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Introduction

Graph C∗-algebras have attracted great interest in operator theory in the last 40 years. They are interesting
due to their vast variety of examples and their entanglement of properties of C∗-algebras with geometric
properties of the graph, which gives insights into the structure ofC∗-algebras. Examples of graphC∗-algebras
are the Toeplitz algebra, the matrix algebra, the compact operators and the continuous functions on the
unit circle. A good overview of this is provided by the standard work [Rae05]. Another application of
graph C∗-algebras is in classification theory. The link to K-theory is obtained through Morita equivalence as
important equivalence relation for graph C∗-algebras.

Within the scope of this thesis the theory to hypergraph C∗-algebras is extended. Hypergraph C∗-algebras
were first defined in the bachelor thesis of Dean Zenner in 2022 under the supervision of Prof. Moritz
Weber and there is no literature already published on the subject. As an own research project the theory of
hypergraph C∗-algebras is generalized within this thesis based on literature research on comparable objects,
see [Tom03]. A hypergraph is a combinatorial object consisting of vertices which are connected by directed
edges. As extension to graphs, edges in hypergraphs connect sets of vertices, not just individual vertices.

e

(a) Graph

e

e
e

e

(b) Hypergraph

Figure 1: Different edges in graphs and hypergraphs.

Hence the path structure gets more complicated, as we have to deal with intersection of source and range
sets. This is reflected in the relations of the corresponding C∗-algebra, which we define in the same manner
as for graphs: the vertices are identified with projections and the edges with partial isometries. These are
combined with further relations based on the underlying hypergraph. We study the C∗-algebras in detail
for finite hypergraphs, but give first concrete starting points for generalization to infinite hypergraphs.

Cuntz-Krieger Relations Hypergraph Relations

(CK1) s∗esf = δe,fpr(e) (HR1) s∗esf = δe,f
∑︁

v∈r(e) pv
(CK2) pv =

∑︁
e∈E1,s(e)=v ses

∗
e (HR2) ses∗e ⩽

∑︁
v∈s(e) pv

(HR3) pv ⩽
∑︁

e∈E1,v∈s(e) ses
∗
e

Table 1: Overview of the relations defining graph and hypergraph C∗-algebras.

Hypergraph C∗-algebras really extend the class of graph C∗-algebras. Indeed, while all graph C∗-algebras
are nuclear, we proof that C(T) ∗Cn is a non-nuclear hypergraph C∗-algebra. Using that nuclearity transfers
to quotients we give a new method to construct further non-nuclear examples. By imposing concrete
conditions on the hypergraph, we change this method such that the non-nuclearity can be read from the
hypergraph alone. The hypergraph corresponding to a nuclear C∗-algebra is called amenable. Moreover,
we define some kind of product of hypergraphs, to attach a non-amenable hypergraph to an arbitrary
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hypergraph to construct a new, non-amenable hypergraph. There are further restrictions we can place on
the class of hypergraph C∗-algebras which contains non-nuclear C∗-algebras. We consider ultragraphs as
special hypergraphs, in which an edge can have multiple vertices in its range, but just one in its source. The
corresponding ultragraph C∗-algebras were defined by Tomforde in [Tom03]. Interestingly, his research
showed, that all ultragraph C∗-algebras are Morita equivalent to graph C∗-algebras and hence nuclear. Thus,
the class of hypergraph C∗-algebras also extends the class of ultragraph C∗-algebras and all non-amenable
hypergraphs must have at least one edge with a multi valued source.

To better understand the connection between different hypergraph C∗-algebras, we generalize the proof
of the previously mentioned Morita equivalence of ultragraphs. We show that each finite hypergraph can
be transformed into a hypergraph with only single vertices in its ranges without changing the C∗-algebra
(up to isomorphism). Applied to finite ultragraphs this shows, that each of these ultragraph C∗-algebras is
isomorphic to a graph algebra. In particular, these results indicate that the new interesting phenomena of
hypergraphs have their roots in sources with multiple elements. This also occurs when investigating the
connection of hypergraph C∗-algebras to known C∗-algebras. The multi-valued source makes the crucial
difference in the Gauge Uniqueness Theorem, which yields faithful representations of graph C∗-algebras.
We found a hypergraph for which the theorem is not valid. For ultragraphs however it is still valid as shown
in [Tom03]. Based on this observation we gave restrictions under which the theorem can be generalized.

Finally, we investigate how hypergraph C∗-algebras behave when the underlying hypergraph is modified.
Based on manipulations of graphs in form of six concrete moves, graph C∗-algebras can be completely
classified up to stable isomorphism, as a recent break through in the classification of graph C∗-algebras
[ERRS21] showed. We extend four of these moves to hypergraphs and investigate, how the corresponding
C∗-algebras behave and if the manipulations leave the the C∗-algebra invariant. In this context, further
fields of research emerge.

Outline: As foundation for this thesis, we begin chapter 1 by introducing universal C∗-algebras, which build
the underlying concept of the definition of graph and hypergraph C∗-algebras. We have a closer look at the
known results for graphs and introduce Morita equivalence. In chapter 2 we formally define hypergraph C∗-
algebras and introduce ultragraph C∗-algebras as specific examples. We examine the structural differences
for hypergraphs more closely, including the path structure. Based on this we consider examples and give a
way to construct representations. Chapter 3 deals with the question of the nuclearity of hypergraph C∗-
algebras. We define nuclearity for C∗-algebras and give an example of a non-nuclear hypergraph C∗-algebra,
which shows, that the class of hypergraph C∗-algebras extends the class of graph C∗-algebras. Building on
this example, we use that nuclearity is invariant under quotients to construct further non-nuclear examples.
In chapter 4 we show that we can transform each hypergraph into a hypergraph with single valued range
map while leaving the corresponding C∗-algebra invariant. For specific cases we generalize the Gauge
Uniqueness Theorem and give an example, that it does not hold for hypergraphs in general. In chapter
5, we discuss and generalize basic moves to manipulate hypergraphs and state their importance in the
classification theory of graph C∗-algebras. We finish in chapter 6 by stating further research topics, which
came up in the scope of this thesis.

