
Saarland University

Faculty of Mathematics and Computer Science

Departments of Mathematics and Computer

Science

Bachelor’s thesis

Computing quantum symmetries of graphs

submitted by

Julien Schanz

submitted

07.02.2019

Reviewers:

1.: Professor Dr. Moritz Weber
2.: Professor Dr. Roland Speicher

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Saarbrücken, February 7, 2019

Julien Schanz

4

Contents

Introduction 5
1. Preliminaries on quantum groups of graphs 6
1.1. Finite graphs 6
1.2. Compact matrix quantum groups 6
1.3. Quantum automorphism groups of finite graphs 8
1.4. Known results about quantum automorphism groups of graphs 9
2. Examples of quantum automorphism groups of graphs 10
2.1. The Schmidt criterion 10
2.2. The Fulton criterion 11
2.3. Examples of quantum automorphism groups of finite graphs 12
3. Calculating quantum symmetries on the computer 16
3.1. GAP graph constructor 16
3.2. Quantum Symmetry calculator 17
3.3. The produced data and its interpretation 19
References 24
Appendices 25
A. Connected graphs on 5 points 25
B. Connected graphs on 5 points with automorphism group Z2 33
C. Connected graphs on 6 points with automorphism group Z2 37
D. Connected graphs on 6 points with trivial automorphism group 50

5

Introduction

In this thesis, we study quantum automorphism groups of finite graphs. This is
a generalization of the study of classical automorphism groups of graphs within the
framework of compact matrix quantum groups, which were introduced by Woronow-
icz in [11]. The classical automorphism group is a subgroup of the symmetric group
Sn given by

Gaut(Γ) = {σ ∈ Sn|σε = εσ}
where Γ = (V,E) is a finite graph with n vertices and no multiple edges, ε ∈
Mn({0, 1}) is its adjacency matrix.
Based on this definition and Wang’s definition of the quantum symmetric group
in [10]

C(S+
n) = C∗(uij|uij = u∗ij = u2ij,

n∑
k=1

uik =
n∑
k=1

uki = 1)

we can define the quantum automorphism group of Γ as the compact matrix quan-
tum group given by

C(G+
aut(Γ)) = C∗(uij|uij = u∗ij = u2ij,

n∑
k=1

uik =
n∑
k=1

uki = 1, uε = εu).

If we interpret Gaut(Γ) as a compact matrix quantum group, we can see, that
Gaut(Γ) ⊆ G+

aut(Γ) holds for all graphs Γ. The question one can ask now is, whether
equality holds. If it does, we say that the graph does not have quantum symmetries,
otherwise we say that it does have quantum symmetries.
Schmidt presented a criterion in [6] that answers this question for some graphs,
namely if Gaut(Γ) contains a pair of disjoint automorphisms, then C(G+

aut(Γ)) is
non-commutative, in particular Gaut(Γ) 6= G+

aut(Γ).
Moreover it can be interesting to be able to concretely compute this quantum au-
tomorphism group for a given graph. Fulton presented a lemma in [5] that helps
significantly with this question, which states that uij = 0 if εlii 6= εljj holds for some
l.
After presenting these two criteria, the use of them is presented in some concrete
examples in Section 2.3.
Since there are many graphs for which it is not known, whether they have quantum
symmetries, we present some algorithms, that are able to answer this question on
many graphs with small numbers of vertices. These algorithms were also imple-
mented in python, GAP and Singular and the results for many connected graphs on
5, 6 and 7 vertices are presented. By analysing these results, we come to the main
theorem of this thesis:

Main Theorem. Let Γ be a graph on n vertices. If n ≤ 7 then it holds:

Gaut(Γ) = Z2 ⇒ G+
aut (Γ) = Z2

Gaut(Γ) = {e} ⇒ G+
aut (Γ) = {e}

6 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

1. Preliminaries on quantum groups of graphs

Let us mention some basic definitions and notations necessary for the following
sections. We mainly follow [8].

1.1. Finite graphs.

1.1.1. Definition. A finite graph Γ is a pair (V,E), where the set of vertices V
and the set of edges E are finite. By r : E → V denote the range map and by
s : E → V denote the source map. It is called undirected if ∀e ∈ E ∃f ∈ E such
that s(e) = r(f) and r(e) = s(f).
A graph is without multiple edges if there are no e, f ∈ E, e 6= f such that s(e) = s(f)
and r(e) = r(f). If we have e ∈ E with s(e) = r(e), then e is called a loop.
For a finite graph Γ = (V,E) with V = {1, · · · , n} define its adjacency matrix
ε ∈ Mn(N0) via εij := #{e ∈ E|s(e) = i, r(e) = j}. If Γ is without multiple edges,
we thus have that εij ∈ {0, 1}.
We define the complement of a finite graph without multiple edges Γ = (V,E) as
Γc := (V,E

′
), where E

′
:= (V × V)\E. In the following, we will only consider

undirected finite graphs without multiple edges and without loops.

1.1.2. Definition. A graph automorphism of a finite graph without multiple edges
Γ = (V,E) is a bijective map σ : V → V such that (σ(i), σ(j)) ∈ E ⇔ (i, j) ∈ E.
The set of all automorphisms of Γ is a group, called the automorphism group Aut(Γ).
If Γ has n vertices, we can view Aut(Γ) as subgroup of Sn:

Gaut(Γ) = {σ ∈ Sn|σε = εσ} ⊆ Sn

1.1.3. Example. Let Γ = (V,E) with V = {1, 2, 3, 4} and E = {(1, 2), (2, 1), (2, 3),
(3, 2), (3, 4), (4, 3), (1, 4), (4, 1)}. Then Γ is a finite graph without multiple edges
and without loops. It has the adjacency matrix

ε =

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
We can also display Γ graphically:

1 2

34

It has the automorphism group Gaut(Γ) = {id, (1, 3), (2, 4), (1, 2)(3, 4), (1, 4)(2, 3),
(1, 3)(2, 4), (1, 2, 3, 4), (1, 4, 3, 2)} ⊆ S4.

1.2. Compact matrix quantum groups.

1.2.1. Definition. Compact matrix quantum groups were defined by Woronow-
icz [11, 12] in 1987. A compact matrix quantum group G is a unital C∗-algebra
C(G) equipped with a ∗-homomorphism ∆ : C(G) → C(G) ⊗ C(G) and a unitary
u ∈Mn(C(G)), n ∈ N, such that

(i) ∆(uij) =
∑

k uik ⊗ ukj for all i, j

(ii) ū is an invertible matrix

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 7

(iii) the elements uij (1 ≤ i, j ≤ n) generate C(G) (as a C∗-algebra).

