Y,B) → C; s ≥ 0},

therefore it is weak∗ closed as it is an intersection of weak∗ closed sets. Thus by
Banach–Alaoglu weak∗-compact. Now consider the map

S(A(X,A)⊗C∗maxA(Y,B)) → C(A×B×X ×Y ), s 7→ ((a, b, x, y) 7→ s(ex,a⊗ fy,b)).

This map is linear and continuous and from Corollary 6.17, we get that the image is
Cqc(G). Therefore Cqc(G) is convex and weak∗-compact. From V.1.5 in [8], we get
that Cqc(G) is closed.

Corollary 6.19. In the situation of Theorem 6.15, the map is also a continuous
bijection that fulfils (6) between

(i) Pp
max(G) and Cp

ns(G)
(ii) Pp

c (G) and Cp
qc(G)

Proof. This follows from Theorem 6.15 and the fact that for a state s J(G) ⊆ ker(s)
is equivalent to {(a, b, x, y);λ(a, b, x, y) = 0} ⊆ {(a, b, x, y); ps(a, b|x, y) = 0}.

Remark 6.20. It is easy to see that the no-signalling strategies are a strictly larger
class of strategies than the quantum commuting strategies. Thus we get from
Theorem 6.15 and Corollary 6.17 that SX,A ⊗max SY,B does not sit completely order
isomorphic in AX,A⊗maxAY,B as otherwise the no-signalling and quantum commuting
strategies would coincide. Therefore this shows that the maximal operator system
tensor product is not injective and shows that we actually need the construction of
the commuting tensor product.
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6.4 Perfect Strategies for nonlocal games

This theorem and corollary give a classification of the perfect no-signalling
(quantum commuting) strategies of a nonlocal game in the form of states of an
operator system. The following two propositions will further classify the quantum
commuting strategies of a mirror game in the form of a trace. Recall that mirror
games were defined in Definition 6.3.

Remark 6.21. Let G = (X, Y,A,B, λ) be a nonlocal game and define

Ea
x,y = {b ∈ B;λ(x, y, a, b) = 1}, Eb

x,y = {a ∈ A;λ(x, y, a, b) = 1}.

In [19] mirror games were defined differently from this thesis as they defined them as:
G is called a mirror game if there exist functions f : X → Y and g : Y → X such

that for all x ∈ X, y ∈ Y :

Ea
x,f(x) ∩ Ea′

x,f(x) = ∅, ∀a, a′ ∈ A, a ̸= a′ (7)

and
Eb

g(y),y ∩ Eb′

y,g(y) = ∅, ∀b, b′ ∈ B, b ̸= b′. (8)

It is easy to check that mirror games that are defined like 6.3 are still mirror games
in the sense of the definition of [19].

Since the objective of this section is classifying perfect strategies, we are only
interested in games which have a perfect strategy therefore λ should fulfill the
following condition:

∀x ∈ X, y ∈ Y : ∃a ∈ A, b ∈ B : λ(x, y, a, b) = 1

Therefore for all x ∈ X, a ∈ A, there exists b ∈ B such that λ(x, f(x), a, b) = 1 and
for all y ∈ Y, b ∈ B, there exists a ∈ A such that λ(g(y), y, a, b) = 1. But (7) implies
that for a, a′ ∈ A, x ∈ X the existing b, b′ ∈ B, such that

λ(x, f(x), a, b) = 1 = λ(x, f(x), a′, b′),

have to be different from each other. Therefore |A| ≤ |B|. Analogous from (8)
follows that |B| ≤ |A|. Therefore |A| = |B| and this shows that the sets

{(a, b) ∈ A×B;λ(x, f(x), a, b) = 1} and {(a, b) ∈ A×B;λ(g(y), y, a, b) = 1}

have to be the graph of bijections for all x ∈ X, y ∈ Y and thus G is also a mirror
game in the sense of 6.3.

From the following theorem, we get that quantum commuting strategies for mirror
games can be written as a trace of a C∗-algebra. This Proposition is Theorem 6.1 in
[19].

Proposition 6.22. Let G = (X, Y,A,B, λ) be a mirror game, p ∈ Cp
qc(G) and

s ∈ S(A(X,A)⊗C∗max A(Y,B)) such that p = ps. Then

(i) the functional τ : A(X,A) → C, z 7→ s(z ⊗ 1) is a trace,
(ii) there exists a unital ∗-homomorphism φ : A(Y,B) → A(X,A) such that

p(a, b|x, y) = τ(ex,aφ(fy,b)), ∀x ∈ X, y ∈ Y, a ∈ A, b ∈ B

and
s(z ⊗ fy1,b1 ...fyk,bk) = τ(zφ(fyk,bkfy1,b1))

for all z ∈ A(A,X), k ∈ N, yi ∈ Y, bi ∈ B, i = 1, ...k.
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6 Nonlocal Games

Proof. We first prove some helpful identities for this following theorem:
Since G is a mirror game, there exist functions g : X → Y and h : Y → X such that

the sets {(a, b) ∈ A×B;λ(x, g(x), a, b) = 1} and {(a, b) ∈ A×B;λ(h(y), y, a, b) = 1}
are the graph of a bijection. Denote ξx : A→ B as the bijections corresponding to the
first sets and ηy : B → A as the bijections of the second sets. Define px,a = fg(x),ξx(a)
and qy,b = eh(y),ηy(a). Since

∑
b∈B qy,b = 1, the qy,b fulfill the relations of fy,b ∈ A(Y,B)

and since the fy,b generate A(Y,B), we get that the assignment fy,b 7→ qy,b extends
to a ∗-homomorphism φ : A(X,A) → A(Y,B). For u1, u2 ∈ A(X,A)⊗C∗maxA(Y,B),
define the equivalence relation u1 ∼ u2 if s(u1) = s(u2) ⇔ s(u1 − u2) = 0.

s(ex,a ⊗ 1) =
∑
b∈B

s(ex,a ⊗ fg(x),b) = s(ex,a ⊗ fg(x),ξx(a)) = s(ex,a ⊗ px,a)

On the other hand for a ̸= a′

s(ex,a′ ⊗ px,a) = p(x, g(x), a′, ξx(a)) = 0.

It follows that

s(1⊗ px,a) =
∑
a′∈A

s(ex,a′ ⊗ px,a) = s(ex,a ⊗ px,a).

Thus,
ex,a ⊗ 1 ∼ ex,a ⊗ px,a ∼ 1⊗ px,a (9)

Define hx,a = ex,a ⊗ 1 − 1 ⊗ px,a. hx,a is selfadjoint because ex,a, px,a and 1 are
selfadjoint.

h2x,a = ex,a ⊗ 1− 2ex,a ⊗ px,a + 1⊗ px,a

and (9) implies that h2x,a ∼ 0. Both

⟨u, v⟩1 = s(uv∗), ⟨u, v⟩2 = s(v∗u)

are inner products on A(X,A)⊗C∗max A(Y,B), because s is a state. The Cauchy-
Schwarz inequality now implies for u ∈ A(X,A)⊗C∗max A(Y,B) that

|s(uhx,a)|2 ≤ s(uu∗)s(h2x,a) = 0,

|s(hx,au)|2 ≤ s(h2x,a)s(u
∗u) = 0.

From this follows uhx,a ∼ 0 ∼ hx,au for all u ∈ A(X,A) ⊗C∗max A(Y,B) and
x ∈ X, a ∈ A. Let z ∈ A(X,A) and setting u = z ⊗ 1 shows,

zex,a ⊗ 1 ∼ z ⊗ px,a ∼ ex,az ⊗ 1. (10)

Set hy,b = qy,b ⊗ 1 − 1 ⊗ fy,b, then we get analogous to how it was shown for hx,a,
uhx,a ∼ 0 ∼ hx,au for all u ∈ A(X,A)⊗C∗max A(Y,B). Setting u = z ⊗ 1 shows that

zqy,b ⊗ 1 ∼ z ⊗ fy,b ∼ qy,bz ⊗ 1

and setting u = z ⊗ w shows that

zqy,b ⊗ w ∼ z ⊗ wfy,b (11)

for all y ∈ Y, b ∈ B, z ∈ A(X,A), w ∈ A(Y,B).

37



6.4 Perfect Strategies for nonlocal games

(i) Let z ∈ A(X,A) be positive. Then there exists z̃ ∈ A(X,A) such that z̃∗z̃ = z.

τ(z) = τ((z̃ ⊗ 1)∗(z̃ ⊗ 1)) ≥ 0

Also τ(1) = s(1⊗ 1) = 1. Therefore τ is a state. It is sufficient to show that
τ(zw) = τ(wz) for words from the set M = {ex,a, x ∈ X, a ∈ A} because the
set of linear combinations of words in M is dense in A(X,A), so this follows
from the fact that τ is continuous. We will now prove by induction over the
length |w| of the word w that zw ⊗ 1 ∼ wz ⊗ 1. In the case that |w| = 1, this
follows from (10). Suppose the assumption holds if |w| ≤ n− 1. Let |w| = n
and write w = w′e, where e ∈M . Then using (10), we have

zw ⊗ 1 = zw′e⊗ 1 ∼ ezw′ ⊗ 1 ∼ w′ez ⊗ 1 = wz ⊗ 1.

(ii) By (11),

p(a, b|x, y) = s(ex,a ⊗ fy,b) = s(ex,aqy,b ⊗ 1) = τ(ex,aqy,b) = τ(ex,aφ(fy,b)),

The second claim of (ii) will be shown by induction on k. For k = 1, we get by
(11)

s(z ⊗ fy,b) = s(zqy,b ⊗ 1) = τ(zφ(fy,b)).

Suppose the assumption holds for k − 1 terms. Then using (11), we have

s(z ⊗ fy1,b1 ...fyk,bk) = s(zqyk,bk ⊗ fy1,b1 ...fyk,bk)

= τ(zφ(fyk,bk)φ(fb1,k1 ...fyk−1,bk−1
))

= τ(zφ(fyk,bkfb1,k1 ...fyk−1,bk−1
)).

The following is Lemma 3.3 in [24] and will be needed for the following proposition:

Lemma 6.23. There exists a ∗-isomorphism γ : A(X,A) → A(X,A)op such that

γ(ex1,a1 ...exk,ak) = (exk,ak ...ex1,a1)
op, xi ∈ X, ai ∈ A, i = 1, ..., k, k ∈ N

for any finite sets X,A.

From the following theorem, we get the converse of Proposition 6.22: if there
exists a trace that fulfills some conditions and models the correlation that correlation
is also a perfect quantum commuting strategy. This theorem is Theorem 6.3 in [19].

Theorem 6.24. Let G = (X, Y,A,B, λ) be a mirror game, p ∈ Cp
ns(G). The following

are equivalent:

(i) p ∈ Cp
qc(G)

(ii) there exists a tracial state τ : A(X,A) → C and a unital ∗-homomorphism
φ : A(Y,B) → A(Y,B) with φ(SX,A) ⊆ SY,B such that

p(a, b|x, y) = τ(ex,aφ(fy,b)) ∀x ∈ X, y ∈ Y, a ∈ A, b ∈ B
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7 Quantum nonlocal games

Proof. (i) ⇒ (ii) : Follows from Theorem 6.1 and its proof, using the fact that there
exist x ∈ X, a ∈ A ex,a = qy,b for all y ∈ Y, b ∈ B.
(ii) ⇒ (i) : Let ϕ : A(X,A)×A(X,A)op, (z, wop) 7→ τ(zw). The map

R(ϕ) : A(X,A) → (A(X,A)op)d, z 7→ τ(z ·)

is completely positive because for a positive z ∈ A(X,A), there exists z̃ ∈ A(X,A)
such that z̃∗z̃ = z and since τ is a trace τ(zw) = τ(z̃∗wz̃) and Proposition 4.19
shows that a positive functional is already completely positive. Thus we get from
Lemma 5.7 in [15] that ϕ is jointly positive and by Krein’s Theorem(Proposition
4.18) and Theorem 5.8 and 5.12 in [15], we get that ϕ extends to a positive map
on A(X,A) ⊗C∗max A(X,A)op. Since ϕ(1 ⊗ 1) = τ(1) = 1, ϕ is a state. Let
A(X,A)×A(Y,B) → C be the linear functional defined by

s = ϕ(id⊗ γ) ◦ (id⊗ φ)

Since ∗-homomorphisms are positive and φ is unital, it follows that s is a state and

s(ex,a ⊗ fy,b) = ϕ(ex,a)⊗ γ(φ(fy,b))) = τ(ex,aφ(fy,b))

By Corollary 6.17, p ∈ Cqc(G).

7 Quantum nonlocal games

In this section, we will introduce quantum nonlocal games, which are a generalization
of nonlocal games. ”General” quantum nonlocal games were first introduced in [25]
and quantum output mirror games, which are a generalization of mirror games, were
defined in [4]. We will introduce correlations for quantum nonlocal games. Lastly,
we will also give a classification of these correlations similar to the classification in
Section 6.4 for nonlocal games. These correlations for quantum nonlocal games were
also defined and classified in [25].

Let B be a Banach space and let Bd = {f : B → C; f is linear and continuous}
be its topological dual space. We can then identify two elements x ∈ B, x′ ∈ Bd by
⟨x, x′⟩ = x′(x). Let X be a finite set, then MX is self dual and this is given by the
complete order isomorphism D :MX →Md

X , B 7→ (A 7→ Tr(ABt)). This was shown
in [22, Theorem 6.2]. Thus we can write for A,B ∈Mx, ⟨A,B⟩ = Tr(ABt) and can
use MX instead of Md

X .
Let X be a finite set. Although we mainly use the Banach space identification

for the remainder of this thesis, for the vector space CX we will still use the inner
product ⟨u, v⟩ = (v)tu and its induced norm. And for tensor products CX1⊗ ...⊗CXn ,
we still use the induced inner product.