Background: As prerequisites, knowledge in functional analysis and algebra is required. The reader
is furthermore expected to be familiar with operator theory and more specifically, with the theory of
C∗-algebras. A good reference for this topic are the books [Bla06] and [Dav96].
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1. Preliminaries

The basis of hypergraph C∗-algebras are universal C∗-algebras which we introduce right at the beginning.
These give insights into the structure of C∗-algebras and build the underlying concept of graph and
hypergraph C∗-algebras. Then we define graph C∗-algebras as particular universal C∗-algebras and give an
overview about its structure. As examples we show that the matrix algebraMn(C), the compact operators
K(H), the Toeplitz algebra T and the algebra C(T) of continuous functions on the unit circle T are graph
C∗-algebras. Finally we take a look at Morita equivalence.

1.1. Universal C*-Algebras

Universal C∗-algebras give an abstract way to construct C∗-algebras based on formal generating elements
and concrete relations defined on the generators. This idea is similar to the construction of the free group
with some generating set and relations given by the group axioms. As general reference for the upcoming
construction see [Bla06, Section II.8.3] and [LVW21, Chapter 6].

The definition of universalC∗-algebras is based on free *-algebras. In the following we sketch the construction
of them. Let a set of generators be given by an alphabet E := {xi | i ∈ I}. We define non-commutative
polynomial by the complex linear combination of words y = xi1 · · ·xim in E. Together with the canonical
addition, scalar multiplication and the multiplication of elements given by the concatenation of words, the
set of non-commutative polynomials is an algebra called the free (complex) algebra on the generator set
E. The algebra is called free, since there hold no equations between the elements except of the defining
axioms of the algebraic structure. We add a copy of E denoted by E∗ := {x∗i | i ∈ I} and consider the free
algebra with generator set E ∪E∗. By enlarging the set of generators like this, we can artificially define an
involution on the free algebra on the generator set E ∪ E∗ and obtain the free *-algebra P (E). To define
more structure on the *-algebra let a set of relations be given, i.e. a set of polynomials R ⊆ P (E). Let J(R)
be the two-sided *-ideal generated by R. Then the universal *-algebra is defined as the quotient

A(E | R) := P (E)/J(R).

To get a C∗-algebra we have to define a norm on the universal *-algebra. For that note, that a C∗-seminorm
p on a C∗-algebra A is a submultiplicative seminorm which fulfills the C∗-identity p(a∗a) = p(a)2.

Definition 1.1. Let E be a set of generators and R ⊆ P (E) be relations. Put

||x|| := sup{p(x) | p is a C∗-seminorm on A(E|R)}.

If ||x|| ⩽ ∞ for all x ∈ A(E | R), || · || is a C∗-seminorm and we define the universal C∗-algebra C∗(E | R)
as the completion with respect to || · ||:

C∗(E | R) := A(E | R)/{x ∈ A(E | R) | ||x|| = 0}||·||.

The C∗-seminorm defined in the construction is only a C∗-norm if it is finite for all elements of the universal
*-algebra. Thus the universal C∗-algebra only exists if this condition is given.
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Lemma 1.2. If there is a constant C > 0 such that p(xi) < C for all i ∈ I and all C∗-seminorms p on the
universal *-algebra, then the universal C∗-algebra exists.

Besides the existence of universal C∗-algebras, we have to consider triviality, i.e. it might hold that
C∗(E | R) = 0. To show non-triviality of universal C*-algebras we establish the universal property, which
yields *-homomorphisms from universal C∗-algebras into known non-trivial C∗-algebras.

Proposition 1.3. Let E := {xi | i ∈ I} be a set of generators andR ⊆ P (E) be relations. LetB be a C∗-algebra
containing a subset E′ := {yi | i ∈ I}. If the elements in E′ satisfy the relations R, then there is a unique
*-homomorphism π : C∗(E | R) → B sending xi to yi for all i ∈ I.

In analogy to unitary operators and isometries in operator theory we generalize these terms to general
C∗-algebras based on the relations that define unitary operators. In the context of universal C∗-algebras we
call those elements universal unitaries and universal isometries respectively.

Definition 1.4. Let A be a C∗-algebra. An element u ∈ A satisfying the relations u∗u = uu∗ = 1 is called
unitary. An element v ∈ A with v∗v = 1 is called isometry.

Example 1.5. Multiple well known C∗-algebras can be expressed as universal C∗-algebras.
1. The universalC∗-algebraC∗(eij , i, j = 1, . . . , n | e∗ij = eji, eijekl = δjkeil for all i, j, k, l) is isomorphic

to the matrix algebraMn(C). Indeed, the matrices Eij , which are zero except for the ij-th entry given
by 1, fulfill the relations. By the universal property there is thus a surjective *-homomorphism, which
is injective by a dimension argument.

2. As infinite analog to the previous example, theC∗-algebra of compact operatorsK(H) on a Hilbertspace
H is isomorphic to C∗(eij , i, j ∈ N | e∗ij = eji, eijekl = δjkeil for all i, j, k, l).

3. The universal C∗-algebra C∗(u, 1 | u∗u = uu∗ = 1) generated by a universal unitary element is
isomorphic to the C∗-algebra of continuous functions on the unit circle T, denoted by C(T).

4. The Toeplitz algebra T is generated by the unilateral shift S on the space l2(N) of square-summable
sequences, defined by (an)n ↦→ (0, a1, a2, . . . ). The unilateral shift is an isometry. This hints that T is
isomorphic to the universal C∗-algebra C∗(v, 1 | v∗v = 1) generated by a universal isometry.