The unitary u is called the fundamental corepresentation (matrix) of (C(G),∆, u).
Since (i) and (iii) uniquely determine ∆, one can also refer to the pair (C(G), u) as
a compact matrix quantum group.
If G = (C(G), u) and H = (C(H), v) are compact matrix quantum groups with
u ∈ Mn(C(G)) and v ∈ Mn(C(H)), we say that G is a compact matrix quantum
subgroup of H, if there is a surjective ∗-isomorphism from C (H) to C (G) mapping
generators to generators. We then write G ⊆ H. If we have G ⊆ H and H ⊆ G,
they are said to be equal as compact matrix quantum groups.

1.2.2. Example. An example for a compact matrix quantum group is the quantum
symmetric group S+

n = (C(S+
n), u), which was first defined by Wang [10] in 1998. It

is the compact matrix quantum group given by

C
(
S+
n

)
:= C∗

(
uij|uij = u∗ij = u2ij,

n∑
k=1

uik =
n∑
k=1

uki = 1∀i, j = 1, · · · , n

)
and the ∗-homomorphism ∆ is given by

∆(uij) := u
′

ij :=
∑
k

uik ⊗ ukj.

That conditions (i) and (iii) from Definition 1.2.1 are fulfilled is obvious. To see,
that ∆ is in fact a ∗-homomorphism, we use that the projections uij and uik are
orthogonal for j 6= k (which can be easily deduced from the fact that

∑
k uik = 1)

to check
u

′2
ij =

∑
k,l

uikuil ⊗ ukjulj =
∑
k

uik ⊗ ukj = u
′

ij

and ∑
k

u
′

ik =
∑
k

u
′

kj = 1⊗ 1.

By the universal property of C(S+
n) we thus see that ∆ is indeed a ∗-homomorphism

from C(S+
n) to C(S+

n)⊗ C(S+
n).

It can be shown that the quotient of C (S+
n) by the relation that all uij commute

is exactly C (Sn). Moreover, Sn can be seen as a compact matrix quantum group
Sn = (C (Sn) , u), where uij : Sn → C are the evaluation maps of the matrix entries.
We then have Sn ⊆ S+

n as compact matrix quantum groups and have thus justified
the name “quantum symmetric group”.

1.2.3. Remark. For n ≥ 4, the quantum symmetric group S+
n is really non-commutative.

Indeed, we can construct a surjective ∗-homomorphism ϕ : C(S+
n) → C∗(p, q|p =

p∗ = p2, q = q∗ = q2) =: A. For this, define the matrix

u′ :=

p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q

and define ϕ by mapping u (the generator matrix of S+

n) to the n×n matrix, that has
u′ in the upper left corner and looks like the identity matrix everywhere else. Then
u′ obviously fulfills the relations of C∗(S+

n) and thus, by the universal property, ϕ is
a ∗-homomorphism. Moreover ϕ is also surjective, since ϕ(u11) = p and ϕ(u33) = q
and thus all generators of A are hit by the map. Since we now have a surjective

8 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

∗-homomorphism from S+
n to a non-commutative C∗-algebra we thus see, that S+

n

really is non-commutative for n ≥ 4.
On the other hand, for n ≤ 3, S+

n is commutative and thus it holds S+
n = Sn.

1.3. Quantum automorphism groups of finite graphs.

1.3.1. Definition. Given a finite graph without multiple edges Γ = (V,E) with ad-
jacency matrix ε, we define its quantum automorphism group G+

aut(Γ) as the compact
matrix quantum group given by

C
(
G+
aut (Γ)

)
:= C∗

(
uij|uij = u∗ij = u2ij,

n∑
k=1

uik =
n∑
k=1

uki = 1∀i, j = 1, · · · , n, uε = εu

)
.

It is justified to see this as the quantum automorphism group of Γ, since it has the
same relations as C (S+

n) with the added relation uε = εu, compare with Defini-
tion 1.1.2 and Example 1.2.2.
One can show [9, Lemma 6.7] that the above definition is equivalent to uij fulfilling
the following relations:

uij = u∗ij, uijuik = δjkuij, ujiuki = δjkuji 1 ≤ i, j, k ≤ n(1.1)
n∑
k=1

uik =
n∑
k=1

uki = 1 1 ≤ i ≤ n(1.2)

uijukl = ukluij = 0 (i, k) ∈ E, (j, l) /∈ E(1.3)

uijukl = ukluij = 0 (i, k) /∈ E, (j, l) ∈ E(1.4)

1.3.2. Remark. The above definition is the one given by Banica [1] in 2005. There
is a different but related definition by Bichon [3] in 2003, but this one will not be
considered here.

1.3.3. Definition. For a finite graph without multiple edges Γ, we say that Γ has
quantum symmetries if C(G+

aut {Γ}) is not commutative and that Γ does not have
quantum symmetries otherwise.

1.3.4. Example. Let Γ be the full graph on n vertices, that is E = V × V \
{(i, i)|i = 1, · · · , n}. Then G+

aut (Γ) = S+
n . To see this, look at the relation uε = εu,

which is nothing but
∑

k uikεkj =
∑

k εikukj∀i, j. Since εij = 1 − δij, that is ε is 1
everywhere but on the diagonal, we have that∑
k

uikεkj =
∑
k,k 6=j

uik =
∑
k

uik−uij = 1−uij =
∑
k

ukj−uij =
∑
k,k 6=i

ukj =
∑
k

εikukj.

We thus see, that the relation uε = εu is already implied by
∑

k uik =
∑

k ukj = 1
∀i, j and thus we have G+

aut (Γ) = S+
n .

Since S+
n is non-commutative for n ≥ 4 (see 1.2.3), we see that the full graph on 4

or more vertices is an example for a graph that does have quantum symmetries.

1.3.5. Remark. For a finite graph without multiple edges Γ, we have that

Gaut (Γ) ⊆ G+
aut (Γ)

as compact matrix quantum groups, where equality holds, if and only if C(G+
aut (Γ))

is commutative.

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 9

1.3.6. Example. Let Γ =

3 4

1 2

We want to show that C(G+
aut(Γ)) is commutative. First note, that to show uijukl =

ukluij it suffices to show uijukl = uijukluij, since then we have

ukluij = (uijukl)
∗ = (uijukluij)

∗ = uijukluij = uijukl.

We have

u11u33 = u11u331 = u11u33

4∑
k=1

u1k = u11

4∑
k=1

u33u1k = u11u33

4∑
k;(3,k)∈E

u1k = u11u33u11

by relation (1.3) from Definition 1.3.1 since the only edge from vertex 3 is to 1.
Moreover we have u11u34 = u34u11 = 0 and u11u43 = u43u11 = 0 by relations (1.3)
and (1.4) and since there is an edge from 1 to 3 but none from 1 to 4. Now we can
see

u11u23 = u11(1− u13 − u33 − u43) = (1− u13 − u33 − u43)u11 = u23u11.

The same holds for u11u32 = u32u11.
Let us now look at

u11u44 = u11u44
∑

k;(4,k)/∈E

u1k = u11u44(u11 + u13).

We can deduce from uε = εu that u13 = u42 and thus get

u11u44 = u11u44u11 + u11u44u42.