7.1 Basics on Quantum nonlocal games

To define quantum nonlocal games, we first need to introduce projection lattices.

Definition 7.1. Let X, Y be finite sets.

(i) The projection lattice ofMXY is defined as PXY = {P ∈MXY ;P is a projection}.
The projection lattice ofDXY is defined as Pcl

XY = {P ∈ DXY ;P is a projection}.
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7.1 Basics on Quantum nonlocal games

(ii) Let I be an index set and (Pi)i∈I ∈ PXY and SPi
= {v ∈ CXY ;Piv = v} The

join
∨

i∈I Pi ∈ PXY is defined as

∨
i∈I

Pi(v) =

{
1, if span(

⋃
i∈I SPi

)

0, if span(
⋃

i∈I SPi
)⊥

Now we want to show that Pcl
XY is closed under the join of elements in Pcl

XY . For
this, we first need to a Lemma about the projections in DXY . Let X be a finite set.
Recall that we denote the matrix units of MX by exe

∗
x′ which we defined in Example

2.16.

Lemma 7.2. Let X, Y be finite sets and let P ∈MX ⊗MY be a projection. Then
there exist λx,y ∈ {0, 1} such that

P =
∑

x∈X,y∈Y

λx,yexe
∗
x ⊗ eye

∗
y.

Let P (X × Y ) be the power set of X × Y . Therefore the function

S : P (X × Y ) → PXY ,M 7→
∑

(x,y)∈M

λx,yeye
∗
y ⊗ eye

∗
y

is a bijection.

Proof. The set {exe∗x ⊗ eye
∗
y; (x, y) ∈ X × Y } is a basis of DX ⊗DY . Therefore there

exist λx,y ∈ C such that
∑

x∈X,y∈Y λx,yexe
∗
x ⊗ eye

∗
y. Consider λ ∈ C and

P − λ1 =
∑

x∈X,y∈Y

(λx,y − λ)exe
∗
x ⊗ eye

∗
y

This is invertible iff all (λx,y −λ) ̸= 0 for all (x, y) ∈ X×Y because if this holds then∑
x∈X,y∈Y

1
λx,y−λ

exe
∗
x⊗ eye

∗
y is the inverse and if there exists (x, y) ∈ X×Y such that

(λx,y − λ) = 0 then (P − λ1)(ex ⊗ ey) = 0. Then λx,y ∈ {0, 1} for all (x, y) ∈ X × Y
because all eigenvalues of projections are either 0 or 1.

Lemma 7.3. Let X, Y be finite sets, let I be an index set and Pi ∈ Pcl
XY . Then∨

i∈I Pi ∈ Pcl
XY and we can write∨

i∈I

Pi =
∑

(x,y)∈Q

exe
∗
x ⊗ eye

∗
y with Q = {(x, y);∃i ∈ I : ex ⊗ ey ∈ Im(Pi)}.

Proof. Since Pcl
XY is a finite set by Lemma 7.2, we can assume that I is finite. From

Lemma 7.2, it also follows that the rank 1 projections in Pcl
XY are orthogonal to

each other because ex ⊗ ey⊥ex′ ⊗ ey′ if (x, y) ̸= (x′, y′). Therefore we have that∨
i∈I Pi =

∑
(x,y)∈Q exe

∗
x ⊗ eye

∗
y for Q = {(x, y);∃i ∈ I : ex ⊗ ey ∈ Im(Pi)}. Thus we

have
∨

i∈I Pi ∈ Pcl
XY .

Now we can define quantum nonlocal games and classical-to-quantum nonlocal
games. The latter are nonlocal games where we have classical answers and only the
questions can be quantum.
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7 Quantum nonlocal games

Definition 7.4. Let X, Y,A,B be finite sets, I an index set, PXY the projection
lattice of MXY , PAB the projection lattice of MAB and Pcl

XY the projection lattice of
DXY .

(i) A quantum nonlocal game is a map φ : PXY → PAB with φ(0) = 0 that is also
join continuous, i.e. φ(

∨
i∈I Pi) =

∨
i∈I φ(Pi) for all Pi ∈ PXY .

(ii) A classical-to-quantum nonlocal game is a join continuous map φ : Pcl
XY → PAB

with φ(0) = 0.
(iii) A classical nonlocal game is a join continuous map φ : Pcl

XY → Pcl
AB with

φ(0) = 0.

Recall nonlocal games were defined in Definition 6.1 and consist of four finite
sets X, Y,A,B and a function λ : X × Y × A×B → {0, 1}. The following Lemma
establishes the connection between classical nonlocal games defined in Definition 7.4
and nonlocal games from Definition 6.1.

Proposition 7.5. Let X, Y,A,B be finite sets. There is a bijection

{λ : X × Y × A×B → {0, 1}} → {φ : Pcl
XY → Pcl

AB;φ is a classical nonlocal game}
λ 7→ (φλ : Pcl

XY → Pcl
AB, P 7→ S(WP ))

where WP = {(a, b);∃(x, y) ∈ S−1(P ) such that λ(x, y, a, b) = 1} and S is the func-
tion defined in Lemma 7.2.

Proof. Let λ : X × Y × A×B → {0, 1} be a function. Then we want to show that
φλ is join continuous. Let I be an index set and (Pi)i∈I ⊆ Pcl

XY . By Lemma 7.3, we
can write∨

i∈I

Pi =
∑

(x,y)∈Q

exe
∗
x ⊗ eye

∗
y with Q = {(x, y);∃i ∈ I : ex ⊗ ey ∈ Im(Pi)}.

Since exe
∗
x ⊗ eye

∗
y⊥ex′e∗x′ ⊗ ey′e

∗
y′ for x, x

′ ∈ X, y, y′ ∈ Y and x ≠ x′ or y ̸= y′, we get
that ∑

(x,y)∈Q

exe
∗
x ⊗ eye

∗
y =

∨
(x,y)∈Q

exe
∗
x ⊗ eye

∗
y.

Define Q′
x,y = {(a, b) ∈ A×B; (a, b) ∈ Im(φ(exe

∗
x ⊗ eye

∗
y))}. Then we get:

φλ

(∨
i∈I

Pi

)
= φλ

 ∨
(x,y)∈Q

exe
∗
x ⊗ eye

∗
y


= S({(a, b);∃(x, y) ∈ Q such that λ(a, b, x, y) = 1})

=
∨

(x,y)∈Q

S({(a, b);λ(a, b, x, y) = 1})

=
∨
(i∈I

φλ(Pi).

The fact that φλ(0) = 0 is obvious and thus the map is well defined. By Lemma 7.2
and 7.3, we can see that a join continuous map Pcl

XY → Pcl
AB, that maps 0 to 0, is

defined by its action on the rank one projections. From this it is easy to see that
this map is bijective.
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7.1 Basics on Quantum nonlocal games

This Proposition shows that classical nonlocal games and the nonlocal games
from Definition 6.1 coincide by this bijection. We will later show that the strategies
and perfect strategies also coincide. Thus we can see quantum nonlocal games as a
generalization of nonlocal games.

In the following, we want to define quantum output mirror games which should
generalize mirror games. These were introduced in [4]. Also, recall that mirror games
were defined in 6.3. As motivation for the definition of bijective projections, we first
show which classical quantum nonlocal games are mirror games:

Proposition 7.6.

Let G = (X, Y,A,B, λ) be a nonlocal game and φλ the “classical” quantum nonlocal
game associated to λ. G is a mirror game iff there exist functions f : X → Y ,
g : Y → X such that for every x ∈ X and y ∈ Y , there exists bijections αx, βy : A→ B
such that φλ(exe

∗
x ⊗ ef(x)e

∗
f(x)) = Pαx and φλ(eg(y)e

∗
g(y) ⊗ eye

∗
y) = Pβ−1

y
where

Pαx =
∑
a∈A

eae
∗
a ⊗ eαx(a)e

∗
αx(a) and Pβ−1

y
=
∑
a∈A

eae
∗
a ⊗ eβ−1

y (a)e
∗
β−1
y (a)

.

Proof. ”⇒”: Fix x ∈ X. G is a mirror game, therefore there exists f : X → Y such
that the set {(a, b) ∈ A×B;λ(x, f(x), a, b) = 1} is the graph of a bijection. Define
αx : A→ B as the bijection such that this set is its graph. Then it holds that:

φ(exe
∗
x ⊗ ef(x)e

∗
f(x)) = {eae∗a ⊗ ebe

∗
b ;λ(x, f(x), a, b) = 1} = Pαx .

Fix y ∈ Y . Analogous there exists g : Y → X such that {(a, b);λ(g(y), y)} is the
graph of a bijection and define βy : Y → X as the bijection to the given graph. Then
it holds that:

φ(eg(y)e
∗
g(y) ⊗ eye

∗
y) = {eae∗a ⊗ ebe

∗
b ;λ(g(y), y, a, b) = 1} = Pβ−1

y
.

”⇐”:
For x ∈ X, y ∈ Y , the sets {(a, αx(a)); a ∈ A} and {(a, βy(a)); a ∈ A} are graphs of
a bijection. Let f : X → Y, g : Y → X be functions such that

φλ(exe
∗
x ⊗ ef(x)e

∗
f(x)) = Pαx and φλ(eg(y)e

∗
g(y) ⊗ eye

∗
y) = Pβ−1

y
.

From this follows that

{(a, b) ∈ A×B;λ(a, b, x, f(x)) = 1} = {(a, αx(a)) ∈ A×B; a ∈ A}
{(a, βy(a)); a ∈ A} = {(β−1

y (b), b); b ∈ B} = {(a, b) ∈ A×B;λ(a, b, g(y), y) = 1}

Therefore G is a mirror game.

From this proposition, we get that we need some ”quantum” version of bijections.
To define these, we first need to introduce some maps.

Also, note that the tensor product of Banach spaces in this section is just the
algebraic tensor product. The examples of tensor products of Banach spaces in
this thesis do not contain tensor products with multiple Banach spaces of infinite
dimensions and are only matrix algebras except for at most one space being traceclass
or bounded operators. Thus also the C∗-algebraic tensor product would not contain
different elements.
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7 Quantum nonlocal games

Definition 7.7. Let B1, ..., Bn be Banach spaces and Bd
1 , ..., B

d
n their respective

topological dual spaces. Let k ≤ n and i1, ..., ik ∈ {1, ..., n} such that ij ̸= il for
j ̸= l. For wi1 ∈ Bd

i1
, ..., wik ∈ Bd

ik
, we define the slice map as the linear extension of

Lwi1
,...,wik

: B1 ⊗ ...⊗Bn → B1 ⊗ ...⊗Bi1−1 ⊗Bi1+1 ⊗ ...⊗Bik−1 ⊗Bik+1 ⊗ ...⊗Bn,

b1 ⊗ ...⊗ bn 7→ ⟨bi1 , wi1⟩...⟨bik , wik⟩b1 ⊗ ...⊗ bi1−1 ⊗ bi1+1 ⊗ ...⊗ bik−1 ⊗ bik+1 ⊗ ...⊗ bn.

For the rest of this subsection, we assume that A = B. But we still write A and
B as if those were different sets. This is not a very strong restriction as we could
encode different sets with the same cardinality and we also had for a classical mirror
game that has perfect strategies that |A| = |B|. Now we introduce the vec mapping.
Let X be a finite set. Then we can define the vec mapping by

vec : Mx → CX ⊗ CX , exe
∗
x′ 7→ ex ⊗ ex′ .

Now we can define for an operator U ∈MX :

ζU =
vec(U)

∥ vec(U)∥
∈ CX ⊗ CX .

One way to achieve these “quantum” versions of bijections are “bijective” Projec-
tions. Recall that partial isometries were defined in 2.4.

Definition 7.8. Let A,B be finite sets and P ∈MAB be a projection of rank r. We
call P a bijective projection if there exist partial isometries (Ui)

r
i=1 ∈MA such that

P =
∑r

i=1 ζUi
ζ∗Ui

and
r∑

i=1

UiU
∗
i =

r∑
i=1

U∗
i Ui = I.

Remark 7.9. Let A,B be finite sets and α : A→ B a bijection.

(i) If α is a bijection then Pα is a bijective projection of rank |A| with corresponding
partial isometries eα(a)e

∗
a.

(ii) Let A,B be finite sets and P ∈ MAB be projection. In Lemma 2.2 in [4], it
was shown that a projection of rank 1 is bijective iff for all e, f ∈ CA, e⊥f , we
have Lee∗(P )⊥Lff∗(P ). For a projection Pα ∈MAB, this is the case if e, f are
chosen from the standard basis.

Now we can use these bijective projections to give a generalization of mirror
games:

Definition 7.10. Let X, Y, , A,B be finite sets and let φ : Pcl
XY → PAB be a classical-

to-quantum nonlocal game. φ is called a quantum output mirror game if there exist
functions f : X → Y, g : Y → X such that for all x ∈ X, y ∈ Y the projections
φ(exe

∗
x′ ⊗ ef(x)e

∗
f(x)) and φ(eg(y)e

∗
g(y) ⊗ eye

∗
y) are bijective.

It is easy to see from Proposition 7.5 and Remark 7.9 that mirror games are a
subset of quantum output mirror games.
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7.2 Quantum no-signalling correlations

Quantum no-signalling correlations were first introduced in [9]. Although the setting
was different from nonlocal games the idea was as well that Alice and Bob can not
communicate through this correlation. As strategies for quantum nonlocal games
these correlations were introduced in [25]. Recall that quantum channels and classical
channels were defined in Definition 5.11 and the partial trace was defined in Definition
5.6.