Remark 1.6. We can also formulate C∗-algebraic constructions in the universal setting. The free product of
C∗-algebras A and B is given as

A ∗B ∼= C∗(a ∈ A, b ∈ B | RA, RB),

where RA and RB are the C∗-relations of A and B respectively. The full crossed product C∗-algebra A⋊α G
of a unital C∗-algebra A and a discrete group G acting on A by a group action α : G→ Aut(A) can be seen as
universal C∗-algebra

A⋊α G ∼= C∗ (︁a ∈ A, ug unitaries for g ∈ G | ugh = uguh, ug−1 = u∗g, ugau
∗
g = αg(a)

)︁
.

The tensor products of C∗-Algebras can also be expressed as universal C∗-Algebra. Here, however, caution is
required, since there are different tensor products for C∗-algebras. We look at this more concretely in Section
3.1.
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1.2. Graph C*-Algebras

The following introduction to graphs and their C∗-algebras is adapted from [Rae05, Chapter 1].

Definition 1.7. A directed graph E = (E0, E1, r, s) is defined by two countable sets E0 (vertices) and E1

(edges), together with a range and source map r, s : E1 → E0. We write graph instead of directed graph.
We call a vertex v a source if and only if r−1(v) = ∅ and we call it a sink if and only if s−1(v) = ∅. A graph is
called finite if the set of edges and vertices are finite. A graph is called row-finite if the each vertex receives
at most finitely many edges.

The graph C∗-algebra is a universal C∗-algebra with generators associated to the vertices and edges of the
graph and relations resembling the structure of the graph. Derived from the corresponding definitions for
operator algebras we define projections and partial isometries for general C∗-algebras:

Definition 1.8. Let A be a C∗-algebra. We call an element p ∈ A a projection if p2 = p = p∗. Two projections
p, q are mutually orthogonal if pq = 0. An element s which fulfills ss∗s = s is called a partial isometry.

Remark 1.9. With regard to the order relation on the set of projections on a closed Hilbertspace, we can define
an order relation on the set of projections of a C∗-algebra by p ⩽ q if and only if pq = p = qp. Based on this
definition one can for example proof that the finite sum of projections is a projection if and only if the projections
are mutually orthogonal. Another useful result is that pi ⩽ q and q ⩽

∑︁
pi for a projection q and finitely many

mutually orthogonal projections pi, implies q =
∑︁
pi.

Definition 1.10. Let E = (E0, E1, r, s) be a row-finite graph. The graph C∗-algebra C∗(E) is the universal
C∗-algebra generated by mutually orthogonal projections pv for all vertices v ∈ E0 and partial isometries se
for all edges e ∈ E1 such that the following relations hold

(CK1) s∗esf = δe,fpr(e) for all e, f ∈ E1;
(CK2) pv =

∑︁
e∈E1,s(e)=v ses

∗
e for all v ∈ E0 in case v is not a sink.

The relations are called Cuntz-Krieger relations. Elements {Se, Pv | e ∈ E1, v ∈ E0} in a C∗-algebra A
fulfilling the relations are called Cuntz-Krieger E-family. To simplify notation we abbreviate the notation of
Cuntz-Krieger families throughout this thesis by {Se, Pv}.

Remark 1.11. Two different versions of the definition are used in the literature. Both differ only by swapping
the range and source in the Cuntz-Krieger relations. This is for example done in Raeburns book [Rae05].
Mathematically, nothing serious changes: A graph with reversed edges yields the same C∗-algebra in Raeburns
definition as the C∗-algebra of the initial graph based on our Cuntz-Krieger relations.

Lemma 1.12. Every universal C∗-algebra generated by projections and partial isometries exists.

Proof. Let p be an arbitrary seminorm. Using the *-property of seminorms it holds for all projections x and
partial isometries y

p(x) = p(x2) = p(x∗x) = p(x)2,

p(y)2 = p(y∗y) = p(y∗yy∗y) = p(y∗y)2 = p(y)4.

All seminorms are thus bounded by 1 on the generators and the C∗-algebra exists by Lemma 1.2.
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Remark 1.13. The first Cuntz-Krieger relation ensures that the projections ses∗e are mutually orthogonal. Thus
the sum in the second Cuntz-Krieger relation is a projection. Sometimes the first Cuntz-Krieger relation is just
defined as s∗ese = pr(e). In this case the argument turns around: since the sum in the second Cuntz-Krieger
relation is a projection, the projections ses∗e must be orthogonal and thus s∗esf = se(s

∗
ese)(s

∗
fsf )s

∗
f = δe,fpr(e).

Remark 1.14. One can also generalize the definition of graph C∗-algebras to infinite graphs which are not
row-finite, see [RS03]. As infinite sums of projections do not converge in norm, the second Cuntz-Krieger relation
is only defined for vertices which are no sinks and emit at most finitely many edges. Furthermore, we have to
add a new relation:

(CK3) ses∗e ⩽ ps(e) for all e ∈ E1.

If s(e) receives finitely many edges, this relation follows directly by the second Cuntz-Krieger relation using the
definition of the order relation and the first Cuntz-Krieger relation.

Since the graph C∗-algebra is a universal C∗-algebra it has the following universal property:

Proposition 1.15. Let E be a row-finite graph. For each C∗-algebraB which contains a Cuntz-KriegerE-family
{Se, Pv} there is a *-homomorphism π : C∗(E) → B which maps the universal projections pv to Pv and the
universal partial isometries se to Se.

Applying the universal property, i.e. finding a Cuntz-Krieger family in a C∗-algebra, is the key step in the
proofs of the following examples. Given the Cuntz-Krieger families, the proofs are straightforward. Exact
calculations can be found in [Zen21, Chapter 2.1].

Example 1.16. The C∗-algebra of the graph E defined by a vertex v and an edge e with s(e) = r(e) = v

v e

Figure 2: Graph generating C(T).

is isomorphic to C(T). To proof this one notes that the Cuntz-Krieger relations yield s∗ese = pv = ses
∗
e.

Thus, pv is the identity element and se is a unitary element. Using the universal property twice one gets
an isomorphism between the universal C∗-algebras C∗(E) and C∗(u, 1 | u∗u = uu∗ = 1). As the latter is
isomorphic to C(T) by Example 1.5, we get the required isomorphism.