Since there is an edge from 4 to 2 but none from 4 to 4 we get u44u42 = 0 and thus
have that u11 and u44 commute and can now deduce, similar to the fact that u11
and u23 commute, the commutation of u11 with all the remaining generators. If we
continue in a similar fashion, we eventually arrive at uijukl = ukluij for all i, j, k, l.
Thus G+

aut(Γ) = Gaut(Γ) = Z2.

1.4. Known results about quantum automorphism groups of graphs. All
in all there are not many articles about quantum automorphism groups of graphs.
In this section, some of the results of other articles are mentioned, for a more com-
plete review of the literature on quantum automorphism groups of graphs however
see Section 3.4 in [8].
Since S+

n = Sn for n ≤ 3, we also have G+
aut(Γ) = Gaut(Γ) if Γ has 3 or less vertices,

which is why these graphs are not suited for the study of quantum automorphism
groups. Moreover, Schmidt and Weber did a full classification of quantum automor-
phism groups of graphs with no multiple edges and no loops on 4 vertices in [8].
In [4], Bichon defined the free wreath product and showed, that the quantum auto-
morphism group of n disjoint copies of a connected graph can be given using this
free wreath product. In general for graphs that are not connected it usually holds
that we can trace back in some way the quantum automorphism group of the entire
graph to the quantum automorphism groups of the connected subgraphs. More-
over it holds, that G+

aut(Γ) = G+
aut(Γ

c) where Γc is the complement of Γ, i.e. every
non-edge of Γ is an edge of Γc and every edge of Γ is a non-edge of Γc. Since the

10 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

complement of a lot of not connected graphs is connected, we can thus also get the
quantum automorphism group via the complement.
In general however, we can not easily see, whether a graph has quantum symmetries
and if it does, what its quantum automorphism group is.

2. Examples of quantum automorphism groups of graphs

When talking about quantum symmetries of graphs, we distinguish between two
main questions:

1. Does the graph have quantum symmetries, that is, is C(G+
aut(Γ)) commu-

tative or not?
2. What does the quantum automorphism group of the graph look like?

In this chapter, we will present two criteria that help with these questions and then
we will answer them for some concrete graphs.

2.1. The Schmidt criterion. The lemma in this section comes from an article by
Simon Schmidt [6]. It states that a graph has quantum symmetry if the automor-
phism group of the graph contains a certain pair of permutations. In order to state
it, we need the following definition.

2.1.1. Definition. Let V = {1, · · · , r} , r ∈ N. We say that two permutations σ :
V → V and τ : V → V are disjoint, if σ(i) 6= i⇒ τ(i) = i and τ(i) 6= i⇒ σ(i) = i
for all i ∈ V .

2.1.2. Lemma. Let Γ = (V,E) be a finite graph without multiple edges, V =
{1, · · · , r} , r ∈ N.
If there are two non-trivial, disjoint automorphisms σ, τ ∈ Gaut (Γ) then we get a
surjective *-homomorphism ϕ : C

(
G+
aut (Γ)

)
→ C∗ (p, q|p = p∗ = p2, q = q∗ = q2).

In particular, Γ does have quantum symmetry.

Proof. Let σ, τ ∈ Gaut (Γ) be non-trivial disjoint automorphisms. Define:

A := C∗
(
p, q|p = p∗ = p2, q = q∗ = q2

)
Now, we want to use the universal property to get a surjective *-homomorphism
ϕ : C

(
G+
aut (Γ)

)
→ A. This yields the non-commutativity, since p and q do not have

to commute.
Define

u′ := σ ⊗ p+ τ ⊗ q + idMr(C) ⊗ (1− q − p) ∈ Mr(C)⊗ A ∼= Mr(A)

We thus have

u′ij = δjσ(i) ⊗ p+ δjτ(i) ⊗ q + δij ⊗ (1− q − p) ∈ C⊗ A ∼= A

Now, we show that u′ fulfills the relations of G+
aut (Γ). Since σ, τ ∈ Gaut(Γ), it holds

that σε = εσ and τε = ετ , where ε is the adjacency matrix of Γ. Therefore we have

u′ (ε⊗ 1) =
(
σ ⊗ p+ τ ⊗ q + idMr(C) ⊗ (1− q − p)

)
(ε⊗ 1)

= σε⊗ p+ τε⊗ q + ε⊗ (1− q − p)
= εσ ⊗ p+ ετ ⊗ q + ε⊗ (1− q − p)
= (ε⊗ 1)u′

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 11

Furthermore, it holds
r∑
i=1

u′ij =
r∑
i=1

δjσ(i) ⊗ p+
r∑
i=1

δjτ(i) ⊗ q +
r∑
i=1

δij ⊗ (1− q − p)

= 1⊗ p+ 1⊗ q + 1⊗ (1− q − p)
= 1⊗ 1

since δjσ(i) = 1 for exactly one i and it is 0 for all other i. The same also holds for
δjτ(i) and δij. A similar computation shows

∑r
j=1 u

′
ij = 1⊗ 1.

Let us now take a closer look at

u′ij = δjσ(i) ⊗ p+ δjτ(i) ⊗ q + δij ⊗ (1− q − p)
via a case-by-case analysis:

• if i 6= j then δij = 0
– if σ(i) 6= i then τ(i) = i and thus δjτ(i) = 0 since σ and τ are disjoint.

If now σ(i) = j we have that u′ij = p and if σ(i) 6= j we have δjσ(i) = 0
and thus also u′ij = 0.

– if τ(i) 6= i we have σ(i) = i and thus δjσ(i) = 0. Similar to the above
case, we thus have u′ij = q if τ(i) = j and u′ij = 0 otherwise.

• if i = j we have δij = 1
– if σ(i) = τ(i) = i we have that u′ij = 1 since δjσ(i) = 1 = δjτ(i).
– if σ(i) 6= i then τ(i) = i and then we have δjσ(i) = 0 and δjτ(i) = 1 and

thus u′ij = 0⊗ p+ 1⊗ q + 1⊗ (1− p− q) = 1− p.
– if τ(i) 6= i then σ(i) = i and thus u′ij = 1− q similar to the above case.

Thus, all entries of u′ are projections. By the universal property, we get a *-
homomorphism ϕ : C(G+

aut(Γ)) → A, u 7→ u′. This ϕ is also surjective, since p
and q are in its image. �

2.2. The Fulton criterion. The following three lemmata can be found in the PhD
thesis of Fulton [5].

2.2.1. Lemma. Let Γ be a finite graph without multiple edges, ε ∈Mn ({0, 1}) be its
adjacency matrix and (uij)1≤i,j≤n be the generators of C(G+

aut (Γ)). Then:

(i) (1 · · · 1) is a left eigenvector of u with eigenvalue 1.
(ii) (1 · · · 1) εl is a left eigenvector of u with eigenvalue 1 for l ∈ N.

(iii) (1 · · · 1)t is a right eigenvector of u with eigenvalue 1.
(iv) εl (1 · · · 1)t is a right eigenvector of u with eigenvalue 1.