Definition 7.11. Let X, Y,A,B be finite sets and let Γ: MXY →MAB be a quantum
channel.

(i) Γ is a quantum no-signalling (QNS) correlation iff for all ρX ∈ MX with
Tr(ρX) = 0

TrA Γ(ρX ⊗ ρY ) = 0 ∀ρY ∈MY ,

and for all ρY ∈MY with Tr(ρY ) = 0

TrB Γ(ρX ⊗ ρY ) = 0 ∀ρX ∈MX .

(ii) Let φ : PXY → PAB be a quantum nonlocal game. Γ is called a perfect strategy
for φ iff for all P ∈ PXY holds ⟨Γ(P ), φ(P )⊥⟩ = 0.

In the previous section, we showed that quantum nonlocal games are a generaliza-
tion of nonlocal games. Similarly, we can show now that a classical channel can be
associated with a ”classical” correlation and vice versa. First, we need to introduce
a lemma that is needed in the proof.

Lemma 7.12. Let X, Y be finte sets. Let A,B ∈MXY be a positive elements, then
we have Tr(AB) ≥ 0 and Tr(ABt) ≥ 0.

Proof. If B is positive Bt is still selfadjoint and Sp(Bt) ⊆ [0,∞). Therefore Bt is
positive and it is sufficient to show that Tr(AB) ≥ 0. From the spectral theorem
follows that there exists a unitary UA ∈MXY and a diagonal matrix DA ∈ DXY such
that all entries of DA are ≥ 0 and A = UADAU

∗
A. Similarly from the spectral theorem

follows that there exists a unitary UB ∈ MXY and a diagonal matrix DB ∈ DXY

such that all entries of DB are ≥ 0 and B = UBDBU
∗
B. Therefore we have

Tr(AB) = Tr(UADAU
∗
AUBDDU

∗
B) = Tr(UAU

∗
AUBU

∗
BDADB) = Tr(DADB) ≥ 0.

Recall that classical channels were defined in Definition 5.11.

Proposition 7.13. Let X, Y,A,B be finite sets. Then there exists a bijection between
the sets

{p : A×B ×X × Y → [0, 1]; p is a correlation}
and

{N : DXY → DAB;N is a classical channel}.
For a classical channel N : DXY → DAB the corresponding correlation is given by

pN : X × Y × A×B → [0, 1], (x, y, a, b) 7→ ⟨N (exe
∗
x ⊗ eye

∗
y), eae

∗
a ⊗ ebe

∗
b⟩
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7 Quantum nonlocal games

and conversely for a correlation p : A×B×X×Y → [0, 1] the corresponding classical
channel is given by

Np : DXY → DAB, exe
∗
x ⊗ eye

∗
y 7→

∑
a∈A,b∈B

p(a, b|x, y)eae∗a ⊗ ebe
∗
b .

Proof. Im(pN ) ⊆ [0,∞), by Lemma 7.12 as the matrix units are positive and N is
positive. Then we get that pN is a correlation from the fact that N is trace-preserving.
Conversely Np is a positive because Im(p) ⊆ [0, 1] and Np is trace-preserving because
for all x ∈ X, y ∈ Y , we have

∑
a∈A,b∈B p(a, b|x, y) = 1. Since it easy to see that

p = pNp and N = NpN , we get that this is a bijection.

This proposition shows that there is a bijection between classical channels and
correlations. But for a given nonlocal game they determine which strategies are
perfect strategies. This is Proposition 10.14 in [25].

Proposition 7.14. Let G = (X, Y,A,B, λ) be a nonlocal game and p be a no-
signalling correlation for G. Then p is a perfect Strategy for G iff Np is a perfect
Strategy for φλ, i.e.

⟨Np(P ), φλ(P )⊥⟩ = 0 ∀P ∈ P cl
XY .

Proof. Let p be a perfect correlation. Then we have

{(a, b, x, y) ∈ A×B ×X × Y ;λ(a, b, x, y) = 0}
⊆{(a, b, x, y) ∈ A×B ×X × Y ; p(a, b|x, y) = 0}.

Therefore we have

{(a, b, x, y) ∈ A×B ×X × Y ; p(a, b|x, y) = 1}
⊆{(a, b, x, y) ∈ A×B ×X × Y ;λ(a, b, x, y) = 1}

Thus follows that ⟨Np(exe
∗
x ⊗ eye

∗
y), φλ(exe

∗
x ⊗ eye

∗
y)⊥⟩ = 0. Every projection in DXY

can be written as
∑

x,y∈X̃,Ỹ exe
∗
x ⊗ eye

∗
y for some subset X̃ ⊆ X, Ỹ ⊆ Y .

〈
Np

 ∑
x,y∈X̃,Ỹ

exe
∗
x ⊗ eye

∗
y

 , φλ

 ∑
x,y∈X̃,Ỹ

exe
∗
x ⊗ eye

∗
y


⊥

〉

=
∑

x,y∈X̃,Ỹ

〈
Np

(
exe

∗
x ⊗ eye

∗
y

)
,

 ∨
x,y∈X̃,Ỹ

φλ

(
exe

∗
x ⊗ eye

∗
y

)
⊥

〉

≥
∑

x,y∈X̃,Ỹ

〈
Np

(
exe

∗
x ⊗ eye

∗
y

)
, φλ

(
exe

∗
x ⊗ eye

∗
y

)
⊥

〉
= 0.

Let Np be a perfect strategy for φλ. To show that p is a perfect strategy, it is
sufficient to show that

{(a, b, x, y) ∈ A×B ×X × Y ;λ(a, b, x, y) = 0}
⊆{(a, b, x, y) ∈ A×B ×X × Y ; p(a, b|x, y) = 0}.
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7.2 Quantum no-signalling correlations

Let (a, b, x, y) ∈ {(a, b, x, y) ∈ A×B ×X × Y ;λ(a, b, x, y) = 0}.

p(a, b|x, y) =⟨Np(exe
∗
x ⊗ eye

∗
y), eae

∗
a ⊗ eye

∗
y⟩

≤⟨Np(exe
∗
x ⊗ eye

∗
y), φλ(exe

∗
x ⊗ eye

∗
y)⊥⟩

=0

Thus (a, b, x, y) ∈ {(a, b, x, y) ∈ A×B ×X × Y ; p(a, b|x, y) = 0}.

We can also directly embed “classical” correlations into the QNS correlations.
For this, recall the completely dephasing from Definition 5.14.

Proposition 7.15. Let X, Y,A,B be finite sets and p : A×B ×X × Y → [0, 1] be
a correlation. The map Γp : MXY →MAB, such that Γp = Np ◦∆XY , is a quantum
channel. Moreover, p is a no-signalling correlation iff Γp is a QNS correlation.

Proof. It is straight forward calculation to see that Γp is given by

Γp(A) =
∑

x∈X,y∈Y

∑
a∈A,b∈B

p(a, b|x, y)⟨A(ex ⊗ ey)ex ⊗ ey, ⟩eae∗a ⊗ ebe
∗
b .

So let p be a no-signalling correlation. Then Γp is a QNS correlation because for
ρx ∈MX , ρy ∈MY with Tr(ρX) = 0:

TrA Γp(ρx ⊗ ρY )

=
∑

x∈X,y∈Y

TrA

( ∑
a∈A,b∈B

p(a, b|x, y)⟨pXex, ex⟩⟨pY ey, ey⟩eae∗a ⊗ ebe
∗
b

)
=

∑
x∈X,y∈Y

∑
a∈A,b∈B

p(a, b|x, y)⟨pXex, ex⟩⟨pY ey, ey⟩ebe∗b

=
∑
y∈Y

∑
b∈B

(∑
x∈X

∑
a∈A

p(a, b|x, y)⟨pXex, ex⟩

)
⟨pY ey, ey⟩ebe∗b

=
∑
y∈Y

∑
b∈B

0⟨pY ey, ey⟩ebe∗b = 0.

Analogous follows the second condition of a QNS correlation.
Conversely, let Γp be a QNS correlation. Define ρ = exe

∗
x ⊗ eye

∗
y − ex′e∗x′ ⊗ eye

∗
y.

We then have

0 =Γp(ρ)

=
∑

x̃∈X,ỹ∈Y

∑
a∈A,b∈B

p(a, b|x̃, ỹ)⟨ρ(ex̃ ⊗ eỹ), ex̃ ⊗ eỹ⟩eae∗a ⊗ ebe
∗
b

=
∑

x̃∈X,ỹ∈Y

∑
a∈A,b∈B

p(a, b|x̃, ỹ)⟨ρ(ex̃ ⊗ eỹ), ex̃ ⊗ eỹ⟩eae∗a ⊗ ebe
∗
b

=
∑

a∈A,b∈B

(p(a, b|x, y)− p(a, b|x′, y))eae∗a ⊗ ebe
∗
b

⇒
∑
a∈A

p(a, b|x, y) =
∑
a∈A

p(a, b|x′, y) ∀x, x′ ∈ X, y ∈ Y, b ∈ B.

Analogous the other condition for no-signalling correlations follows by using ρ =
exe

∗
x ⊗ eye

∗
y − exe

∗
x ⊗ ey′e

∗
y′ .
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7 Quantum nonlocal games

Let X, Y,A,B be finite sets. This Proposition shows that the no-signalling
correlations over (A,B,X, Y ) are exactly the QNS correlations Γ: MXY → MAB

such that Γ is (X × Y,A × B)-classical. With these insights into how classical
correlations are embedded into the quantum correlations, we can define classical-to-
quantum correlations:

Definition 7.16. Let X, Y,A,B be finite sets and let E : DXY →MAB be a classical-
to-quantum channel.

(i) E : DXY →MAB is a classical-to-quantum no-signalling correlation (CQNS) iff
for all ρx ∈ DX

TrA E(ρX ⊗ ρY ) = 0 ∀ρY ∈ DY ,Tr(ρY ) = 0

and for all ρY ∈ DY

TrB E(ρX ⊗ ρY ) = 0 ∀ρX ∈ DX ,Tr(ρX) = 0.

(ii) Let φ : P cl
XY → PAB be a classical-to-quantum nonlocal game. E is called a

perfect strategy for φ iff for all P ∈ P cl
XY holds ⟨E(P ), φ(P )⊥⟩ = 0.

Now we can also show that CQNS correlations can be embedded into the QNS
correlations. This is Theorem 7.3 in [25].

Proposition 7.17. Let X, Y,A,B be finite sets and E : DXY → MAB be CQNS
correlation. We define

ΓE : MXY →MAB,ΓE = E ◦∆XY .

Then ΓE is a QNS correlation. And conversely if Γ : MXY → MAB is a QNS
correlation, we get that Γ|DXY

is a CQNS correlation.

Proof. That Γ|DXY
is a CQNS correlation if Γ is a QNS correlation follows directly

from the definition of CQNS correlations.

Now let ρX ∈MX , ρX ∈MY be quantum states with Tr(ρX) = 0. Then we get

TrA(ΓE(ρX ⊗ ρY )) = TrA(E ◦∆XY (ρX ⊗ ρY )))

= TrA(E(
∑

x∈X,y∈Y

⟨ρXex, ex⟩⟨ρY ey, ey⟩exe∗x ⊗ eye
∗
y))

= TrA(E(
∑
y∈Y

⟨ρY ey, ey⟩(
∑
x∈X

⟨ρXex, ex⟩exe∗x ⊗ eye
∗
y))

=
∑
y∈Y

TrA(E(⟨ρY ey, ey⟩(
∑
x∈X

⟨ρXex, ex⟩exe∗x ⊗ eye
∗
y))

= 0

Analogous we can show the second condition for a QNS correlation. Thus ΓE is a
QNS correlation.
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7.3 Quantum commuting QNS correlations

The aim of this section will be to introduce a second class of correlations for quantum
nonlocal games. This class is called quantum commuting quantum no-signalling
correlations. These strategies are the “quantum” analogue of quantum commuting
strategies for nonlocal games. These correlations were introduced in [25] and most of
this section is taken from that article. To define quantum commuting QNS strategies,
we first need to introduce stochastic operator matrices. Recall that slice maps were
defined in 7.7. Using slice maps, we can define the partial trace TrA in a more general
setting as the slice map LIA .

Definition 7.18. Let X,A be finite sets and let H be a Hilbert space. A positive
operator E ∈ MX ⊗MA ⊗ B(H) such that TrAE = IX ⊗ IH is called stochastic
operator matrix. For x, x′ ∈ X and a, a′ ∈ A, we define Ex,x′,a,a′ = Lexe∗x′⊗eaea′

(E),

Ea,a′ = Leae∗a′
(E) and Ex,x′ = Lexe∗x′

(E).

Remark 7.19. Consider a stochastic operator matrix E ∈ DX ⊗DA ⊗B(C). From
the proof of Proposition 7.2, it follows that E =

∑
x∈X,a∈A λx,aexe

∗
x ⊗ eae

∗
a such that

λx,a ≥ 0. Identifying DX ⊗DA with M|X|,|A| the stochastic operator Matrices become
row stochastic (scalar-valued) matrices because

IX = TrAE ⇔ 1 =
∑
a∈A

λx,a∀x ∈ X

and the fact that positive elements in DX ⊗DA only have positive entries.

First, we prove some useful facts for stochastic operator matrices. As stochastic
operator matrices are positive, the following property holds:

Lemma 7.20. Let X,A be finite sets, H be a Hilbert space and E ∈MX⊗MA⊗B(H)
be a positive operator. Then we have that

(i) Ex,x ∈MA ⊗B(H) is positive for all x ∈ X,
(ii) Ea,a ∈MX ⊗B(H) is positive for all a ∈ A,
(iii) Ex,x,a,a ∈ B(H) is positive for all x ∈ X, a ∈ A.