Example 1.17. This example illustrates, that the correspondence between graphs and their algebras are
not one to one, as there can be multiple graphs which yield the same C∗-algebra. First we consider the
following graph:

v1 v2 . . . vn
e1 e2 en−1

Figure 3: Graph generatingMn(C).
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The corresponding graph C∗-algebra is isomorphic to Mn(C). To see this we use that by Lemma 1.5,
Mn(C) is isomorphic to C∗(eij , i, j = 1, . . . , n | e∗ij = eji, eijekl = δjkeil for all i, j, k, l). We can define a
Cuntz-Krieger family inMn(C) by Pvi := eii and Sei := ei+1i. On the other hand we can define matrix units
in the graph C∗-algebra by Ei,i := pvi and Ei,j := sei1 . . . sej . Applying the universal property twice then
yields the required inverse *-homomorphism. Instead of the above graph we could have also taken the
following graphs:

v w

e1

en−1

... v

w1

...
wn−1

e1

en−1

Figure 4: Further graphs generatingMn(C).

Both graphs yield a graph C∗-algebra isomorphic toMn(C). Again we get the link to the compact operators.
The same examples with infinite edges generate the C∗-algebra of compact operators.

Example 1.18. For n ⩾ 2 the C∗-algebra of the graph defined by a single vertex v and edges e1, . . . en with
s(ei) = r(ei) = v

v e1 . . . en

Figure 5: Graph generating the Cuntz algebra.

is isomorphic to the Cuntz algebra On := C∗(t1, . . . tn, 1 | ti isometry and ∑︁n
i=1 tit

∗
i = 1). Setting pv = 1

and sei = ti the Cuntz-Krieger relations of the graph directly represent the relations of On.

Example 1.19. The Toeplitz algebra, which is generated by a single isometry ν, is also a graph C∗-algebra.
We consider the following graph

v w
e

f

Figure 6: Graph generating the Toeplitz algebra.

and define a Cuntz-Krieger family in T by Pv := 1− νν∗, Pw := νν∗, Se := νPv, Sf := νPw. On the other
hand, se + sf is an isometry and pv + pw is the unit element. Applying the universal property twice yields
the required isomorphism.

To understand more about the structure of graph C∗-algebras, we state important results regarding paths in
graphs in connection with the corresponding elements in the graph C∗-algebra. In the following, we refer
to the results from [Rae05, pp. 8-10].
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Proposition 1.20. Suppose that E is a graph and let {se, pv} be the universal Cuntz-Krieger E-family. Then

1. the projections {ses∗e | e ∈ E1} are mutually orthogonal;

2. s∗esf ̸= 0 ⇒ e = f ;

3. sesf ̸= 0 ⇒ r(e) = s(f);

4. ses∗f ̸= 0 ⇒ r(e) = r(f).

This highlights the naturalness with which the partial isometries reflect the geometry of the graph.

Definition 1.21. A path of length n in a directed graph E is a sequence µ = µ1 . . . µn of edges µj ∈ E such
that r(µj) = s(µj+1). The length of a path µ is denoted by |µ|. We define sµ := sµ1 . . . sµn for a path µ in E
and sv := pv for v ∈ E0.

Generalizing the proposition above one obtains the following useful characteristics of partial isometries
corresponding to a path. With this, we also get an explicit, easy description of the graph C∗-algebra.

Corollary 1.22. Suppose that E is a graph and let {se, pv} be a Cuntz-Krieger E-family. Let µ, ν be paths in
E. Then

1. if |µ| = |ν| and µ ̸= ν, then (sµs
∗
µ)(sνs

∗
ν) = 0;

2. s∗µsν =

⎧⎪⎨⎪⎩
sµ′ if µ = νµ′ for some path µ′

sν′ if ν = µν ′ for some path ν ′

0 otherwise;

3. if sµsν ̸= 0, then µν is a path in E and sµsν = sµν;

4. if sµs∗ν ̸= 0, then r(µ) = r(ν).

Corollary 1.23. Suppose that E is a graph and let {se, pv} be a Cuntz-Krieger family. For paths µ, ν, α, β in
E, we have

(sµs
∗
ν)(sαs

∗
β) =

⎧⎪⎨⎪⎩
sµα′s∗β if α = να′

sµs
∗
βν′ if ν = αν ′

0 otherwise.

In particular, it follows that every non-zero finite product of partial isometries se and s∗f has the form sµs
∗
ν for

some paths µ, ν in E. Hence

C∗(E) = span
(︁
sµs

∗
ν | µ, ν paths in E, r(µ) = r(ν)

)︁
.
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1.3. Morita Equivalence and K-Theory of Graph C*-Algebras

An important equivalence relation in the scope of graph C∗algebras is Morita equivalence. Due to its
connection to K-theory it is a frequently used tool in the classification of C∗-algebras. We give a short
overview of the definition and the main property needed in this thesis. More details and proofs of the
statements below can be found in [RW98, Chapter 3].

As first step we sketch the generalization of Hilbertspaces to C∗-Algebras. Let A be a C∗-algebra. A right
A-module XA is a vector space X together with a right multiplication by elements of A defined by a bilinear
map X ×A→ X, (x, a) ↦→ x · a. To achieve a Hilbert like structure on a these modules we generalize inner
products to the C∗-algebra setting, i.e. we define a scalarproduct over the C∗-algebra A instead of C. A
map ⟨·, ·⟩A : X ×X → A is called an A-valued inner product if the following relations are fulfilled

1. ⟨x, λy + µz⟩A = λ⟨x, y⟩A + µ⟨x, z⟩A;
2. ⟨x, y · a⟩A = ⟨x, y⟩Aa;
3. ⟨x, y⟩∗ = ⟨y, x⟩A;
4. ⟨x, x⟩A ⩾ 0;
5. ⟨x, x⟩A = 0 implies that x = 0.

Based on these A-valued inner products we define a norm on the underlying Hilbert A-module, using the
norm on the C∗-algebra A:

∥x∥A := ∥⟨x, x⟩A∥
1
2 .