Proof. (i) It holds

((1 · · · 1)u)i =
n∑
k=1

uki = 1

for all 1 ≤ i ≤ n.
(ii) Since uε = εu holds, we also get uεl = εlu. By using this and (i), we deduce

(1 · · · 1) εlu = (1 · · · 1)uεl = (1 · · · 1) εl

That (iii) and (iv) hold can be seen similarly as in (i) and (ii). �

2.2.2. Lemma. Let Γ be a finite graph without multiple edges, ε ∈Mn ({0, 1}) be its

adjacency matrix and (uij)1≤i,j≤n be the generators of C(G+
aut (Γ)). Denote by ε

(l)
ij

the (i, j) entry of ε(l). Then it holds:

(i) If
∑n

k=1 ε
(l)
ki 6=

∑n
k=1 εkj for some l ∈ N, then uij = 0.

12 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

(ii) If
∑n

k=1 ε
(l)
ik 6=

∑n
k=1 εjk for some l ∈ N, then uij = 0.

Proof. (i) Assume
∑n

k=1 ε
(l)
ki 6=

∑n
k=1 ε

(l)
kj for some l ∈ N. We know that

(1 · · · 1) εlu = (1 · · · 1) εl and by comparing the j-th column, we get
n∑
r=1

n∑
k=1

ε
(l)
krurj =

n∑
k=1

ε
(l)
kj

Multiplying this by uij yields
n∑
k=1

ε
(l)
ki uij =

n∑
k=1

ε
(l)
kjuij

or equivalently (
n∑
k=1

ε
(l)
ki −

n∑
k=1

ε
(l)
kj

)
uij = 0.

Since
∑n

k=1 ε
(l)
ki 6=

∑n
k=1 ε

(l)
kj holds, we get uij = 0.

(ii) Similar to (i), using

uεl (1 · · · 1)t = εl (1 · · · 1)t . �

2.2.3. Lemma (The Fulton criterion). Let Γ be a finite graph without multiple
edges, ε ∈ Mn ({0, 1}) be its adjacency matrix and (uij)1≤i,j≤n be the generators

of C(G+
aut (Γ)). Denote by ε

(l)
ij the (i, j) entry of ε(l). If ε

(l)
ii 6= ε

(l)
jj for some l ∈ N,

then uij = 0.

Proof. Assume ε
(l)
ii 6= ε

(l)
jj for some l ∈ N. It holds that uεl = εlu or equivalently

n∑
k=1

ε
(l)
ik ukj =

n∑
k=1

uikε
(l)
kj .

Multiplying this equation by uij yields

ε
(l)
ii uij = ε

(l)
jj uij.

Since ε
(l)
ii 6= ε

(l)
jj , we get uij = 0. �

2.2.4. Remark. To clarify, why the Fulton criterion makes sense, look at εl: for a
graph with adjacency matrix ε, the entry εlij denotes the number of different ways

to get from the node i to the node j in l steps. Thus, if we have εlii 6= εljj for some l,
we know, that no automorphism of Γ will map i to j and thus also uij should be 0.
In practice, we use the Fulton criterion by computing ε2, ε3, · · · and look on each of
their diagonals. This then often yields uij = 0 for at least some i, j and thus simplifies
the process of computing C(G+

aut(Γ)), see the examples in the next section.

2.3. Examples of quantum automorphism groups of finite graphs.

2.3.1. Example. Let Γ be the circle on 4 vertices, that is Γ looks like:

1 2

34

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 13

Then by the Schmidt criterion 2.1.2 it has quantum symmetries, since σ := (1, 3) ∈
Gaut(Γ) and τ := (2, 4) ∈ Gaut(Γ) (see Example 1.1.3) and σ and τ are disjoint.
Banica, Benôıt and Collins showed in [2] that G+

aut(Γ) = H+
2 , where H+

2 is the
hyperoctahedral quantum group as defined by Bichon in [4].

2.3.2. Example. In contrast to the circle on 4 vertices, the circle on n vertices with
n ≥ 5 does not have quantum symmetries. Look for example at n = 5, Γ =

1

2

3

5

4

We then see that

u11u22 = u11u22

5∑
k=1

u1k = u11u22
∑

k;(2,k)∈E

= u11u22(u11 + u13).

But we also have that

u11u22u13 = u11(1− u21 − u23 − u24 − u25)u13 = 0

since u11u21 = u11u13 = u11u24 = 0 and u23u13 = u25u13 = 0 by relations (1.1), (1.3)
and (1.4) from Definition 1.3.1. We thus have that u11u22 = u11u22u11 and as in
Example 1.3.6 it follows that u11u22 = u22u11. The rest of the commutations can be
shown similar to the proof that the Petersen graph has no quantum symmetries, see
Theorems 3.2 and 3.3 in [7]. The proofs rely on the fact that the circle on 5 vertices
is strongly regular.
For the general case on n vertices it was shown by Banica in [1] that it does not
have quantum symmetries. We thus have that G+

aut(Γ) = Gaut(Γ) = Dn, where Dn

is the dihedral group, given by

Dn = 〈x, y|xn = y2 = (xy)2 = 1〉.

Moreover for n ≤ 3 we have by Remark 1.2.3 that the circle on n vertices does not
have quantum symmetries. The circle on 4 vertices is thus really an exception.

2.3.3. Example. Let Γ =

5

1 4

2 3

We have that (2, 3) ∈ Gaut(Γ) and (1, 4) ∈ Gaut(Γ). The Schmidt criterion 2.1.2 thus
yields that Γ does have quantum symmetry. Now we want to compute the quantum

14 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

automorphism group of Γ. We have that

ε =

0 1 1 1 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
1 0 0 1 0

 and ε2 =

4 2 2 3 1
2 3 2 2 2
2 2 3 2 2
3 2 2 4 1
1 2 2 1 2

Thus, by the Fulton criterion 2.2.3 and since

∑5
k=1 uik =

∑5
k=1 uki = 1 we have that

the generator matrix of C(G+
aut(Γ)) looks like

u =

u11 0 0 1− u11 0
0 u22 1− u22 0 0
0 1− u22 u22 0 0

1− u11 0 0 u11 0
0 0 0 0 1

If u11 or u22 were 0 or if they were equal, C(G+

aut(Γ)) would be commutative. Since
we know that Γ does have quantum symmetry however, we see that the u above is

the final generator matrix. We thus conclude that G+
aut(Γ) = Ẑ2 ∗ Z2, see [8] before

Theorem (3.8).