Proof. Define the maps

ϕE,X :MX →MA ⊗B(H), eae
∗
a′ 7→ Leae∗a′

(E),

ϕE,A :MA →MX ⊗B(H), exe
∗
x′ 7→ Lexe∗x′

(E),

ϕE,X,A :MA ⊗MX → B(H), exe
∗
x′ ⊗ eae

∗
a′ 7→ Lexe∗x′⊗eae∗a′

(E).

For all three of these maps, we have that their Choi matrix is E. Therefore by
Proposition 4.17, we have that all maps are completely positive and therefore positive.
Also for all x ∈ X, a ∈ A, we have that exe

∗
x, eae

∗
a and exe

∗
x ⊗ eae

∗
a are positive

therefore ϕE,X(exe
∗
x) = Ex,x,ϕE,A(eae

∗
a) = Ea,a and ϕE,X,A(exe

∗
x ⊗ eae

∗
a) = Ex,x,a,a are

positive.

Lemma 7.21. Let X,A be finite sets and H be a Hilbert space. For a positive
element E ∈ (MX ⊗MA ⊗B(H))+, the following are equivalent:

(i) E is a stochastic operator matrix,
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7 Quantum nonlocal games

(ii) Ea,a is a POVM in MX ⊗B(H).

Proof. By Lemma 7.20, we get that the operators Ea,a are already positive. Since

TrA(E) =
∑
a∈A

eae
∗
a ⊗ Ea,a

we get the statement.

Recall Definition 6.9, where we defined quantum commuting correlation for
nonlocal games. This proposition shows a connection between POVMs inMX⊗B(H)
and stochastic operator matrices.

Let X,A be finite sets and H be a Hilbert space. Note that every operator
E ∈MX ⊗MA ⊗B(H) can be written as:∑

x,x′∈X,a,a′∈A

exe
∗
x′ ⊗ eae

∗
a′ ⊗ Ex,x′,a,a′

This motivates the following definition of classical and semi-classical stochastic
operator matrices:

Definition 7.22. Let X,A be finite sets and H be a Hilbert space. Also, let
E ∈MX ⊗MA ⊗B(H) be a stochastic operator matrix.

(i) We call E classical if there exist sets of POVMs (Ax,a)a∈A ⊆ B(H) such that

E =
∑
x∈X

∑
a∈A

Ex,x ⊗ Ea,a ⊗ Ax,a.

(ii) We call E semi-classical if there exist (Ax)x∈X ⊆ (MX ⊗B(H))+ such that

E =
∑
x∈X

Ex,x ⊗ Ax.

Let H be a Hilbert space. Recall that in Proposition 3.13, it was shown the
dual of the traceclass operators T (H) is B(H). Let B ∈ B(H) the isomorphism was
given by B 7→ (T 7→ ϕB) where ϕB : T (H) → C, T 7→ Tr(BT ). Thus we can identify
T (H)d by B(H) and write for T ∈ T (H), B ∈ B(H):

⟨B, T ⟩ = Tr(BT ) or ⟨T,B⟩ = Tr(BT ).

Thus we can use this duality for slice maps for elements from B(H) and T (H). Since
T (H) can be embedded into its bidual space, we also use this identification the other
way around for slice maps.

Lemma 7.23. Let X,A be finite sets, let H be a Hilbert space, let σ ∈ T (H) be a
state and let E ∈MX ⊗MA ⊗B(H) be a stochastic operator matrix. The linear map
ΓE,σ : MX →MA,M 7→ LM⊗σ(E) is a quantum channel.

Proof. Define ϕE : MA →MX ⊗B(H), eae
∗
a′ 7→ Leae∗a′

(E) = Ea,a′ . Since E is positive
it follows directly from Proposition 4.17 that ϕE is completely positive. Let ϕ∗ be
the predual of ϕE. Then ϕ∗ :MX ⊗ T (H) →MA since T (H) is the predual of B(H)
and MX ,MA are selfdual. The predual ϕ∗ of ϕE satisfies by definition

⟨ϕ∗(ρ), ω⟩ = ⟨ρ, ϕE(ω)⟩ ∀ρ ∈MX ⊗ T (H), w ∈MA.
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In [25] it is stated (without proof) that the predual of a completely positive map is
completely positive. Let σ ∈ T (H) be a state and x, x′ ∈ X, a, a′ ∈ A, then we have

⟨ϕ∗(exe
∗
x′ ⊗ σ), eae

∗
a⟩ = ⟨exe∗x′ ⊗ σ, ϕE(eae

∗
a)⟩

= ⟨exe∗x′ ⊗ σ,Ea,a′⟩

=

〈
exe

∗
x′ ⊗ σ,

∑
x̃,x̃′∈X

ex̃,x̃′ ⊗ Ex̃,x̃′,a,a′

〉
= ⟨σ,Ex,x′,a,a′⟩.

On the other hand, we have

⟨Lexe∗x′⊗σ(E), eae
∗
a′⟩ =

〈
Lexe∗x′⊗σ

( ∑
x̃,x̃′∈X

∑
ã,ã′∈A

ex̃,x̃′ ⊗ eã,ã′ ⊗ Ex̃,x̃′,ã,ã′

)
, eae

∗
a′

〉

=

〈 ∑
ã,ã′∈A

Lσ(eãe
∗
ã′ ⊗ Ex,x′,ã,ã′), eae

∗
a′

〉
=
∑

ã,ã′∈A

⟨σ,Ex,x′,ã,ã′⟩⟨eãe∗ã′ , , eae∗a′⟩

= ⟨σ,Ex,x′,a,a′⟩.

Since {exe∗x′x, x′ ∈ X} and {eae∗a′ ; a, a′ ∈ A} form a basis ofMX andMA respectively,
we get that ΓE,σ = Lexe∗x′⊗σ(E) = ϕ∗(exe

∗
x′ ⊗ σ). Since ϕ∗ is completely positive and

σ is positive, we get that ΓE,σ is completely positive. ΓE,σ is trace preserving as
Tr(σ) = 1 and by definition TrA(E) = IX ⊗ IA. Thus ΓE,σ is a quantum channel.

Lemma 7.24. Let X,A be finite sets, let H be a Hilbert space, let σ ∈ T (H) be a
state and let E ∈MX⊗MA⊗B(H) be a stochastic operator matrix. For all x, x′ ∈ X
and a, a′ ∈ A, we have

⟨ΓE,σ(exe
∗
x′), eae

∗
a′⟩ = ⟨σ,Ex,x′,a,a′⟩.

Proof. This follows directly from the proof of Lemma 7.23.

Using Lemma 7.23, we can define quantum channels with stochastic operator
matrices and vector states. These quantum channels are also classical iff the stochastic
operator matrix is classical. This is the following proposition which is Lemma 7.2 in
[25]. Following this article we write

∆̃X = ∆X ⊗ idA ⊗ idB(H) : MX ⊗MA ⊗B(H) → DX ⊗MA ⊗B(H),

∆̃X = idX ⊗∆A ⊗ idB(H) : MX ⊗MA ⊗B(H) →MX ⊗DA ⊗B(H),

∆̃XA = ∆X ⊗∆A ⊗ idB(H) : MX ⊗MA ⊗B(H) → DX ⊗DA ⊗B(H).

Proposition 7.25. Let X,A be finite sets and H be a Hilbert space. Also, let
E ∈ MX ⊗MA ⊗ B(H) be a stochastic operator matrix and σ ∈ T (H) be a state.
Set E ′ = ∆̃X(E) and E ′′ = ∆̃XA(E). Then E ′ is a semi-classical stochastic operator
matrix and E ′′ is a classical operator matrix. Moreover, we have

ΓE,σ ◦∆X = ΓE′,σ and ∆A ◦ ΓE,σ ◦∆X = ΓE′′,σ. (12)
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7 Quantum nonlocal games

Proof. We can write

E =
∑

x,x′∈X

∑
a,a′∈A

exe
∗
x′ ⊗ eae

∗
a′ ⊗ Ex,x′,a,a′ .

Therefore we get

E ′ = ∆̃X(E) =
∑
x∈X

∑
a,a′∈A

exe
∗
x ⊗ eae

∗
a′ ⊗ Ex,x,a,a′ =

∑
x∈X

exe
∗
x ⊗ Ex,x,

E ′′ = ∆̃XA(E) =
∑
x∈X

∑
a∈A

exe
∗
x ⊗ eae

∗
a ⊗ Ex,x,a,a.

By Lemma 7.20, we have that E ′ is a semi-classical operator stochastic operator
matrix. By

IX ⊗ IH = TrA(E) =
∑

x,x′∈X

∑
a∈A

exe
∗
x′ ⊗ Ex,x′,a,a ⇒

∑
a∈A

Ex,x′,a,a = δx,x′IH

and Lemma 7.20, we get that E ′′ is a classical stochastic operator matrix. By Lemma
7.24, we get that

⟨ΓE,σ(∆X(exe
∗
x′)), eae

∗
a⟩ = δx,x′⟨σ,Ex,x′,a,a′⟩ = ⟨ΓE′,σ(exe

∗
x′), eae

∗
a⟩,

⟨∆A(ΓE,σ(∆X(exe
∗
x′))), eae

∗
a⟩ = δx,x′δa,a′⟨σ,Ex,x′,a,a′⟩ = ⟨ΓE′′,σ(exe

∗
x′), eae

∗
a⟩.

Since {exe∗x′x, x′ ∈ X} and {eae∗a′ ; a, a′ ∈ A} form a basis ofMX andMA respectively,
we get (12).

This Proposition shows that the channel corresponding to a stochastic operator
matrix is classical iff the stochastic operator matrix is classical and similarly, it has
classical inputs iff the stochastic operator matrix is semi-classical.

From Lemma 7.23, we can define quantum channels with stochastic operator
matrices and vector states. But these are not necessarily QNS correlations. So if
we want to define a “quantum” analogue for quantum commuting strategies these
should be QNS correlations as quantum commuting strategies for classical nonlocal
games were no-signalling strategies as well. Thus we will introduce a special class of
stochastic operator matrices.

Definition 7.26. Let X, Y,A,B be finite set and let E ∈ MX ⊗ MA ⊗ B(H),
F ∈ MY ⊗MB ⊗ B(H) be stochastic operator matrices. The pair (E,F ) is called
commuting if for all x, x′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B:

Ex,x′,a,a′Fy,y′,b,b′ = Fy,y′,b,b′Ex,x′,a,a′ .

Now we can show that a pair of quantum commuting stochastic operator matrices
defines a QNS correlation. This was shown in Proposition 4.1 in [25].

Proposition 7.27. Let X, Y,A,B be finite sets and H be a Hilbert space. Let
E ∈MX ⊗MA ⊗B(H), F ∈MY ⊗MB ⊗B(H) form a commuting pair of stochastic
operator matrices. Then there exists a unique operator E · F such that

∀ρX ∈MX , ρY ∈MY , ρA ∈MA, ρB ∈MB, σ ∈ T (H) :

⟨E · F, ρX ⊗ ρY ⊗ ρA ⊗ ρB ⊗ σ⟩ = ⟨LρX⊗ρA(E)LρY ⊗ρB(F ), σ⟩ .

Moreover, E · F is a stochastic operator matrix and for σ ∈ T (H), ΓE·F,σ is a QNS
correlation.
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7.3 Quantum commuting QNS correlations

Proof. Define E · F = (Ex,x′,a,a′Fy,y′,b,b′) ∈ MXY ⊗MAB ⊗ B(H). Denote by A the
C∗-algebra generated by {Ex,x′,a,a′ ;x, x

′ ∈ X, a, a′ ∈ A} and denote by B the C∗-
algebra generated by {Fy,y′,b,b′ ; y, y

′ ∈ Y, b, b′ ∈ B}. Since A ⊆ B(H) and B ⊆ B(H),
we get representations

πA : MXA(A) →MXY AB(B(H)), S 7→ S ⊗ IY B,

πB : MY B(B) →MXY AB(B(H)), T 7→ IXA ⊗ T.

Since the ranges of πA and πB commute, we get a representation

π : MXA(A)⊗C∗max MY B(B) →MXY AB(B(H)), S ⊗ T 7→ πA(S)πB(T ).

Set E ·F = π(E⊗F ). Since E and F are positive, there exist A ∈MX ⊗MA⊗B(H)
such that A∗A = E and B ∈MY ⊗MB ⊗B(H) such that B∗B = F , therefore

E · F = π(E ⊗ F ) = π(A∗A⊗B∗B) = π(A⊗B)∗π(A⊗B) ≥ 0.

So if TrAB(E · F ) = IXY ⊗ IH , we have that E · F is a stochastic operator matrix.
First note that

IX ⊗ IH = TrA(E) =
∑
a∈A

(Ex,x′,a,a)x,x′

and therefore Ex,x′,a,a = δx,x′I for all x, x′ ∈ X. Analogous we get for F that
Fy,y′,b,b = δy,y′I for all y, y′ ∈ Y . Thus we can conclude

TrAB(E · F ) =
∑
a∈A

∑
b∈B

∑
x,x′∈X

∑
y,y′∈Y

exe
∗
x′ ⊗ eye

∗
y′ ⊗ Ex,x′,a,aFy,y′,b,b

=
∑
a∈A

∑
b∈B

(Ex,x′,a,aFy,y′,b,b)x,x′,y,y′ = (δx,x′δy,y′I)x,x′,y,y′ = IXY ⊗ IH .