A full right Hilbert A-module is a Hilbert A-module which is complete with regard to this norm. Using a left
multiplication instead of a right multiplication and adjusting the inner product accordingly one similarly
defines full left Hilbert A-modules. This construction is the key base point to define Morita equivalence.

Definition 1.24. Let A, B be C∗-algebras. An A−B-imprimitivity bimodule is an A−B-bimodule X such
that

1. X is a full left Hilbert A-module and a full right Hilbert B-module;
2. for all x, y ∈ X, a ∈ A and b ∈ B

⟨a · x, y⟩B = ⟨x, a∗ · y⟩B and A⟨x · b, y⟩ = A⟨x, y · b∗⟩;

3. for all x, y, z ∈ X

A⟨x, y⟩ · z = x · ⟨y, z⟩B.

Two C∗-Algebras are Morita equivalent if there exists an A−B-imprimitivity bimodule.
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Proposition 1.25. Morita equivalence is an equivalence relation on C∗-algebras.

Proof Sketch. Reflexivity follows since A is an A−A-imprimitivity bimodule, for transitivity one uses the
internal tensor product of the corresponding imprimitivity bimodules and symmetry involves the so called
dual module. The full proof can be found in [RW98, Prop. 3.18].

Within the scope of this thesis we mostly use the characterization of Morita equivalence by full corners.
Note, that in case of unital C∗-algebras the multiplier algebra is the same as the initial C∗-algebra.

Definition 1.26. Let A be a C∗-algebra and p be a projection in the multiplier algebraM(A). The corner
pAp is full if it is not contained in a non-trivial closed two-sided ideal of A.

Proposition 1.27. Let A be a C∗-algebra and p be a projection in the multiplier algebraM(A) such that pAp
is a full corner of A. Then A is Morita equivalent to pAp.

Proof. We consider the space Ap and define the following A and pAp-valued inner products on it:

⟨x, y⟩A := x∗y, pAp⟨x, y⟩ := xy∗

for x, y ∈ Ap. The multiplication in A defines a left multiplication on Ap by A and a right multiplication by
pAp. Thus Ap is a left Hilbert A-module and a right Hilbert pAp-module. Using the completeness of A we
get completeness of Ap with regard to the respective norms defined by the inner products. Thus Ap is a full
left Hilbert A-module and a full right Hilbert pAp-module. Since for all x, y ∈ Ap, a ∈ A and b ∈ pAp we
have

⟨a · x, y⟩A = (a · x)∗y = x∗(a∗ · y) = ⟨x, a∗ · y⟩A ,
pAp⟨x · b, y⟩ = (x · b)y∗ = x(y · b∗)∗ =pAp ⟨x, y · b∗⟩

and for all x, y, z ∈ Ap

pAp⟨x, y⟩z = xy∗z = x⟨y, z⟩A

the scalar products fulfill the second and third relation of Definition 1.24. ThusAp is anA−pAp-imprimitivity
bimodule and A is Morita equivalent to pAp.

Definition 1.28. Two C∗-algebras A and B are stably isomorphic if A⊗K ∼= B⊗K were K is the C∗-algebra
of compact operators on a separable infinite dimensional Hilbert space.

Theorem 1.29 (Brown-Green-Rieffel). [RW98, 5.55] Two C∗-algebras with countable approximate units
are stably isomorphic if and only if they are Morita equivalent.

By functoriality, isomorphic C∗-algebras have similar K-theories Furthermore, both K-groups are stable, that
is K0(A) ∼= K0(A⊗K) and K1(A) ∼= K1(A⊗K) [RLL00, Prop. 6.4.1 and 8.2.8]. Thus, K-theory is a Morita
equivalent invariant, as stated in the following.

10



Theorem 1.30. Let A,B be Morita equivalent C∗-algebras with countable approximate units. Then their
K-theory is similar.

GraphC∗-algebras have a countable approximate unit given by (∑︁n
i=1 pvi)n=|E0|. Thus, twoMorita equivalent

graph C∗-algebras have a similar K-theory. For graph C∗-algebras there is a concrete way to calculate its
K-theory.

Theorem 1.31. [Rae05, Thm. 7.16] Let E be a row-finite graph with no sinks, and let AE be the adjacency
matrix of E. TheK1(C

∗(E)) is isomorphic to the kernel of 1−At
E andK0(C

∗(E)) is isomorphic to the cokernel.

The result can be generalized to row-finite graphs with sinks as done in [RS03, Thm. 3.2].
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2. Hypergraph C*-Algebras

In this chapter we introduce hypergraphs and their corresponding C∗-algebras based on the work of Dean
Zenner in his bachelor thesis [Zen21], which is not published. We establish their relation to graph C∗-
algebras and reference to the theory of ultragraphs as another important special case of hypergraphs, from
which we can derive several results for hypergraphs. By introducing generalized vertices, we pave the way
for the definition of C∗-algebras for infinite hypergraphs. In the following section we look more closely
on the structure of hypergraph C∗-algebras and emphasize on the generalization of paths. We finish the
chapter by stating examples and giving a general construction for representations.

2.1. Definition and Properties

Definition 2.1. A (directed) hypergraph HΓ = (E0, E1, r, s) is defined by countable sets E0 (vertices) and
E1 (edges), together with a range and source map r, s : E1 → P(E0). We write hypergraph instead of
directed hypergraph. We call a vertex v a source iff v /∈ r(e) for all e ∈ E1 and we call it a sink iff v /∈ s(e)
for all e ∈ E1.

Example 2.2. As an example we consider the graph defined by vertices E0 = {v1, v2, v3} and edges
E1 = {e, f} with range and source map given by s(e) = {v1}, r(e) = {v1, v3} and s(f) = {v2, v3},
r(f) = {v1, v2}. The hypergraph can be visualized as follows:

v1 v2

v3

f

f

e
f

e f

Figure 7: Example of a hypergraph.