2.3.4. Example. If we now look at the above graph after taking away the edge
(4, 5), we get Γ =

5

1 4

2 3

and thus

ε =

0 1 1 1 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 0 0 0 0

 and ε2 =

4 2 2 2 0
2 3 2 2 1
2 2 3 2 1
2 2 2 3 1
0 1 1 1 1

By the Fulton criterion 2.2.3 we get

u =

1 0 0 0 0
0 u22 u23 u24 0
0 u32 u33 u34 0
0 u42 u43 u44 0
0 0 0 0 1

If we look at the 3× 3 matrix in the middle that is neither 0 nor 1, we can see that
it fulfills all the relations of C(S+

3), namely
∑4

k=2 uik =
∑4

k=2 uki = 1 for i = 2, 3, 4
and all uij are projections, see Example 1.2.2. As we know, that S+

3 = S3, that is
C(S+

3) is commutative, we can conclude, that G+
aut(Γ) = Gaut(Γ) = S3.

2.3.5. Lemma. Let Γ be a graph and uij be the generators of its quantum automor-
phism group. If uij = δij then G+

aut(Γ) = Gaut(Γ) = {e}.

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 15

Proof. If uij = δij then G+
aut(Γ) is generated only by 1, since every uij is either

1 or 0. Thus dim(C
(
G+
aut(Γ)

)
) = 1 ⇒ C(G+

aut(Γ)) is commutative and thus also
G+
aut(Γ) = Gaut(Γ) and moreover, since |G+

aut(Γ)| = 1, G+
aut(Γ) = Gaut(Γ) = {e}. �

2.3.6. Example. Let Γ =

1 2

3

4 5 6

We thus have that

ε =

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 and ε4 =

3 2 4 5 1 1
2 12 7 7 6 1
4 7 8 7 5 1
5 7 7 13 2 4
1 6 5 2 6 0
1 1 1 4 0 2

(we use ε4 here since this yields the most information) and see by the Fulton crite-
rion 2.2.3 that uij = δij, since ε4ii 6= ε4jj for all i 6= j and since

∑6
k=1 uik = 1 for all i.

By Lemma 2.3.5 we thus see that G+
aut(Γ) = Gaut(Γ) = {e}.

16 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

3. Calculating quantum symmetries on the computer

In this chapter, the software tools written to calculate the quantum symmetries of
graphs are presented in an abstracted version. The source code of all scripts written
will be made available electronically.

3.1. GAP graph constructor. The first algorithm is used to provide the data set
on which the other algorithm is used, i.e. it constructs the graphs of which quantum
symmetries are supposed to be calculated.

Algorithm 1: graph constructor

input : n - the number of vertices,
g - a subgroup of the symmetric group on n points (optional)

output: a list of all connected graphs on n vertices that have g as
automorphism group (if g is given), together with the generators of
the automorphism group of the graphs

1 generate a list matrixList of all symmetric matrices containing ones and
zeros;

2 initialize an empty graphList ;
3 for matrix in matrixList do
4 construct a graph G that has matrix as adjacency matrix;
5 if G is connected then
6 put G in graphList

7 compute isomorphism classes of the graphs in graphList and only keep one
representative of each class in graphList ;

8 if g is given then
9 for G in graphList do

10 if G does not have g as autgroup then
11 remove G from graphList

12 print all graphs from graphList to a file;

The above algorithm is in fact a simplified version, since in the original it consists
of a python and a GAP part. The python script will execute the first for-loop and
then print the GAP-code, that consists of the remaining instructions applied to
the graphs of graphList, to a file. This file will then have to be executed by GAP.
Since GAP’s representation of graphs already includes the generators of the graph’s
automorphism group, there is no special instruction necessary to print them.

The instruction, that is the most time and memory consuming in this algorithm,
is the computation of isomorphism classes. This instruction is also the reason, why
I have only considered graphs on up to 7 vertices and on 7 vertices even only those
with automorphism groups Z2 or {e} - if I want to calculate the isomorphism classes
of all graphs on 7 vertices, my computer is working for several days before finally
crashing. One way to improve the program might thus be to find some easy-to-
check (i.e. not computationally expensive) criterion, that implies that two graphs
are isomorphic and to sort out some of the isomorphic graphs already in the python
part. This will probably not be a criterion that is equivalent to the two graphs being
isomorphic, since for determining graph isomorphism there is no known algorithm
that works in polynomial time.

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 17

3.2. Quantum Symmetry calculator. The next algorithm was written in Sin-
gular and is supposed to compute, whether the graph has quantum symmetry. It
has mostly been written by Christian Eder and Andreas Steenpass and has been
improved by Viktor Levandovskyy and myself.

Algorithm 2: QSym Calculator

input : E - the adjacency matrix of a graph G on N vertices
output: 1 - if the graph does not have quantum symmetries

0 or does not terminate - if the algorithm can not find out, whether
the graph does have quantum symmetries

1 let r be a ring with generators 0, 1, uij, i, j = 1, · · · , N ;
2 let I be an empty ideal in r;
3 let J be an empty ideal in r;
4 for i = 1..N do

5 add the relation
∑N

j=1 uij = 1 to the ideal I;

6 add the relation
∑N

j=1 uji = 1 to the ideal I;

7 for i, j, k = 1..N do
8 add the relation uikujk = δijuik to the ideal I;
9 add the relation ukiukj = δijuki to the ideal I;

10 for i, j, k, l = 1..N do
11 if E[i, j] = 1 then
12 if E[k, l] 6= 1 then
13 add the relation uikujl = 0 to the ideal I;

14 else
15 if E[k, l] = 1 then
16 add the relation uikujl = 0 to the ideal I;

17 for k = 1..N2 do
18 for i, j = 1..N do
19 if Ek[i, i] 6= Ek[j, j] then
20 add the relation uij = 0 to the ideal I;

21 for i, j, k, l = 1..N do
22 add the relation uijukl = ukluij to the ideal J ;

23 for t in J do
24 if t is not in I then
25 return 0 and exit;

26 return 1;

This algorithm takes a graph and computes the ideal of all relations of the gen-
erators of its quantum automorphism group. However it does not know anything
about the C∗-structure on C(G+

aut(Γ)). This is why, if the algorithm says that the
graph does have quantum symmetry (i.e. it returns 0), this is not necessarily true.
The ideal of the quantum automorphism relations is stored in the variable I. First,
relation (1.2) from Definition 1.3.1 is added in lines 4-6. Then, relation (1.1) is
added in lines 7-9. In lines 10 - 16, the final relations (1.3) and (1.4) are added.
Note, that for relations (1.3) and (1.4) we do not need to add the other combinations
of i, j, k and l within the loop, since every possible combination will be passed by
the loop. After that, in lines 17 - 20, the Fulton criterion 2.2.3 is used, to add some

18 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

more information to the ideal.
Then, the ideal J is computed in lines 21 and 22, which consists of all commutation
relations between the generators of the quantum automorphism group uij.