First note that we can write

E · F =
∑

x,x′∈X

∑
y,y′∈Y

∑
a,a′∈A

∑
b,b′∈B

exe
∗
x′ ⊗ eae

∗
a′ ⊗ eye

∗
y′ ⊗ eae

∗
a′ ⊗ ebe

∗
b′ ⊗ Ex,x′,a,a′Fy,y′,b,b′ .

For x, x′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B and σ ∈ T (H), we have

⟨E · F, exe∗x′ ⊗ eae
∗
a′ ⊗ eye

∗
y′ ⊗ eae

∗
a′ ⊗ ebe

∗
b′ ⊗ σ⟩ (13)

= ⟨Ex,x′,a,a′Fy,y′,b,b′ , σ⟩ =
〈
Lexe∗x′⊗eae∗a′

(E)Leye∗y′⊗ebe
∗
b′
(F ), σ

〉
.

By Linearity we now get

∀ρX ∈MX , ρY ∈MY , ρA ∈MA, ρB ∈MB, σ ∈ T (H) :

⟨E · F, ρX ⊗ ρY ⊗ ρA ⊗ ρB ⊗ σ⟩ = ⟨LρX⊗ρA(E)LρY ⊗ρB(F ), σ⟩ .

The last statement we need to show is that ΓE·F,σ is a QNS correlation. Let
ρX ∈MX , ρY ∈MY with Tr(ρX) = 0 and τB ∈MB,we have

⟨TrA ΓE·F,σ(ρX ⊗ ρY ), τB⟩ = ⟨ΓE·F,σ(ρX ⊗ ρY ), IA ⊗ τB⟩
= ⟨LρX⊗ρY ⊗σ(E · F ), IA ⊗ τB⟩
= ⟨LρX⊗ρY (E · F ), IA ⊗ τB ⊗ σ⟩
= ⟨E · F, ρX ⊗ ρY IA ⊗ τB ⊗ σ⟩
= ⟨TrA LρX (E)LρY ⊗τB(F ), σ⟩ = 0
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7 Quantum nonlocal games

The first, third, fourth and fifth identity follows similarly by decomposition like (13).
Analogous follows the other condition for a QNS correlation. Thus we get that ΓE·F,σ
is a QNS correlation.

By using semi-classical stochastic operator matrices, we can also get CQNS
correlations in a similar fashion:

Proposition 7.28. Let X, Y,A,B be finite sets, H be a Hilbert space, σ ∈ T (H) be a
state and E ∈MX⊗MA⊗B(H), F ∈MY ⊗MB⊗B(H) be a commuting pair of semi-
classical stochastic operator matrices. Denote Ex = Lexe∗x(E) and Fy = Leye∗y(F ),
then

E : DXY →MAB, Ex,x ⊗ Ey,y 7→ Lσ(Ex · Fy)

is a CQNS correlation.

Proof. First note that Ex and Fy are stochastic operator matrices in C⊗MA⊗B(H)
and C⊗MB ⊗ B(H) since TrAEx = IH and TrB Fy = IH and it is positive by the
definition of a semi-classical stochastic operator matrix. That Ex and Fy commute,
follows directly from the fact that E and F commute. Thus the map is well defined
and it remains to show that it is a CQNS correlation. By Proposition 7.27, we
get that ΓE·F,σ is a QNS correlation. It is easy to check that (ΓE·F,σ)|DXY

= E and
therefore by Proposition 7.17, we have that E is a CQNS correlation.

Lemma 7.29. Let H be a Hilbert space and ξ ∈ H be a unit vector. Then the map

ξξ∗ : H → H, h 7→ ⟨h, ξ⟩ξ

is a state in T (H).

Proof. First, we show that ξξ∗ is positive. Thus let h ∈ H, then we have

⟨⟨h, ξ⟩ξ, h⟩ = ⟨h, ξ⟩⟨ξ, h⟩ = |⟨h, ξ⟩|2.

Now let I be an index set and (hi)i∈I be an orthonormal basis of H. Then we have

∥ξξ∗∥Tr =
∑
i∈I

⟨⟨hi, ξ⟩ξ, hi⟩ =
∑
i∈I

⟨ξ, ⟨hi, ξ⟩hi⟩ = ⟨ξ, ξ⟩ = ∥ξ∥2 = 1.

The last two propositions, let us define quantum commuting QNS correlations
and quantum commuting CQNS correlations. Let H be a Hilbert space and ξ ∈ H
be a unit vector, we then write ΓE,ξ for ΓE,ξξ∗ .

Definition 7.30. Let X, Y,A,B be finite sets.

(i) A QNS correlation Γ: MXY → MAB is called quantum commuting if there
exists a Hilbert spaceH, a unit vector ξ ∈ H and a commuting pair of stochastic
matrices E ∈MX ⊗MA ⊗B(H), F ∈MY ⊗MB ⊗B(H) such that Γ = ΓE·F,ξ.

(ii) A CQNS correlation E : DXY → MAB is called quantum commuting if there
exists a Hilbert space H, a unit vector ξ ∈ H and a commuting pair of semi-
classical stochastic matrices E ∈ MX ⊗MA ⊗ B(H), F ∈ MY ⊗MB ⊗ B(H)
such that E(Ex,x ⊗ Ey,y) = Lσ(Ex · Fy).
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7.3 Quantum commuting QNS correlations

We defined quantum commuting QNS correlations in a way that just allows
vector states in T (H). This is done because there is no gain of generality for allowing
any state of T (H) in this definition. This is shown in the following lemma which is
Proposition 4.3 in [25].

Lemma 7.31. Let X, Y,A,B be finite sets, H be a Hilbert space, σ ∈ T (H) be a state
and E ∈MX ⊗MA⊗B(H), F ∈MY ⊗MB⊗B(H) be a commuting pair of stochastic
matrices. Then there exists a Hilbert space H̃ unit vector ξ ∈ H̃ and a commuting
pair of stochastic operator matrices Ẽ ∈MX ⊗MA ⊗B(H̃), F̃ ∈MY ⊗MB ⊗B(H̃)
such that ΓE·F,σ = ΓẼ·F̃ ,ξ

Proof. Since T (H) ⊆ K(H) by Lemma 3.12 and σ is a state, we get that there exists
a sequence of unit vectors (ξi)

∞
i=1 ⊆ H such that σ =

∑∞
i=1 λiξiξ

∗
i and

∑∞
i=1 λi = 1.

Set H̃ = H ⊗ ℓ2 and ξ =
∑∞

i=1

√
λiξi ⊗ ei. Then ∥ξ∥ =

∑∞
i=1

√
λi

2
= 1. Also

for all T ∈ T (H), we have that ⟨ξξ∗, T ⊗ Iℓ2⟩ = ⟨σ, T ⟩. Let Ẽ = E ⊗ Iℓ2 and
F̃ = F ⊗ Iℓ2 . Thus Ẽ, F̃ are stochastic operator matrices acting on H̃. Also since
E,F are a commuting pair of stochastic operator matrices, we get that Ẽ, F̃ are a
commuting pair of stochastic operator matrices. Moreover for ρX ∈MX , ρY ∈MY

and τA ∈MA, τB ∈MB, we have by Proposition 7.27:〈
ΓẼ·F̃ ,ξ̃(ρX ⊗ ρY ), τA ⊗ τB

〉
=
〈
Ẽ · F̃ , ρX ⊗ ρY ⊗ τA ⊗ τB ⊗ ξξ∗

〉
=
〈
LρX⊗τA(Ẽ)LρY ⊗τB(F̃ ), ξξ

∗
〉

= ⟨LρX⊗τA(E)LρY ⊗τB(F )⊗ Iℓ2 , ξξ
∗⟩

= ⟨LρX⊗τA(E)LρY ⊗τB(F ), σ⟩
= ⟨E · F, ρX ⊗ ρY ⊗ τA ⊗ τB ⊗ σ⟩
= ⟨ΓE·F,σ(ρX ⊗ ρY ), τA ⊗ τB⟩ .

This shows that ΓẼ·F̃ ,ξ = ΓE·F,σ.

The following proposition shows that quantum commuting QNS correlations form
a proper generalization of the quantum commuting strategies for nonlocal games.
Recall that for a classical correlation p, we associated a channel Γp in Proposition 7.15
and quantum commuting strategies and their correlations were defined in Definition
6.5 and Definition 6.9.

Proposition 7.32. Let G = (X, Y,A,B, λ) be a nonlocal game and H be a Hilbert
space. Consider a quantum commuting strategy for a correlation p that G consists
of a unit vector ξ ∈ H and commuting POVMs of operators (Ax,a)a∈A ⊆ B(H) and
(By,b)b∈B ⊆ B(H). Define

E =
∑

x∈X,a∈A

exe
∗
x ⊗ eae

∗
a ⊗ Ax,a and F =

∑
y∈Y,b∈B

eye
∗
y ⊗ ebe

∗
b ⊗By,b,

then (E,F ) forms a commuting pair of classical stochastic operator matrices such
that ΓE·F,ξ = Γp.

Proof. Since exe
∗
x, eae

∗
a, Ax,a are all positive, we have that exe

∗
x ⊗ eae

∗
a ⊗ Ax,a is

positive for all x ∈ X, a ∈ A and sums of positive elements are positive by Lemma
2.8. Therefore E,F are positive. Because (Ax,a)a∈A are POVMs, we have

TrA(E) =
∑
x∈X

exe
∗
x ⊗ IH = IX ⊗ IH .
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7 Quantum nonlocal games

Analogous we have that TrB(F ) = IY ⊗ IH . Therefore E and F are stochastic
operator matrices that commute because the Ax,a and Fy,b commute. And it is easy
to see that E · F is also a classical stochastic operator matrix. So it remains to show
that Γp = ΓE·F,ξ. By Proposition 7.15 and Proposition 7.25, we get that we only
need to check Γp = ΓE·F,ξ on DXY . Let x ∈ X, y ∈ Y then

ΓE·F,ξ(exe
∗
x ⊗ eye

∗
y) = Lexe∗x⊗eye∗y⊗ξξ∗(E · F )

=
∑
a∈A

∑
b∈B

eae
∗
a ⊗ ebe

∗
b⟨Ex,aFy,b, ξξ

∗⟩

=
∑
a∈A

∑
b∈B

eae
∗
a ⊗ ebe

∗
b Tr(Ex,aFy,bξξ

∗)

=
∑
a∈A

∑
b∈B

eae
∗
a ⊗ ebe

∗
b

∑
i∈I

⟨Ex,aFy,bξ⟨hi, ξ⟩, hi⟩

=
∑
a∈A

∑
b∈B

eae
∗
a ⊗ ebe

∗
b

∑
i∈I

⟨Ex,aFy,b, hi⟨hi, ξ⟩⟩

=
∑
a∈A

∑
b∈B

eae
∗
a ⊗ ebe

∗
b⟨Ex,aFy,bξ, ξ⟩

=
∑
a∈A

∑
b∈B

eae
∗
a ⊗ ebe

∗
bp(a, b|x, y)

= Γp

By linearity we get Γp = ΓE·F,ξ.

Recall that in Proposition 7.17, we defined a QNS correlation for a corresponding
CQNS correlation. This QNS correlation is also quantum commuting iff the corre-
sponding CQNS correlation is quantum commuting. This was shown in Theorem 7.3
of [25] and is the next proposition. Recall that we associated a QNS correlation to a
CQNS correlation in Proposition 7.17.

Proposition 7.33. Let X, Y,A,B be finite sets and E : DXY → MAB be a CQNS
correlation. Then E is quantum commuting iff there exists a commuting pair of semi-
classical stochastic operator matrices E ∈MX ⊗MA ⊗B(H), F ∈MY ⊗MB ⊗B(H)
and a state σ ∈ T (H) such that ΓE = ΓE·F,σ.

Proof. Let E be a quantum commuting CQNS correlation. Therefore there exists
a pair of commuting semi-classical stochastic operator matrices E,F such that
E(exe∗x ⊗ eye

∗
y) = Lσ(Ex · Fy) . First we show that ∆̃XY (E · F ) = ∆̃X(E) · ∆̃Y (F ).

Notice that we can write

E · F =
∑
x∈X

∑
y∈Y

∑
a,a′∈X

∑
b,b′∈B

exe
∗
x ⊗ eye

∗
y ⊗ eae

∗
a′ ⊗ ebe

∗
b′ ⊗ Ex,x,a,a′Fy,y,b,b′

Therefore E · F = ∆̃XY (E · F ) and because E,F are semi-classical we have that
∆̃X(E) = E and ∆̃Y (F ) = F . Therefore it follows from Proposition 7.25 that
ΓE·F,σ = ΓE·F,σ ◦∆XY . Therefore it is sufficient to check ΓE = ΓE·F,σ on DXY . Now
let x ∈ X, y ∈ Y , then

ΓE·F,σ(exe
∗
x ⊗ eye

∗
y) = Lexe∗x⊗eye∗y(E · F ) = Lσ(Ex · Fy) = E(exe∗x ⊗ eye

∗
y).

The result follows by linearity.
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7.4 Quantum no-signalling strategies via states

Conversely let E be a CQNS correlation such that there exists a a pair of
commuting semi-classical stochastic operator matrices E,F such that ΓE·F,σ = ΓE .
Now define EE·Y : DXY → MAB, exe

∗
x ⊗ eye

∗
y 7→ Lσ(Ex · Fy). Analogous to the

converse direction we get ΓEE·Y = ΓE·F,σ = ΓE . Therefore EE·Y = E and this shows
that E is a quantum commuting CQNS correlation.

7.4 Quantum no-signalling strategies via states

In this subsection, we give a classification for QNS and quantum commuting QNS
correlation by states of an operator system, similar to the classification for no-
signalling and quantum commuting correlation in Theorem 6.15. These results were
presented in [25].