We mainly restrict ourselves to finite hypergraphs, i.e. hypergraphs were the set of vertices and edges
are both finite. This prevents us from having to worry about infinite sums while already illustrating the
problems we have to deal with in the hypergraph setting. Our results can be used as a starting point for the
generalization to infinite hypergraphs.

Definition 2.3. Let HΓ = (E0, E1, r, s) be a finite hypergraph. The hypergraph C∗-algebra C∗(HΓ) is the
universal C∗-algebra generated by mutually orthogonal projections pv for all vertices v ∈ E0 and partial
isometries se for all e ∈ E1 such that the following relations hold

(HR1) s∗esf = δe,f
∑︁

v∈r(e) pv for all e, f ∈ E1;
(HR2) ses∗e ⩽

∑︁
v∈s(e) pv for all e ∈ E1;

(HR3) pv ⩽
∑︁

e∈E1,v∈s(e) ses
∗
e for all v ∈ E0 with v not a sink.

We call the relations hypergraph relations. Elements {Se, Pv} in a C∗-algebra A fulfilling the hypergraph
relations are called Cuntz-Krieger HΓ-family. Throughout this thesis we denote the canonical generating
elements of C∗(HΓ) by {se, pv}. In general all universal elements are denoted by small letters.
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Remark 2.4. Every hypergraph C∗-algebra exists by Lemma 1.12. Furthermore, since the hypergraph C∗-
algebra is a universal C∗-algebra we have a similar universal property as in Proposition 1.15.

We note that each graph can be interpreted as a hypergraph by defining r′ : E1 → P(E0) via r′(e) = {r(e)}.
Similarly for the source map. This identification is straight forward and we get an isomorphism of the
corresponding hypergraph and graph C∗algebras.

Proposition 2.5. [Zen21, Prop 3.8] Let Γ = (E0, E1, r, s) be a graph. We interpret Γ as a hypergraph
HΓ = (E0, E1, r‘, s′). Then C∗(Γ) ∼= C∗(HΓ).

Proof. The proof is a straightforward calculation that the generators of C∗(Γ) fulfill the hypergraph relations
and that the generators of C∗(HΓ) fulfill the Cuntz-Krieger relations of the graph C∗-algebra. Then applying
the universal property twice yields inverse *-homomorphisms.

Thus, the class of hypergraph C∗-algebras contains the class of graph C∗-algebras and is non trivial, as
we have a bunch of concrete examples of graph algebras. As an intermediate step between graphs and
hypergraphs one can also consider ultragraphs. These were defined by Tomforde in his paper [Tom03] as
graphs which allow an edge to have multiple vertices in its range but in contrast to hypergraphs, the source
of edges still consists of a single vertex.

Definition 2.6. A (directed) ultragraph G = (G0, G1, r, s) is defined by two countable sets G0 (vertices) and
G1 (edges), together with a source map s : G1 → G0 and a range map r : G1 → P(G0). We write ultragraph
instead of directed ultragraph. We call the corresponding C∗-algebra ultragraph C∗-algebra.

To clarify the differences, we illustrate the possible edges in graphs, ultragraphs and hypergraphs in the
following figure.

e

(a) Graph

e

e

(b) Ultragraph

e

e
e

e

(c) Hypergraph

Figure 8: Different edges in graphs, ultragraphs and hypergraphs.

The research about ultragraph C∗-algebras already covers a lot. The main idea of the construction was
to find a unified approach to graph C∗-algebras and Exel-Laca algebras, which has been found to be an
approach to generalize Cuntz-Krieger algebras to the infinite setting. The interesting thing is, that each
ultragraph C∗-algebra is Morita equivalent to a graph C∗-algebra [KMST10, Thm. 5.22]. The construction
made in the paper is quite elaborated, but broken down to finite ultragraphs it just splits the range of
each edge and creates a graph with one edge for each vertex in the range. And in the finite case the
resulting *-homomorphism even strengthens to be an isomorphism. In section 4.1 we will see more on this
construction and show how to extend it to hypergraphs.

We go back to the definition of hypergraph C∗-algebras and introduce a slightly different approach. This
will on one hand simplify the notation and on the other hand give a first hint how the definition can be
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generalized to infinite hypergraphs. For A ⊆ E0 we define pA :=
∑︁

v∈A pv. Since all projections pv are
mutually orthogonal, pA is again a projection. With this notation the first hypergraph relation simplifies to
ses

∗
f = δe,fpr(e) and the second hypergraph relation can be expressed as ses∗e ⩽ ps(e). We generalize this

concept and define generalized vertices.

Definition 2.7. Let HΓ = (E0, E1, r, s) be a hypergraph. Let

E ′ := E0 ∩ {s(e), r(e) | e ∈ E1}.

Let E0 be the smallest subcollection of P(E0) containing E ′ which is closed under finite unions and finite
intersections. We call the sets A ∈ E0 generalized vertices.

With this connotation we can give a slightly different definition of a Cuntz-Krieger family involving the
generalized vertices. This definition is adapted from [Tom03, Def. 2.7].

Definition 2.8. Let HΓ = (E0, E1, r, s) be a hypergraph. A generalized Cuntz-Krieger HΓ-family is a
collection of partial isometries {se | e ∈ E1} and orthogonal projections {pA | A ∈ E0} such that

(GR0) p∅ = 0, pApB = pA∩B and pA∪B = pA + pB − pA∩B for all A,B ∈ E0;
(GR1) s∗esf = δe,fpr(e) for all e, f ∈ E1;
(GR2) ses∗e ⩽ ps(e) for all e ∈ E1;
(GR3) pv ⩽

∑︁
e∈E1,v∈s(e) ses

∗
e for all v ∈ E0 which emit at least one and at most finitely many edges.

Remark 2.9. The clue is, that this definition also makes sense for infinite hypergraphs. In the infinite case, we
have to ensure that all sums of projections are well defined. Thus, all infinite sums must be avoided. In the third
Cuntz-Krieger relation this can be done by just defining it for vertices which emit at most finitely many edges, as
it is done for non row-finite graphs. But for edges with infinitely many vertices in their source or range, we have
to adjust the other hypergraph relations as well, due to the possibly infinite sums∑︂

v∈r(e)

pv and
∑︂

v∈s(e)

pv.