To see, whether the quantum automorphism group is commutative, the algorithm
then checks for every element of J if it is also in I. If that is the case, then I is obvi-
ously commutative and thus also C(G+

aut(Γ)), since I then contains all commutation
relations of C(G+

aut(Γ)) and since I ⊆ C(G+
aut(Γ)). If this is not the case however,

we do not know, whether the graph has quantum symmetry, as the C∗-structure
that is missing in I might yield the missing commutation relations.
For checking the inclusion of J in I, the implementation uses Gröbner bases. In
some cases however, the Gröbner basis of the ideal I might be infinite, in which case
the program will not terminate. This happened three times on the graphs, that I
used the QSym calculator on, namely on the graph on 5 vertices with index 20 and
the graphs on 6 vertices with indices 0 and 111.

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 19

3.3. The produced data and its interpretation. Not all of the data produced
is included here, since that would be more than 200 pages. Instead I will only show
parts of the results here, the rest will be made available separately. Since Schmidt
and Weber have already calculated the quantum automorphism groups of all graphs
on 4 vertices in [8], only larger graphs are considered here. In the appendix, we can
see the tables of all connected graphs on 5 vertices and the tables of graphs on 5
and 6 vertices that have the classical automorphism group Z2 or the trivial group.
The information displayed there for each graph consists of

• a picture of the graph
• whether or not said graph is regular
• the (classical) automorphism group of the graph given by its generators
• the order of the automorphism group
• whether or not the QSym calculator says, that the graph has quantum

symmetries
• and whether or not the graph has disjoint automorphisms.

Here is a table that gives an overview over the number of connected graphs for a
given size of the automorphism group and the number of those graphs that have
quantum symmetries (“5 vertices qsym” and “6 vertices qsym”).

Order(AutGroup) 5 vertices 5 vertices qsym 6 vertices 6 vertices qsym
720 0 0 1 1
120 1 1 1 1
72 0 0 1 1
48 0 0 4 4
36 0 0 1 1
24 1 1 1 1
16 0 0 3 3
12 3 3 10 8
10 1 0 1 0
8 2 2 9 9
6 1 0 7 0
4 3 3 28 26
2 9 0 37 0
1 0 0 8 0

all 21 10 112 55

Looking at the table we note a few things:
Firstly, the ratio of graphs with quantum symmetry and without seems to be around
50 : 50. Since it is known however that almost all graphs have trivial quantum
automorphism group and thus also no quantum symmetries, this is just a distortion
for small n and does not hold in general. An interesting question might be, from
which n onwards it can be seen, that this ratio is in fact not 50 : 50. Moreover,
for graphs whose automorphism group has order 1 or 2, we see that no graphs have
quantum symmetry, see also Theorem 3.3.4. An open question is, whether this
does hold for general n. Graphs with automorphism groups of order 6 and 10 on 5
and 6 vertices do not have quantum symmetries, while on the other hand, graphs
with automorphism groups of order 4, 8, 12 and 16 seem to often have quantum
symmetries, which leads to the question, whether this holds in general. Lastly, note
that the graph on 5 vertices with order(Gaut) = 120 and the graph on 6 vertices with

20 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

order(Gaut) = 720 are the full graphs and we have shown in Example 1.3.4 that they
have the quantum automorphism group S+

n and thus have quantum symmetries.
We now present summarizing tables of all the graphs in the appendix, that each

state

• the index of the graph in the corresponding section
• its regularity
• the classical automorphism group by generators
• the output of the QSym calculator (where ? means that the program did

not terminate)
• and whether or not the graph has disjoint automorphisms.

Note that by the Schmidt criterion 2.1.2 disjoint automorphisms already imply that
the graph does have quantum symmetries.

3.3.1 (Graphs on 5 vertices). Here is an overview of the graphs on 5 vertices.

Table 1: Graphs on 5 vertices

index regular AutGroup Order(AutGroup) QSym disj auts

0 not regular Group([(3,4), (2,3), (1,2)]) 24 yes yes
1 not regular Group([(1,2)]) 2 no no
2 not regular Group([(3,4), (1,2)]) 4 yes yes
3 not regular Group([(1,2)(4,5)]) 2 no no
4 not regular Group([(1,2)(4,5)]) 2 no no
5 not regular Group([(2,3)]) 2 no no
6 not regular Group([(2,3)]) 2 no no
7 not regular Group([(2,3)]) 2 no no
8 not regular Group([(3,4)]) 2 no no
9 not regular Group([(3,4), (2,3)]) 6 no no
10 not regular Group([(4,5), (2,3), (1,2)]) 12 yes yes
11 not regular Group([(4,5), (2,3), (1,2)]) 12 yes yes
12 not regular Group([(2,3), (1,2)(3,4)]) 8 yes yes
13 2-regular Group([(2,3)(4,5), (1,2)(3,4)]) 10 no no
14 not regular Group([(2,3)(4,5)]) 2 no no
15 not regular Group([(1,2)(3,4)]) 2 no no
16 not regular Group([(2,3), (4,5)]) 4 yes yes
17 not regular Group([(4,5), (2,3)]) 4 yes yes
18 not regular Group([(3,4), (1,2), (1,3)(2,4)]) 8 yes yes
19 not regular Group([(4,5), (3,4), (1,2)]) 12 yes yes
20 4-regular Group([(4,5), (3,4), (2,3), (1,2)]) 120 ? yes

Looking at this table, we note that on 5 vertices there is an equivalence between
the output of the Qsym calculator and the Schmidt criterion. This does not hold in
general however, see Remark 3.3.7.

As we can also see from the table, there are 2 regular graphs on 5 vertices. One
is the circle on 5 vertices, which is 2-regular:

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 21

1

2 5

3 4

The other one is the full graph on 5 vertices:

1

2 3

4 5

Index: 20
AutGroup = Group([(4,5), (3,4), (2,3), (1,2)])

3.3.2 (Graphs on 5 vertices with autgroup Z2). To make it easier to deduce
something for graphs that have automorphism group Z2, here is a table of only those
graphs.

Table 2: Graphs on 5 vertices

index regular AutGroup Order(AutGroup) QSym disj auts

0 not regular Group([(1,2)]) 2 no no
1 not regular Group([(1,2)(4,5)]) 2 no no
2 not regular Group([(1,2)(4,5)]) 2 no no
3 not regular Group([(2,3)]) 2 no no
4 not regular Group([(2,3)]) 2 no no
5 not regular Group([(2,3)]) 2 no no
6 not regular Group([(3,4)]) 2 no no
7 not regular Group([(2,3)(4,5)]) 2 no no
8 not regular Group([(1,2)(3,4)]) 2 no no

As can be seen here, all graphs that have automorphism group Z2 do not have
quantum symmetries.

3.3.3 (Graphs on 6 vertices with autgroup {e} and Z2). Since the table of all
graphs on 6 vertices would be too large to fit in here, only the tables of graphs with
automorphism groups Z2 and {e} are presented.