First, we need to introduce the operator system used for the classification results.
We present a brief overview of the construction of this operator system and some
of its properties. The complete construction and the proof of these properties is
presented in [25].

A ternary ring is a complex vector space V , equipped with a map

[·, ·, ·] : V × V × V → V

that is conjugate linear in the middle variable, linear on the outer two variables such
that

[s, t, [u, v, w]] = [s, [v, u, t], w] = [[s, t, u].v.w] ∀s, t, , u, v, w ∈ V .

Let X,A be finite sets. Let {va,x; a ∈ A, x ∈ X} be a set satisfying the relations∑
a∈A

[va′′,x′′ , va,x, va,x′ ] = δx,x′va′′,x′′ ∀x, x′, x′′ ∈ X, a′′ ∈ A.

Let V0
X,A be the ternary ring generated by this set. Note that this implies that∑

a∈A

[u, va,x, va,x′ ] = δx,x′u ∀x, x′ ∈ X, u ∈ V0
X,A.

Let H,K be Hilbert spaces. Because [V1, V2, V3] = V1V
∗
2 V3 is a ternary map for

all V1, V2, V3 ∈ B(H,K), we can form ternary rings of operators and define ternary
representations, i.e. linear maps θ from a ternary ring into B(H,K) that respect the
ternary map, that is for all u, v, w in the ternary ring, we have

θ([v, w, u]) = θ(v)θ(w)∗θ(u).

Using the structure of B(H,K) and these ternary representations, we can construct
an object VX,A ⊆ B(H,K) for some Hilbert spaces H,K that is still a ternary ring.
From this we can now define the needed C∗-algebra:

CX,A = span{S∗T ;S, T ∈ Vx,a}

As Vx,a was constructed from V0
x,a, it still contains elements va,x that satisfy∑

a∈A

va′′x′′v∗a,xva,x′ = δx,x′va′′,x′′ ∀x, x′, x′′ ∈ X, a′′ ∈ A. (14)
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7 Quantum nonlocal games

Define ex,x′,a,a′ = v∗a,xva′,x′ ∈ CX,A for all x, x′ ∈ X and a, a′ ∈ A. Then we define the
operator system

TX,A = span{ex,x′,a,a′ ;x, x
′ ∈ X, a, a′ ∈ A} ⊆ CX,A.

Note that (14) implies that for all x, x′ ∈ X∑
a∈A

ex,x′,a,a = δx,x′1.

Now we present some properties of CX,A and TX,A, these properties were shown
in Section 5 of [25].

Proposition 7.34. Let X,A be finite sets, H be a Hilbert space and ϕ : TX,A → B(H)
be a linear map. The following are equivalent:

(i) ϕ is a unital completely positive map,
(ii) (ϕ(ex,x′,a,a′)) ∈MX ⊗MA ⊗B(H) is a stochastic operator matrix,
(iii) there exists a representation π : CX,A → B(H) such that ϕ = π|TX,A

.

Recall the definition of the maximal C∗-algebra was given in Definition 4.40. If
we choose the inclusion map of TX,A into CX,A, we get from Proposition 7.34 the
following corollary.

Corollary 7.35. Let X,A be finite sets. The maximal C∗-algebra of TX,A is
C∗

u(TX,A) = CX,A.

Similar to Proposition 7.34, we can also characterize the completely positive maps
that are not necessarily unital.

Proposition 7.36. Let X,A be finite sets, H be a Hilbert space and ϕ : TX,A → B(H)
be a linear map. The following are equivalent:

(i) ϕ is a completely positive map,
(ii) (ϕ(ex,x′,a,a′)) ∈ (MX ⊗MA ⊗B(H))+ ,

Now that we have defined the operator system that is needed for the classification
of the QNS correlations and also collected some useful properties. The next step is
to associate linear maps to linear functionals from this operator system.

Definition 7.37. Let X, Y,A,B be finite sets and let

s1 : TX,A ⊗ TY,B → C, s2 : CX,A ⊗ CY,B → C, s3 : CX,A ⊗C∗max CY,B,

be linear maps. For i ∈ {1, 2, 3}, we define the linear map Γsi : MXY →MAB by

Γsi(exe
∗
x′ ⊗ eye

∗
y′) =

∑
a,a′∈A

∑
b,b′∈B

si(ex,x′,a,a′ ⊗ fy,y′,b,b′)eae
∗
a′ ⊗ ebe

∗
b′ .

Before we can give the classification of QNS strategies we need a lemma that is
needed for the proof. This is Proposition 5.5 in [25].
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7.4 Quantum no-signalling strategies via states

Lemma 7.38. Let X,A be finite sets. Denote by

LX,A =

{
(λx,x′,a,a′) ∈MXA;∃c ∈ C : ∀ x, x′ ∈ X :

∑
a∈A

λx,x′,a,a′ = δx,x′c

}
.

The linear map Λ: T d
X,A → LX,A, ϕ 7→ (ϕ(ex,x′,a,a′)) is a well defined complete order

isomorphism.

Proof. Let ϕ : T d
X,A → C be a positive functional. By Proposition 4.19, we have that

ϕ is completely positive. Therefore we have (ϕ(ex,x′,a,a′)) ∈M+
XA by Proposition 7.36.

Thus we can define the map Λ+ : (T d
X,A)

+ → LX,A, ϕ 7→ (ϕ(ex,x′,a,a′)). Since all maps
in (T d

X,A)
+ are linear we get that the map Λ+ satisfies

Λ+(λϕ1 + ϕ2) = λΛ+(ϕ1) + Λ+(ϕ2), ∀λ ≥ 0, ϕ1, ϕ2 ∈ (T d
X,A)

+. (15)

Since we can decompose every selfadjoint functional ϕ ∈ T d
X,A into two functionals

ϕ1, ϕ2 ∈ (T d
X,A)

+ such that ϕ = ϕ1 − ϕ2, we define

Λsa : (T d
X,A)sa → LX,A, ϕ 7→ Λ+(ϕ1)− Λ+(ϕ2). (16)

Let ψ1, ψ2 ∈ (T d
X,A)

+ such that ψ1 − ψ2 = ϕ1 − ϕ2, to show that Λsa is well defined
we need Λ+(ψ1)− Λ+(ψ2) = Λ+(ϕ1)− Λ+(ϕ2). This follows from the additivity as
Λ+(ϕ1) + Λ+(ψ2) = Λ+(ψ1) + Λ+(ϕ2). The map Λsa is R-linear by (15) and (16).
Every element in ϕ ∈ T d

X,A can be decomposed into

ϕ =
ϕ+ ϕ∗

2
+ i

ϕ− ϕ∗

2i
,
ϕ− ϕ∗

2i
,
ϕ+ ϕ∗

2
∈ (T d

X,A)sa.

Thus we can extend Λsa into a C-linear map Λ: T d
X,A → LX,A. Let (ϕi,j) ∈Mm(T d

X,A)
+.

Thus the map Φ: TX,A →Mm, u 7→ (ϕi,j(u)) is completely positive. By Proposition
7.36, we get that (ϕi,j(ex,x′,a,a′))i,j ∈ (MXA ⊗ Mm)

+. Therefore Λ is completely
positive. Because {ex,x′,a,a′ ;x, x

′ ∈ X, a, a′ ∈ A} generates TX,A, we have that
Λ(ϕ) = 0 implies ϕ = 0. Thus Λ is injective. Let M ∈ LX,A, then

TrA(M) =
∑

x,x′∈X

∑
a∈A

exe
∗
x′ ⊗ λx,x′,a,a = cIx.

Therefore we get by Proposition 7.34 that L+
X,A ⊆ Im(Λ). But since these elements

span LX,A, we get that Λ is surjective. So it only remains to show that the inverse
is completely positive. Let (ϕi,j) ∈Mm(T d

X,A) such that (Λ(ϕi,j)) ∈Mm(LX,A)
+ and

let Φ: TX,A →Mm, u 7→ (ϕi,j(u)). Then (ϕ(ex,x′,a,a′)) ∈Mm(LX,A)
+ and therefore by

Proposition 7.36, we have that ϕ is completely positive. Thus (ϕi,j) ∈ Mm(T d
X,A)

+

and this shows that Λ−1 is completely positive.

The following is Theorem 6.2 in [25] and gives the classification of QNS correlations
by the state space of TX,A ⊗max TY,B. Therefore it is the analogue result for QNS
correlation to Theorem 6.15. Note that if we have TX,A and TY,B, we denote the
generators of TX,A by ex,x′,a,a′ but the generators of TY,B by fy,y′,b,b′ .

Theorem 7.39. Let X, Y,A,B be finite sets and Γ: MXY →MAB be a linear map.
The following are equivalent:

58



7 Quantum nonlocal games

(i) Γ is a QNS correlation,
(ii) there exists a state s : TX,A ⊗max TY,B → C such that Γ = Γs.

Proof. (i) ⇒ (ii) :
As Γ: MXY →MAB is linear we can write it as

Γ(exe
∗
x′ ⊗ eye

∗
y′) =

∑
a,a′∈A

∑
b,b′∈B

Cx,x′,y,y′

a,a′,b,b′ eae
∗
a′ ⊗ ebe

∗
b′ ,

for x, x′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B,Cx,x′,y,y′

a,a′,b,b′ ∈ C. By Proposition 4.17, we get

that the Choi matrix C = (Cx,x′,y,y′

a,a′,b,b′ ) ∈MXY ⊗MAB is positive. Let x, x′ ∈ X and
y, y′ ∈ Y , since Tr(exe

∗
x − ex′e∗x′) = 0 and Γ is a QNS correlation, we have

0 = TrA(Γ((exe
∗
x − ex′e∗x′)⊗ ey,y′))

= TrA(
∑

a,a′∈A

∑
b,b′∈B

Cx,x,y,y′

a,a′,b,b′eae
∗
a′ ⊗ ebe

∗
b′)− TrA(

∑
a,a′∈A

∑
b,b′∈B

Cx′,x′,y,y′

a,a′,b,b′ eae
∗
a′ ⊗ ebe

∗
b′)

=
∑
a∈A

∑
b,b′∈B

Cx,x,y,y′

a,a,b,b′ ebe
∗
b′ −

∑
a∈A

∑
b,b′∈B

Cx′,x′,y,y′

a,a,b,b′ ebe
∗
b′ ⇒

∑
a∈A

Cx,x,y,y′

a,a,b,b′ =
∑
a∈A

Cx′,x′,y,y′

a,a,b,b′ .

We also have if x ̸= x′

0 = TrA((Γ(exe
∗
x′ ⊗ eye

∗
y′)) =

∑
a∈A

∑
b,b′∈B

Cx,x′,y,y′

a,a,b,b′ ebe
∗
b′ ⇒

∑
a∈A

Cx,x′,y,y′

a,a,b,b′ = 0.

Thus we get that there exist cy,y
′

b,b′ ∈ C such that∑
a∈A

Cx,x′,y,y′

a,a′,b,b′ = δx,x′cy,y
′

b,b′ ∀y, y′ ∈ Y, b, b′ ∈ B.

Analogous we can show with the other condition in the Definition of QNS correlations
that there exist dx,x

′

a,a′ ∈ C such that∑
b∈B

Cx,x′,y,y′

a,a′,b,b′ = δy,y′d
x,x′

a,a′ ∀x, x
′ ∈ X, a, a′ ∈ A.

From this we get that Lyxey′⊗ebe
∗
b′
(C) ∈ LX,A and Lexex′⊗eae∗a′

(C) ∈ LY,B. Therefore
we have:

C =
∑

y,y′∈Y

∑
b,b′∈B

∑
a,a′∈A

∑
x,x′∈X

Lyxey′⊗ebe
∗
b′
(C)⊗ Lexex′⊗eae∗a′

(C) ∈ LX,A ⊗ LY,B.

Since C is positive in MXY AB, we have C ∈ (LX,A ⊗ LY,B)
+. Since LX,A and LY,B

are finite dimensional, we get by Proposition 4.34

LX,A ⊗ LY,B = LX,A ⊗C∗max LY,B = LX,A ⊗max LY,B.

By Proposition 4.30, we get that C ∈ (LX,A ⊗min LY,B)
+. By Proposition 7.38, we

have that T d
X,A

∼= LX,A. By Proposition 4.46, we get

LX,A ⊗min LY,B
∼= T d

X,A ⊗min T d
X,A

∼= (TX,A ⊗max TY,B)
d.
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7.4 Quantum no-signalling strategies via states

The state s : TX,A ⊗max TY,B → C is given by Cx,x′,y,y′

a,a′,b,b′ = s(ex,x′,a,a′ ⊗ fy,y′,b,b′). And
therefore we get that Γ = Γs.
(ii) ⇒ (i) :

Let C = (Cx,x′,y,y′

a,a′,b,b′ ) be Choi Matrix of Γs. We have Cx,x′,y,y′

a,a′,b,b′ = s(ex,x′,a,a′ ⊗fy,y′,b,b′)
for all x, x′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B. By representing CX,A faithfully on a
Hilbert space and by Proposition 7.34, we get that

E = (ex,x′,a,a′)x,x′∈X,a,a′∈A ∈ (MXA ⊗ CX,A)
+,

F = (fy,y′,b,b′)y,y′∈Y,b,b′∈B ∈ (MY B ⊗ CY,B)+.