The approach involving generalized vertices forces the existence of the required projections in a natural way.
And it turns out that in the finite case, both definitions still coincide.

Lemma 2.10. Let HΓ be a finite hypergraph. Then the Cuntz-Krieger families in Definition 2.3 and Definition
2.8 generate the same C∗-algebra.

Proof. Since the hypergraph HΓ = (E0, E1, r, s) is finite, the sum pA :=
∑︁

v∈A pv is a projection for all
generalized vertices A ∈ E0. Leaving the partial isometries invariant we have a generalized Cuntz-Krieger
HΓ-family. On the other hand, E0 ⊆ E . Hence by taking only projections corresponding to vertices, and
leaving again the partial isometries invariant, we get a Cuntz-Krieger HΓ-family. Applying the universal
property twice thus yields the required isomorphism between the generated universal C∗-algebras.

14



Remark 2.11. It is worth pointing out that there are other constructions in the literature, which are also
called hypergraph C∗-algebras, but differ from our construction, see [AFLS15] and [Fri20]. The general idea of
combining the geometric properties of hypergraphs graphs withC∗-algebras already finds application in quantum
physics in the study of test spaces in quantum logic. In the physical interpretation of the hypergraph the vertices
represent outcomes and the edges represent measurements. The definition of the corresponding hypergraph
C∗-algebra used there is also based on universal C∗-algebras, but uses different relations corresponding to the
physical interpretation. In this respect, this definition differs from the considerations in the following thesis.

2.2. General Structure and Relations

Proposition 2.12. Let HΓ = (E0, E1, r, s) be a finite hypergraph. For each Cuntz-Krieger HΓ-family {pv, se}
it holds

ps(e)se = se = sepr(e).

Proof. The second equation follows by the first hypergraph relation and the definition of the partial isometry:

sepr(e) = ses
∗
ese = se.

By the second hypergraph relation we know that ses∗e ⩽ ps(e). Hence it follows by the definition of the order
relation that ps(e)ses∗e = ses

∗
e and thus

ps(e)se = ps(e)ses
∗
ese = ses

∗
ese = se.

The next proposition is quite useful, as it gives us a unit at hand while working with finite hypergraphs.

Proposition 2.13. [Zen21, Thm. 3.9] Let HΓ = (E0, E1, r, s) be a hypergraph with finite number of vertices.
Then the hypergraph C∗-Algebra is unital and

∑︁
v∈E0 pv = 1.

Proof. We show that∑︁v∈E0 pv behaves as unit on the set of generators, which yields the claim. For the
projections we use the mutual orthogonality to get(︁ ∑︂

v∈E0

pv
)︁
pw = pw = pw

(︁ ∑︂
v∈E0

pv
)︁
.

For the partial isometries we use Proposition 2.12 and follow again by the mutal orthogonality of the
projections, that (︁ ∑︂

v∈E0

pv
)︁
se =

(︁ ∑︂
v∈E0

pv
)︁
ps(e)se = ps(e)se = se.

Analogously we get the right multiplication using pr(e).

Remark 2.14. In case of an infinite number of vertices one has to be a bit careful, as an infinite sum of
projections cannot converge in norm. Indeed,

∑︁n
i=m pvi is a projection, which has thus norm one. Hence the

sequence of partial sums
∑︁n

i=1 pvi cannot be Cauchy and it is thus impossible to converge in norm. Motivated
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from the corresponding result for ultragraphs in [Tom03, Lem. 3.2], we can show as generalization of the above
theorem, that C∗(HΓ) is unital if and only if

E0 ∈

⎧⎨⎩
n⋃︂

i=1

⎛⎝ ⋂︂
e∈Xi

r(e)

⎞⎠ ∪
m⋃︂
i=1

⎛⎝⋂︂
e∈Yi

s(e)

⎞⎠ ∪ F
⃓⃓⃓
Xi, Yi ⊆ E1 finite, F ⊆ E0 finite

⎫⎬⎭ .

The proof of this follows in exactly the same way as in [Tom03, Lem. 3.2], except of the definition of the
constructed approximate unit. We provide it for completion in the appendix A.

Proposition 2.15. Let HΓ = (E0, E1, r, s) be a finite hypergraph and {pv, se} be a Cuntz-Krieger HΓ-family.
Then

1. {ses∗e | e ∈ E1} consists of mutually orthogonal projections;

2. s∗esf ̸= 0 ⇒ e = f ;

3. sesf ̸= 0 ⇒ r(e) ∩ s(f) ̸= ∅;

4. ses∗f ̸= 0 ⇒ r(e) ∩ r(f) ̸= ∅.

Proof. 1. Using the first hypergraph relation we get by the definition of partial isometries

(ses
∗
e)(sfs

∗
f ) = se(s

∗
esf )sf = δefses

∗
eses

∗
e = δefses

∗
e.

2. This follows directly by the first hypergraph relation.
3. Applying Proposition 2.12 we get

sesf = sepr(e)ps(e)sf =

{︄
0 r(e) ∩ s(f) = 0

sepr(e)∩s(f)sf r(e) ∩ s(f) ̸= 0.

4. This follows by an analogous argument as before using that s∗f = (sfpr(f))
∗ = pr(f)s

∗
f .

We want to elaborate a bit more on commutativity between elements in the hypergraph C∗-algebra.

Lemma 2.16. LetHΓ = (E0, E1, r, s) be a finite hypergraph and {pv, se} be a Cuntz-KriegerHΓ-family. Then

1. {s∗ese | e ∈ E1} consists of commutative projections;

2. pA(s∗ese) = (s∗ese)pA for all e ∈ E1 and A ⊆ E0.

Proof. 1. For e ∈ E1 we have by the first hypergraph relation

(s∗ese)(s
∗
fsf ) = pr(e)pr(f) = pr(e)∩r(f) = pr(f)pr(e) = (s∗fsf )(s

∗
ese).