Table 3: Graphs on 6 vertices

22 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

index regular AutGroup Order(AutGroup) QSym disj auts

0 not regular Group(()) 1 no no
1 not regular Group(()) 1 no no
2 not regular Group(()) 1 no no
3 not regular Group(()) 1 no no
4 not regular Group(()) 1 no no
5 not regular Group(()) 1 no no
6 not regular Group(()) 1 no no
7 not regular Group(()) 1 no no

Table 4: Graphs on 6 vertices

index regular AutGroup Order(AutGroup) QSym disj auts

0 not regular Group([(1,2)]) 2 no no
1 not regular Group([(1,2)]) 2 no no
2 not regular Group([(2,3)(4,5)]) 2 no no
3 not regular Group([(3,4)]) 2 no no
4 not regular Group([(1,2)(3,4)(5,6)]) 2 no no
5 not regular Group([(1,2)(3,4)(5,6)]) 2 no no
6 not regular Group([(2,3)(4,5)]) 2 no no
7 not regular Group([(2,3)(4,5)]) 2 no no
8 not regular Group([(3,4)]) 2 no no
9 not regular Group([(3,4)]) 2 no no
10 not regular Group([(3,4)]) 2 no no
11 not regular Group([(3,4)]) 2 no no
12 not regular Group([(2,3)]) 2 no no
13 not regular Group([(2,3)]) 2 no no
14 not regular Group([(2,4)(3,5)]) 2 no no
15 not regular Group([(4,5)]) 2 no no
16 not regular Group([(4,5)]) 2 no no
17 not regular Group([(4,5)]) 2 no no
18 not regular Group([(2,3)]) 2 no no
19 not regular Group([(1,2)]) 2 no no
20 not regular Group([(1,2)]) 2 no no
21 not regular Group([(2,3)(5,6)]) 2 no no
22 not regular Group([(1,2)(4,5)]) 2 no no
23 not regular Group([(1,2)(4,5)]) 2 no no
24 not regular Group([(1,2)(4,5)]) 2 no no
25 not regular Group([(1,2)(4,5)]) 2 no no
26 not regular Group([(2,3)]) 2 no no
27 not regular Group([(2,3)]) 2 no no
28 not regular Group([(1,2)(3,5)(4,6)]) 2 no no
29 not regular Group([(2,3)]) 2 no no
30 not regular Group([(2,3)]) 2 no no
31 not regular Group([(2,3)(5,6)]) 2 no no
32 not regular Group([(2,3)(5,6)]) 2 no no
33 not regular Group([(3,4)]) 2 no no
34 not regular Group([(3,4)]) 2 no no
35 not regular Group([(1,2)(3,4)(5,6)]) 2 no no

COMPUTING QUANTUM SYMMETRIES OF GRAPHS 23

36 not regular Group([(2,3)(4,5)]) 2 no no

As with the graphs on 5 vertices, we again see, that all graphs with automorphism
group Z2 and moreover also those with trivial automorphism group (of which there
are no graphs on 5 vertices) do not have quantum symmetries. In fact this also
holds for graphs on 7 vertices. Since there are so many graphs on 7 vertices however
(317 with automorphism group Z2 and 144 with trivial automorphism group), these
tables are not included here.
We summarize this information in the main theorem of this thesis:

3.3.4. Theorem. Let Γ be a connected graph on n vertices. If n ≤ 7 then it holds:

Gaut(Γ) = Z2 ⇒ G+
aut (Γ) = Z2

Gaut(Γ) = {e} ⇒ G+
aut (Γ) = {e}

Proof. For n ∈ {1, 2, 3} it holds generally, that Gaut(Γ) = G+
aut(Γ), see Remark 1.2.3.

For n = 4, we can see in [8] that the statement holds. For n ∈ {5, 6, 7}, the QSym
calculator has computed, that all graphs with automorphism group Z2 or {e} do
not have quantum symmetries. �

3.3.5. Remark. It remains an open question for now, whether the above statement
holds for all n ∈ N.

Moreover, when analysing the produced data, we note the following correspon-
dence between disjoint automorphisms and quantum symmetries:

3.3.6. Proposition. Let Γ be a connected graph on n vertices. If n ≤ 6 then it holds:

∃ σ, τ ∈ Gaut(Γ) disjoint⇔ Γ has quantum symmetries

Proof. The one direction was shown in the proof of the Schmidt criterion 2.1.2. For
the other direction check the produced data. �

3.3.7. Remark. The above Proposition only covers graphs with up to 6 vertices,
since the produced data does not cover all connected graphs on 7 vertices but only
those that have the automorphism groups Z2 or {e}.
Moreover, there is a counterexample for the general statement, as revealed in private
communication with Simon Schmidt.

24 COMPUTING QUANTUM SYMMETRIES OF GRAPHS

References

1. Banica, T. Quantum automorphism groups of homogeneous graphs. J. Funct.
Anal., 224(2):243-280 (2005).

2. Banica, T., Bichon, J. & Collins, B. The hyperoctahedral quantum group. J.
Ramanujan Math. Soc., 22(4): 345-384 (2007).

3. Bichon, J. Quantum automorphism groups of finite graphs. Proc. Amer. Math.
Soc., 131(3):665-673 (2003).

4. Bichon, J. Free wreath product by the quantum permutation group. Algebr.
Represent. Theory, 7(4):343-362 (2004).

5. Fulton, M. The quantum automorphism group and undirected trees PhD (Vir-
ginia, 2006).

6. Schmidt, S. Quantum automorphisms of folded cube graphs. arXiv: 1810.11284
(2018).

7. Schmidt, S. The Petersen graph has no quantum symmetry. Bull. Lond. Math.
Soc., 50(3): 395-400 (2018).

8. Schmidt, S. & Weber, M. Quantum symmetries of graph C*-algebras. Can.
Math. Bull., 61:848-864 (2018).

9. Speicher, R. & Weber, M. Quantum groups with partial commutation relations.
arXiv: 1603.09192 (2016).

10. Wang, S. Quantum symmetry groups of finite spaces. Comm. Math. Phys.,
195(1):195-211 (1998).

11. Woronowicz, S. L. Compact matrix pseudogroups. Comm. Math. Phys., 111(4):613-
665 (1987).

12. Woronowicz, S. L. A remark on compact matrix quantum groups. Lett. Math.
Phys., 21(1):35-39 (1991).

https://arxiv.org/abs/1810.11284
https://arxiv.org/abs/1603.09192

REFERENCES 25

Appendices
A. Connected graphs on 5 points

Here is the produced data for connected graphs on 5 vertices, consisting of a pic-
ture of each graph, information about its automorphism group, its complement and
its quantum automorphism group, where the field q aut is 1, if the graph does not
have quantum symmetries, 0, if the qsym calculator says, that it does have quantum
symmetries and ? if the qsym calculator did not terminate. There are 21 connected
graphs on 5 vertices, 2 of which are regular.