By the definition of the maximal tensor product and TX,A ⊆ CX,A, we have that
I(E⊗F )I ∈MXY AB(TX,A⊗TY,B)

+. By Proposition 4.19, we have that s is completely
positive and thus C is positive. And therefore we have by Proposition 4.17 that Γs

is completely positive. Since
∑

a∈A ex,x′,a,a′ = δx,x′1 and
∑

b∈B fy,y′,b,b′ = δy,y′1 for all
x, x′ ∈ X, y, y′ ∈ Y , we get that Γs is trace-preserving and we also get for ρX ∈MX

with Tr(ρX) = 0 and ρY ∈MY :

TrA(Γs(ρX ⊗ ρY )) = TrA

( ∑
x,x′∈X

∑
y,y′∈Y

∑
a,a′∈A

∑
b,b′∈B

(ρX)x,x′(ρY )y,y′C
x,x′,y,y′

a,a′,b,b′ eae
∗
a′ ⊗ ebe

∗
b′

)
=
∑

x,x′∈X

∑
y,y′∈Y

∑
b,b′∈B

∑
a∈A

(ρX)x,x′(ρY )y,y′C
x,x′,y,y′

a,a,b,b′ ebe
∗
b′

=
∑
x∈X

∑
y,y′∈Y

∑
b,b′∈B

∑
a∈A

(ρX)x,x(ρY )y,y′C
x,x,y,y′

a,a,b,b′ ebe
∗
b′

=

(∑
x∈X

(ρX)x,x

)( ∑
y,y′∈Y

∑
b,b′∈B

∑
a∈A

(ρY )y,y′C
x,x,y,y′

a,a,b,b′ ebe
∗
b′

)

= Tr(ρX)

( ∑
y,y′∈Y

∑
b,b′∈B

∑
a∈A

(ρY )y,y′C
x,x,y,y′

a,a,b,b′ ebe
∗
b′

)
= 0.

Analogous we get the other condition for a QNS correlation and therefore Γs is a
QNS correlation.

The next result, we give is Theorem 6.3 in [25] and gives the classification of the
quantum commuting CQNS correlations via the state spaces of CX,A ⊗C∗max CY,B
and TX,A ⊗c TY,B. Therefore it is the analogue result for quantum commuting QNS
correlation to Theorem 6.15 and Corollary 6.17.

Theorem 7.40. Let X, Y,A,B be finite sets and Γ: MXY →MAB be a linear map.
The following are equivalent:

(i) Γ is a quantum commuting QNS correlation
(ii) there exists a state s : TX,A ⊗c TY,B → C such that Γ = Γs

(iii) there exists a state s : CX,A ⊗C∗max CY,B → C such that Γ = Γs

Proof. (i) ⇒ (iii) :
Since Γ is quantum commuting QNS correlation, there exists a Hilbert space

and a pair of commuting stochastic operator matrices E ∈ MX ⊗ MY ⊗ B(H),
F ∈MA ⊗MB ⊗ B(H) and a unit vector ξ ∈ H such that we have ΓE·F,ξ = Γ. By
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7 Quantum nonlocal games

Proposition 7.34, there exist representations πX : CX,A → B(H) such that for all
x, x′ ∈ X, y, y′ ∈ Y , Ex,x′,a,a′ = πX(ex,x′,a,a′) and πY : CY,B → B(H) such that for all
y, y′ ∈ Y, b, b′ ∈ B, we have Fy,y′,b,b′ = πX(fy,y′,b,b′). As {ex,x′,a,a′ ;x, x

′ ∈ X, a, a′ ∈ A}
and {fy,y′,b,b′ ; y, y′ ∈ Y, b, b′ ∈ B} generate CX,A and respectively CY,B, we get, because
E,F are a commuting pair, that πX and πY have commuting ranges. By the universal
property, there exists a map

πX ⊗ πY : CX,A ⊗Cmax CY,B → B(H), u⊗ v 7→ πX(u)πY (v).

Let (hi)i∈I ∈ H be an orthonormal basis of H, we then get

⟨ΓE·F,ξ, eae
∗
a′ ⊗ ebe

∗
b′⟩ = ⟨Ex,x′,a,a′Fy,y′,b,b′ , ξξ

∗⟩
= Tr(Ex,x′,a,a′Fy,y′,b,b′ξξ

∗)

=
∑
i∈I

⟨Ex,x′,a,a′Fy,y′,b,b′ξ⟨hi, ξ⟩, hi⟩

=
∑
i∈I

⟨Ex,x′,a,a′Fy,y′,b,b′ξ, hi⟨hi, ξ⟩⟩

= ⟨Ex,x′,a,a′Fy,y′,b,b′ξ, ξ⟩
= ⟨πX ⊗ πY (ex,x′,a,a′ ⊗ fy,y′,b,b′)ξ, ξ⟩ .

By linearity, we get that s : CX,A ⊗Cmax CY,B → C, u 7→ ⟨πX ⊗ πY (u)ξ, ξ⟩ is a state
with Γs = Γ.

(iii) ⇒ (i) : Let s : s : CX,A ⊗C∗max CY,B → C and let (Hs, πs, ξs) be the GNS rep-
resentation of s from Proposition 2.11. Since ex,x′,a,a′ and fy,y′,b,b′ commute for all
x, x′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B, we have that E = (πs(ex,x′,a,a′))x,x′∈X,a,a′∈A
and F = (πs(fy,y′,b,b′))y,y′∈Y,b,b′∈B. We also have that〈

Γs(exe
∗
x′ ⊗ eye

∗
y′), eae

∗
a′ ⊗ ebe

∗
b′

〉
= s(ex,x′,a,a′ ⊗ fy,y′,b,b′)

= ⟨πs(ex,x′,a,a′ ⊗ fy,y′,b,b′)ξs, ξs⟩
= ⟨Ex,x′,a,a′Fy,y′,b,b′ξs, ξs⟩
= ⟨ΓE·F,ξs(exe

∗
x′ ⊗ eye

∗
y), eae

∗
a′ ⊗ ebeb′⟩

By linearity follows that Γs = ΓE·,ξs and therefore Γs is a quantum commuting QNS
correlation.

(iii) ⇔ (ii) : From Corollary 7.35, we get C∗
u(TX,A) = CX,A and C∗

u(TY,B) = CY,B
and therefore we have by Proposition 4.41 that TX,A ⊗c TY,B ⊆c.o.i. CX,A ⊗C∗max CY,B.
Therefore we have by Krein’s Theorem(Proposition 4.18) that a state on TX,A⊗c TY,B

can be extended to a state on CX,A ⊗C∗max CY,B. On the other hand if we have a
state s : CX,A ⊗C∗max CY,B → C that s|TX,A⊗cTY,B

is still a state.

Corollary 7.41. The set of quantum commuting QNS correlations is closed and
convex.

Proof. The proof follows the same arguments as the proof of Proposition 6.18 except
that the functions over X × Y × A×B in Proposition 6.18 become linear maps on
MX ⊗MY →MA ⊗MB.
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7.4 Quantum no-signalling strategies via states

The last results are similar results for QNS and quantum commuting QNS
strategies to some of the results, we had in Section 6.4 for no-signalling and quantum
commuting no-signalling strategies. Therefore the question arises, whether we can
also get classification results for classical-to-quantum games. These results are also
taken from [25].

Let X, Y,A,B be finite sets. Recall that we defined BX,A in Example 2.16 and
we defined RX,A in Example 4.23. We denoted the set of canonical generators of
BX,A by ex,a,a′ . If we now have both BX,A and BY,B, we still denote the generators of
BX,A by ex,a,a′ but we denote the generators of BY,B by fy,b,b′ .

Similar to Definition 7.37, we can associate linear maps to states of an operator
system.

Definition 7.42. Let X, Y,A,B be finite sets and let

t1 : RX,A ⊗RY,B → C, t2 : BX,A ⊗ BY,B → C, t3 : BX,A ⊗C∗max BY,B,

be linear maps. For i ∈ {1, 2, 3}, we define the linear map Esi : DXY →MAB by

Eti(exe∗x ⊗ eye
∗
y) =

∑
a,a′∈A

∑
b,b′∈B

ti(ex,a,a′ ⊗ fy,b,b′)eae
∗
a′ ⊗ ebe

∗
b′ .

In Section 7.2, we already had some results that established connections between
CQNS and QNS strategies. Similarly, we had results in Section 7.3 that gave
connections between quantum commuting CQNS strategies and quantum commuting
QNS strategies. We want to use these connections to get the classification results for
CQNS strategies from Theorem 7.39 and similarly for quantum commuting CQNS
strategies from Theorem 7.40. Therefore we first need some preliminary lemmas.

Lemma 7.43. Let H be a Hilbert space, X,A be finite sets and ϕ : RX,A → B(H)
be a linear map. The following are equivalent:

(i) ϕ is a unital completely positive map,
(ii) ((ϕ(ex,a,a′))a,a′∈A)x∈X ∈ DX⊗MA⊗B(H) is a semi-classical stochastic operator

matrix.

Proof. (i) ⇒ (ii) : Let ϕx be the restriction of ϕ to the x-th copy of MA. Then
ϕx is still unital and completely positive. Therefore by Proposition 4.17, we have
that (ϕ(ex,a,a′))x∈X is positive. Thus we also have that E = ((ϕ(ex,a,a′))a,a′∈A)x∈X is
positive. It remains to show that TrA(E) = IX ⊗ IH .

TrA(E) =
∑
x∈X

∑
a∈A

ex,x ⊗ ϕ(ex,a,a) =
∑
x∈X

ex,x ⊗ ϕ(I) = IX ⊗ IH .

Thus E is a semi-classical stochastic operator matrix.
(ii) ⇒ (i) : For each x ∈ X, define ϕx : MA → B(H) by ϕ(eae

∗
a′) = ϕ(ex,a,a′).

Since (ϕ(ex,a,a′))a,a′∈A is positive, we get by Proposition 4.17 that ϕx is completely
positive. Because ϕx is also unital, we get by Lemma 4.24 that the map ϕ is unital
and completely positive.

Lemma 7.44. Let X,A be finite sets. There exists a unital completely positive map
βX,A : RX,A → TX,A with βX,A(ex,a,a′) = ex,x,a,a′ for all x ∈ X, a, a′ ∈ A and a unital
completely positive map β′

X,A : RX,A → TX,A such that β′
X,A(ex,x′,a,a′) = δx,x′e,x,a,a′.

We also have β′
X,A ◦ βX,A = idRX,A

.

62



7 Quantum nonlocal games

Proof. By Proposition 2.12, there exists a Hilbert space H and a unital injective rep-
resentation π : CX,A → B(H). Note that π is completely positive as ∗-homomorphisms
are positive and πn is also a ∗-homomorphism. Therefore we get from Proposition
7.34 that E = (π(ex,x′,a,a′))x,x′∈,a,a′∈A is a stochastic operator matrix. By Proposition
7.25, we get that E ′ is also a stochastic operator matrix. Since E ′ = (π ◦βX,A(ex,a,a)),
we get by Lemma 7.44 that π ◦ βX,A is a completely positive unital map. Because π
is injective, we can form an inverse π−1 on its image that is also a ∗-homomorphism.
Therefore we get π−1 ◦ π ◦ βX,A = βX,A is a unital completely positive map.

Similarly we get by Proposition 2.12 that there exists a Hilbert space H̃ and a
unital injective representation π̃ : BX,A → B(H̃) and that Ẽ = (π(ex,a,a′))x∈X,a,a′∈A
is a stochastic operator matrix. But then Ẽ = π̃ ◦ β′

X,A is also a stochastic operator
matrix and therefore we get that β′

X,A is unital and completely positive.
The identity β′

X,A ◦ βX,A = idRX,A
follows directly from the definition of these

maps and the fact that (ex,a,a′)x∈X,a,a′∈A generates RX,A.

Theorem 7.45. Let X, Y,A,B be finite sets and let

M : L(RX,A ⊗RY,B,C) → L(DXY ,MAB), t 7→ Et
be the map from Definition 7.42. Denote by

CQns = {E : DXY →MAB; E is a QNS correlation},
CQqc = {E : DXY →MAB; E is a quantum commuting QNS correlation}.

Then M is a bijection between the sets

(i) CQns and {t : RX,A ⊗max RY,B; t is a state},
(ii) CQqc and {t : RX,A ⊗c RY,B; t is a state}.

Proof. (i) It is easy to see that M is bijective. Since the maximal tensor product
is functorial from Proposition 4.33, we get that β′

X,A ⊗ β′
Y,B is completely

positive. Let t : RX,A ⊗max RY,B → C be a state. Then s = t ◦ β′
X,A ⊗ β′

Y,B

is a state on TX,A ⊗max TY,B. It is straightforward to see that Γ = Γs ◦∆XY

and therefore (Γs)|DXY
is a CQNS correlation by Proposition 7.17. We also

have that Et = (Γs)|DXY
. Conversely, let E be a CQNS correlation. Then

ΓE is a QNS correlation and by Theorem 7.39, we get that there is a state
s : TX,A ⊗max TY,B → C such that ΓE = Γs. Then t = s ◦ βX,A ⊗ βY,B is a state
since the maximal tensor product is functorial. And again it is straightforward
to check that E = Et.

(ii) Since the commuting tensor product is also functorial by Proposition 4.39, the
proof follows analogous to (i) by using Theorem 7.40 and Proposition 7.33.

Corollary 7.46. Let X, Y,A,B be finite sets and E : DXY →MAB be a linear map.
The following are equivalent:

(i) E is a quantum commuting QNS correlation
(ii) there exists a state t : RX,A ⊗c RY,B → C such that E = Et
(iii) there exists a state t : BX,A ⊗C∗max BY,B → C such that E = Et
Proof. (i) ⇔ (ii) : follows directly from Theorem 7.45.

(ii) ⇔ (iii) : We have that RX,A ⊗c RY,B ⊆c.o.i. BX,A ⊗C∗max BY,B by Proposition
4.42. Therefore we get from Krein’s Theorem(Proposition 4.18) that a state on
TX,A ⊗c TY,B can be extended to a state on BX,A ⊗C∗max BY,B. On the other hand if
we have a state s : BX,A ⊗C∗max BY,B → C that s|RX,A⊗cRY,B

is still a state.
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7.5 Perfect quantum commuting CQNS strategies for quantum output mirror games

7.5 Perfect quantum commuting CQNS strategies for quan-
tum output mirror games

In this subsection, we want to classify perfect quantum commuting CQNS strategies
for quantum output mirror games similarly to the classification given in Proposition
6.22 for mirror games. This result was presented in [4]. First, we need a preliminary
lemma to get that classification result.

Recall that we defined quantum output mirror games in 7.10. This is Lemma 3.1
in [4] but we omit the proof of this lemma in this thesis as it is long and technical.

Lemma 7.47. Let X, Y,A,B be finite sets such that A = B, φ : P cl
XY → PAB be

a quantum output mirror game and s : BX,A ⊗C∗max BY,B → C be a state such that
Es : DXY →MAB is a perfect quantum commuting CQNS strategy for φ. Let H be
a Hilbert space, π1 : BX,A → B(H) and π2 : BY,B → B(H) be representations with
commuting ranges and ξ ∈ H be a unit vector such that

s(u1 ⊗ u2) = ⟨π1(u1)π2(u2)ξ, ξ⟩, u1 ∈ BX,A, u2 ∈ BY,B.

Define Ex = (π1(ex,a,a′))a,a′∈A and Fy = (π1(fy,b,b′))b,b′∈B and let f : X → Y be a

function such that φ(exex ⊗ ef(x)ef(x)) is bijective for all x ∈ X. Let (Ux
i )

r(x)
i=1 be

partial isometries satisfying

φ(exex ⊗ ef(x)ef(x)) =

r(x)∑
i=1

ζUx
i
ζ∗Ux

i
∀x ∈ X,

r(x)∑
i=1

(Ux
i )

∗Ux
i = I =

r(x)∑
i=1

Ux
i (U

x
i )

∗

Then we have that

(U∗
i ⊗ I)∗Ex(ea ⊗ ξ) = F t

f(x)(U
x
i ⊗ I)∗(ea ⊗ ξ), ∀i ∈ {1, ..., r(x)}, a ∈ A.

Lemma 7.48. Let X, Y,A,B be finite sets and Es : DXY → MAB be a quantum
commuting CQNS correlation. Then there exists a Hilbert space H and representations
π1 : BX,A → B(H) and π2 : BY,B → B(H) with commuting ranges and a unit vector
ξ ∈ H such that

s(u1 ⊗ u2) = ⟨π1(u1)π2(u2)ξ, ξ⟩, u1 ∈ BX,A, u2 ∈ BY,B.

Proof. Let (Hs, πs, ξs) be the GNS-representation of s which was given in Lemma
2.11. Let a, a′ ∈ A, b, b′ ∈ B, y ∈ Y, b ∈ B be any element of the corresponding set.
Now we define

π1 : BX,A → B(H), ex,a,a′ 7→ πs(ex,a,a′ ⊗ 1)

and
π2 : BY,B → B(H), fy,b,b′ 7→ πs(1⊗ fy,b,b′).

Since ex,a,a′ ⊗ 1 and 1⊗ fy,b,b′ commute, we get that πs(ex,a,a′ ⊗ 1) and πs(1⊗ fy,b,b′)
commute. Since {ex,a,a′ ;x ∈ X, a, a′ ∈ A} and {fy,b,b′ ; y ∈ Y, b, b′ ∈ B} generate BX,A

and BY,B respectively, we get because πs is a representation (which are continuous
as well) that the entire image of π1 and π2 has to commute. Thus we have

s(u1 ⊗ u2) = ⟨πs(u1 ⊗ u2)ξs, ξs⟩ = ⟨π1(u1)π2(u2)ξs, ξs⟩ ∀u1 ∈ BX,A, u2 ∈ BY,B.
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7 Quantum nonlocal games

Now we show the main result of this subsection which is Theorem 3.2 in [4].

Theorem 7.49. Let X, Y,A,B be finite sets such that A = B, φ : P cl
XY → PAB be a

quantum output mirror game and E : DXY →MAB be a perfect quantum commuting
CQNS strategy for φ. Then there exists a trace τ : BX,A → C and a ∗-homomorphism
ρ : BY,B → BX,A such that for all x ∈ X, y ∈ Y

E(Ex,x ⊗ Ef(x),f(x)) = (τ(ex,a,a′ρ(fy,b,b′)))a,a′,b,b′ .

Proof. We first prove some helpful identities and define some notation for the proof
as this theorem:

Let f : X → Y, g : Y → B be functions such that φ(exex ⊗ ef(x)ef(x)) and

φ(eg(y)eg(y) ⊗ eyey) are bijective for all x ∈ X. Let (Ux
i )

r(x)
i=1 be partial isometries

satisfying

φ(exex ⊗ ef(x)ef(x)) =

r(x)∑
i=1

ζUx
i
ζ∗Ux

i
and

r(x)∑
i=1

(Ux
i )

∗Ux
i = I =

r(x)∑
i=1

Ux
i (U

x
i )

∗ ∀x ∈ X.

By Corollary 7.46, we have that there exists a state s : BX,A⊗C∗maxBY,B → C such that
E = Es. By Lemma 7.48, we get that there exist representations π1 : BX,A → B(H)
and π2 : BY,B → B(H) with commuting ranges and a unit vector ξ ∈ H such that

s(u1 ⊗ u2) = ⟨π1(u1)π2(u2)ξ, ξ⟩, u1 ∈ BX,A, u2 ∈ BY,B.

Denote Ex,a,a′ = π1(ex,a,a′) and Ex,a,a′ = π2(fy,b,b′). Then we have that

E(exe∗x ⊗ eye
∗
y) =

∑
a,a′∈A

∑
b,b′∈B

⟨Ex,a,a′Fy,b,b′ξ, ξ⟩eae∗a′ ⊗ ebe
∗
b′ .

Set Ex = (Ex,a,a′)a,a′∈A and Fy = (Fy,b,b′)b,b′∈B. By Lemma 7.47, we have

(Ux
i ⊗ I)∗Ex(ea ⊗ ξ) = F t

f(x)(U
x
i ⊗ I)∗(ea ⊗ ξ), ∀i ∈ {1, ..., r(x)}, a ∈ A. (17)

Define Dx =
∑r

i=1(x)U
x
i and let Q = ((Dx ⊗ I)(ff(x),a,b)

t
a,b(D

∗
x ⊗ I)) ∈ MA ⊗MB

and therefore if we write Q = (qx,a,b)b,a. We have qx,a,b ∈MB. Set

hx,a,b = ex,a,b ⊗ 1− 1⊗ qx,b,a, x ∈ X, a ∈ A.

Note that e∗x,a,b = ex,b,a and q∗x,a,b = qx,b,a since f ∗
f(x),a,b = ff(x),b,a. Therefore we have

h∗x,a,bhx,a,b = (ex,b,a ⊗ 1− 1⊗ qx,a,b)(ex,a,b ⊗ 1− 1⊗ qx,b,a)

= ex,b,b ⊗ 1− ex,b,a ⊗ qx,b,a − ex,a,b ⊗ qx,a,b + 1⊗ qx,a,a.

Note that from (17), we also get by summing over i and multiplying the unitary
(Dx ⊗ I) on both sides

(Dx ⊗ I)∗Ex(ea ⊗ ξ) = F t
f(x)(Dx ⊗ I)∗(ea ⊗ ξ) (18)

⇔ Ex(ea ⊗ ξ) = (Dx ⊗ I)F t
f(x)(Dx ⊗ I)∗(ea ⊗ ξ).
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7.5 Perfect quantum commuting CQNS strategies for quantum output mirror games

From this follows that

s(ex,b,a ⊗ qx,b,a) =
〈
Ex,b,a((Dx ⊗ I)F t

f(x)(Dx ⊗ I))a,bξ, ξ
〉

=
〈
((Dx ⊗ I)F t

f(x)(Dx ⊗ I))a,bξ, Ex,a,bξ
〉

= ⟨Ex,a,bξ, Ex,a,bξ⟩ = ⟨Ex,b,bξ, ξ⟩ .

Using this we get

s(h∗x,a,bhx,a,,b) = s(ex,b,b ⊗ 1)− s(ex,b,a ⊗ qx,b,a)− s(ex,a,b ⊗ qx,a,b) + s(1⊗ qx,a,a)

= ⟨Ex,b,bξ, ξ⟩ − ⟨Ex,b,bξ, ξ⟩ − s(ex,a,b ⊗ qx,a,b) + s(1⊗ qx,a,a)

=
〈
((Dx ⊗ I)F t

f(x)(Dx ⊗ I))a,aξ, ξ
〉
− ⟨Ex,a,aξ, ξ⟩

= ⟨Ex,a,aξ, ξ⟩ − ⟨Ex,a,aξ, ξ⟩ = 0.

For the rest of this proof, we write u ∼ v if s(u−v) = 0 for for u, v ∈ BX,A⊗C∗maxBY,B.

⟨u, v⟩s = s(v∗u)

is an inner product on B(X,A)⊗C∗max B(Y,B), because s is a state. The Cauchy-
Schwarz inequality now implies for u ∈ B(X,A)⊗C∗max B(Y,B) that

|s(h∗x,a,bu)|2 ≤ s(u∗u)s(h∗x,a,bhx,a,b) = 0,

|s(uhx,a,b)|2 ≤ s(h∗x,a,bhx,a,b)s(uu
∗) = 0.

Since h∗x,a,b = hx,b,a, we have

uhx,a,b ∼ 0 and hx,a,bu ∼ 0 ∀x ∈ X, a, b ∈ A, u ∈ BX,A ⊗C∗−max BY,B. (19)

For z ∈ BX,A, set u = z ⊗ 1. Then we get from (19) that

zex,a,b ⊗ 1 ∼ z ⊗ qx,b,a ∼ ex,a,bz ⊗ 1, ∀x ∈ X, a, b ∈ A. (20)

For i ∈ {1, ..., d(y)}, let V y
i be partial isometries such that

φ(eg(y)e
∗
g(y) ⊗ eye

∗
y) =

d(y)∑
i=1

ζV y
i
ζ∗(V y

i ) and

d(y)∑
i=1

V y
i (V

y
i )

∗ = I =

d(x)∑
i=1

(V y
i )

∗V y
i ∀y ∈ Y.

By symmetry of switching the sets X and Y , we can get a quantum output mirror
game, φ′ : P cl

Y X → PAB such that φ(exe
∗
x ⊗ eye

∗
y) = φ′(eye

∗
y ⊗ exe

∗
x). From Lemma

7.48, we now get that

(V y
i ⊗ I)∗Fy(ea ⊗ ξ) = Et

g(y)(V
y
i ⊗ I)∗(ea ⊗ ξ), ∀i ∈ {1, ..., d(x)}, a ∈ A.

Let Gy =
∑d(y)

i=1 V
y
i , then we can get, analogous to (18) :

Fy(ea ⊗ ξ) = (Gy ⊗ I)Et
g(y),a,b(Gy ⊗ I)∗(ea ⊗ ξ).

Now define P = ((Gy ⊗ I)(etg(y),a,b)a,b(Gy ⊗ I)∗)a,b and P = (py,a,b)b,a. If we define
gy,b,b′ = py,b,b′ ⊗ 1− 1⊗ fy,b,b′ , we can show similarly to how we have shown for qx,a,b
and hx,a,b that

zpy,b,b′ ⊗ 1 ∼ z ⊗ fy,b,b′ ∼ py,b,b′z ⊗ 1, y ∈ Y, b, b′ ∈ B. (21)
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Now we define the map τ : BX,A → C, z 7→ s(z ⊗ 1). Let z ∈ BX,A be arbitrary,
then from τ(z∗z ⊗ 1) = s((z ⊗ 1)∗(z ⊗ 1)) and τ(1) = s(1⊗ 1) = 1 , we get that τ is
a state. To conclude that τ is a trace, it remains to show that τ(zw) = τ(wz) for
all z, w ∈ BX,A. We first show by induction over the length of the word w for words
z, w ∈ {ex,a,b;x ∈ X, a, b ∈ A}. Let w be a word of length one then this follows
immediately from (20). Now let w be a word of length n and we write w = w′e,
where |e| = 1. Then by (20)

zw ⊗ 1 = zw′e⊗ 1 ∼ ezw′ ⊗ 1 ∼ w′ez ⊗ 1 = wz ⊗ 1.

From this, the fact that span{ex,a,b;x ∈ X, a, b ∈ A} is dense in BX,A and τ is
continuous, we get that τ(zw) = τ(wz) for all z, w ∈ BX,A.

To construct the ∗-homomorphism, note that {py,a,b; a, b ∈ A} form a basis of
MA and py,a,bpy,a′,b′ = δb,a′py,a,b′ and p∗y,a,b = py,b,a. By the universal property and
Example 2.16, we a ∗-homomorphism ρ : BY,B → BX,A, fy,b,b′ 7→ py,b,b′ and from (21),
we get that

s(ex,a,a′ ⊗ fy,b,b′) = s(ex,a,a′py,b,b′ ⊗ 1) = τ(ex,a,a′ρ(fy,b,b′)).

This concludes the proof.

Remark 7.50. Theorem 7.49 is the analogous result for quantum output mirror
games and quantum commuting CQNS correlations of Proposition 6.22 for nonlocal
games and quantum commuting correlations. But comparing the proofs of these two
statements, we can also see that they are very similar with the only real difference
being the “construction” of h.
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