1

2 3

4 5

Index: 0
AutGroup = Group([(3,4), (2,3), (1,2)])

Order(AutGroup) = 24
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

1

2 3

4 5

Index: 1
AutGroup = Group([(1,2)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

26

1

2 3

4 5

Index: 2
AutGroup = Group([(3,4), (1,2)])

Order(AutGroup) = 4
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

1

2 3

4 5

Index: 3
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 4
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

27

1

2 3

4 5

Index: 5
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 6
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 7
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

28

1

2 3

4 5

Index: 8
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 9
AutGroup = Group([(3,4), (2,3)])

Order(AutGroup) = 6
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 10
AutGroup = Group([(4,5), (2,3), (1,2)])

Order(AutGroup) = 12
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

29

1

2 3

4 5

Index: 11
AutGroup = Group([(4,5), (2,3), (1,2)])

Order(AutGroup) = 12
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

1

2 3

4 5

Index: 12
AutGroup = Group([(2,3), (1,2)(3,4)])

Order(AutGroup) = 8
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

1

2 3

4 5

Index: 13
AutGroup = Group([(2,3)(4,5), (1,2)(3,4)])

Order(AutGroup) = 10
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

30

1

2 3

4 5

Index: 14
AutGroup = Group([(2,3)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 15
AutGroup = Group([(1,2)(3,4)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 16
AutGroup = Group([(2,3), (4,5)])

Order(AutGroup) = 4
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

31

1

2 3

4 5

Index: 17
AutGroup = Group([(4,5), (2,3)])

Order(AutGroup) = 4
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

1

2 3

4 5

Index: 18
AutGroup = Group([(3,4), (1,2), (1,3)(2,4)])

Order(AutGroup) = 8
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

1

2 3

4 5

Index: 19
AutGroup = Group([(4,5), (3,4), (1,2)])

Order(AutGroup) = 12
The complement of this graph is not connected.

q aut: 0
This graph has disjoint automorphisms and thus quantum symmetries.

32

1

2 3

4 5

Index: 20
AutGroup = Group([(4,5), (3,4), (2,3), (1,2)])

Order(AutGroup) = 120
The complement of this graph is not connected.

q aut: ?
This graph has disjoint automorphisms and thus quantum symmetries.

33

B. Connected graphs on 5 points with automorphism group Z2

Here is the produced data for connected graphs on 5 vertices with automorphism
group Z2, consisting of a picture of each graph, information about its automorphism
group, its complement and its quantum automorphism group, where the field q aut
is 1, if the graph does not have quantum symmetries, 0, if the qsym calculator says,
that it does have quantum symmetries and ? if the qsym calculator did not ter-
minate. There are 9 connected graphs on 5 vertices with automorphism group Z2,
none of which are regular.

1

2 3

4 5

Index: 0
AutGroup = Group([(1,2)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 1
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

34

1

2 3

4 5

Index: 2
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 3
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 4
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

35

1

2 3

4 5

Index: 5
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 6
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1

2 3

4 5

Index: 7
AutGroup = Group([(2,3)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

36

1

2 3

4 5

Index: 8
AutGroup = Group([(1,2)(3,4)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

37

C. Connected graphs on 6 points with automorphism group Z2

Here is the produced data for connected graphs on 6 vertices with automorphism
group Z2, consisting of a picture of each graph, information about its automorphism
group, its complement and its quantum automorphism group, where the field q aut
is 1, if the graph does not have quantum symmetries, 0, if the qsym calculator says,
that it does have quantum symmetries and ? if the qsym calculator did not termi-
nate. There are 37 connected graphs on 6 vertices, none of which are regular.

1 2

3 4

5 6

Index: 0
AutGroup = Group([(1,2)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 1
AutGroup = Group([(1,2)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

38

1 2

3 4

5 6

Index: 2
AutGroup = Group([(2,3)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 3
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 4
AutGroup = Group([(1,2)(3,4)(5,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

39

1 2

3 4

5 6

Index: 5
AutGroup = Group([(1,2)(3,4)(5,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 6
AutGroup = Group([(2,3)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 7
AutGroup = Group([(2,3)(4,5)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

40

1 2

3 4

5 6

Index: 8
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 9
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 10
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

41

1 2

3 4

5 6

Index: 11
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 12
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 13
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

42

1 2

3 4

5 6

Index: 14
AutGroup = Group([(2,4)(3,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 15
AutGroup = Group([(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 16
AutGroup = Group([(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

43

1 2

3 4

5 6

Index: 17
AutGroup = Group([(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 18
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 19
AutGroup = Group([(1,2)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

44

1 2

3 4

5 6

Index: 20
AutGroup = Group([(1,2)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 21
AutGroup = Group([(2,3)(5,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 22
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

45

1 2

3 4

5 6

Index: 23
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 24
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 25
AutGroup = Group([(1,2)(4,5)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

46

1 2

3 4

5 6

Index: 26
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 27
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 28
AutGroup = Group([(1,2)(3,5)(4,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

47

1 2

3 4

5 6

Index: 29
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 30
AutGroup = Group([(2,3)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 31
AutGroup = Group([(2,3)(5,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

48

1 2

3 4

5 6

Index: 32
AutGroup = Group([(2,3)(5,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 33
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 34
AutGroup = Group([(3,4)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

49

1 2

3 4

5 6

Index: 35
AutGroup = Group([(1,2)(3,4)(5,6)])

Order(AutGroup) = 2
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 36
AutGroup = Group([(2,3)(4,5)])

Order(AutGroup) = 2
The complement of this graph is not connected.

q aut: 1
This graph does not have disjoint automorphisms.

50

D. Connected graphs on 6 points with trivial automorphism group

Here is the produced data for connected graphs on 6 vertices with trivial automor-
phism group, consisting of a picture of each graph, information about its automor-
phism group, its complement and its quantum automorphism group, where the field
q aut is 1, if the graph does not have quantum symmetries, 0, if the qsym calculator
says, that it does have quantum symmetries and ? if the qsym calculator did not
terminate. There are 8 connected graphs on 6 vertices with trivial automorphism
group, none of which are regular.

1 2

3 4

5 6

Index: 0
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 1
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

51

1 2

3 4

5 6

Index: 2
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 3
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 4
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

52

1 2

3 4

5 6

Index: 5
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 6
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

1 2

3 4

5 6

Index: 7
AutGroup = Group(())

Order(AutGroup) = 1
The complement of this graph is connected.

q aut: 1
This graph does not have disjoint automorphisms.

	Introduction
	1. Preliminaries on quantum groups of graphs
	1.1. Finite graphs
	1.2. Compact matrix quantum groups
	1.3. Quantum automorphism groups of finite graphs
	1.4. Known results about quantum automorphism groups of graphs

	2. Examples of quantum automorphism groups of graphs
	2.1. The Schmidt criterion
	2.2. The Fulton criterion
	2.3. Examples of quantum automorphism groups of finite graphs

	3. Calculating quantum symmetries on the computer
	3.1. GAP graph constructor
	3.2. Quantum Symmetry calculator
	3.3. The produced data and its interpretation

	References
	Appendices
	A. Connected graphs on 5 points
	B. Connected graphs on 5 points with automorphism group Z2
	C. Connected graphs on 6 points with automorphism group Z2
	D. Connected graphs on 6 points with trivial automorphism group