2. This follows by a similar argument as above.
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Remark 2.17. In general we cannot recover pA(ses∗e) = (ses
∗
e)pA for e ∈ E1 and A ⊆ E0 from the hypergraph

relations. In case of ultragraphs the statement is true since ses∗e = ps(e). More general we have commutativity if
s(e) ⊆ A or s(e) ∩ A = ∅. The noncommutativity arises solely if ses∗e < ps(e) is given. The question remains
open, which impact this has and if representations loose information about this noncommutativity.

With regard to the second relation in Proposition 2.15 we define paths in hypergraphs.

Definition 2.18. Edges µ1, ..., µn ∈ E1 form a path µ = µ1...µn in a finite hypergraph if r(µj)∩ s(µj+1) ̸= ∅.
Vertices are regarded as paths of length zero. The set of paths is denoted by E∗. Generalizing the range and
source maps to E∗ yields s(µ) := s(µ1) and r(µ) := r(µn) for |µ| > 1 and s(v) = v = r(v) for v ∈ E0. We
then define sµ := sµ1 ...sµn and sv := pv.

It turns out that the paths are of different quality. This has implications for the structure of the hypergraph
C∗-algebra, which we examine hereafter.

Definition 2.19. Let µ = µ1...µn be a path in HΓ. Then we call µ
1. perfect, if s(µj+1) = r(µj) for all j ∈ {1, ..., n};
2. quasi perfect, if s(µj+1) ⊆ r(µj) for all j ∈ {1, ..., n};
3. partial, if s(µj+1) ∩ r(µj) ̸= ∅ for all j ∈ {1, ..., n}.

e

e

f

f

(a) Perfect path

e

e

f

(b) Quasi perfect path

e f

f

(c) Partial path

Figure 9: Visualization of different paths in hypergraphs.

For hypergraphs with only quasi perfect paths, and thus also for hypergraphs with perfect paths, we get a
similar result as in Corollary 1.22.

Proposition 2.20. Let µ, ν be quasi perfect paths in a finite hypergraph HΓ. Then it holds

1. |µ| = |ν|, µ ̸= ν ⇒ (sµs
∗
µ)(sνs

∗
ν) = 0;

2. s∗µsν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s∗µ′ if µ = νµ′ for some µ′ ∈ E∗

sν′ if ν = µν ′ for some ν ′ ∈ E∗

pr(µ) µ = ν

0 else;

3. sµsν ̸= 0 ⇒ µν is a path in HΓ and sµsµ = sµν;

4. sµs∗ν ̸= 0 ⇒ r(µ) ∩ r(ν) ̸= ∅.
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Proof. Let µ = µ1...µn and ν = ν1...νm be quasi perfect paths in HΓ. The first hypergraph relation implies

s∗µsν = s∗µn
...s∗µ1

sν1 ...sνm

= δµ1ν1s
∗
µn
...s∗µ2

pr(µ1)sν2 ...sνm .

Applying Proposition 2.12 twice and using that we have quasi perfect paths, i.e. s(µ2) ⊆ r(µ1), we get

= δµ1ν1s
∗
µn
...s∗µ2

ps(µ2)pr(µ1)sν2 ...sνm

= δµ1ν1s
∗
µn
...s∗µ2

ps(µ2)sν2 ...sνm

= δµ1ν1s
∗
µn
...s∗µ2

sν2 ...sνm .

We continue in this fashion and get the result of part (2). Part (1) follows by a similar argument using that
s∗µj

sνj = 0 for µj ̸= νj . Part (3) follows by Proposition 2.12 and the definition of paths and part (4) is a
result of (4) in Proposition 2.15.

Remark 2.21. In the case of graph C∗-algebras, the element sµ for a path µ = µ1 . . . µn is always a partial
isometry. This is not the case if we deal with hypergraph C∗-algebras. The problem is, that in general s∗µsµ does
not collapse to pr(µ), as it is the case for graph C∗-algebras. Nevertheless, if the path is "nice enough" we can
recover that sµ is an isometry. Applying the last proposition we get that sµ is a partial isometry, if the path µ is
at least quasi perfect.

For hypergraphs with partial paths we do not obtain the same results. Generalizing the results in Proposition
2.15 we get the following:

Proposition 2.22. Let µ = µ1...µn, ν = ν1...νm be paths in a finite hypergraph HΓ. Then

1. s∗µsν ̸= 0 ⇒ µ1 = ν1 and s(µ2) ∩ r(µ) ∩ s(ν2) ̸= ∅;

2. sµsν ̸= 0 ⇒ r(µ) ∩ s(ν) ̸= ∅;

3. sµs∗ν ̸= 0 ⇒ r(µ) ∩ r(ν) ̸= ∅.

Proof. The proof is just an application of the definition of sµ and Proposition 2.15. Since in general sepA ̸= se
for A ⊊ r(e) and pAse ̸= se for A ⊊ s(e) the words do not collapse completely as in the case of quasi perfect
paths.

We go back in the setting of quasi perfect paths and investigate longer chains of partial isometries corre-
sponding to paths. the next corollary is a direct consequence of Proposition 2.20.

Corollary 2.23. Let µ, ν, α, β be quasi perfect paths in a finite hypergraph HΓ. Then we have

(sµs
∗
ν)(sαs

∗
β) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sµα′s∗β α = να′

sµs
∗
ν′β ν = αν ′

sµpr(e)s
∗
β ν = α

0 else.
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Using these results we can describe the hypergraph C∗-algebra more precisely - at least in the case of quasi
perfect paths.

Corollary 2.24. Let HΓ = (E0, E1, r, s) be a finite hypergraph with Cuntz-Krieger HΓ-family {pv, se}. It
holds

C∗(HΓ) = span
{︁
sϵ1µ1

...sϵnµn
| µ1, ..., µn ∈ E∗, ϵ1, ...ϵn ∈ {1, ∗}, ϵj ̸= ϵj+1, n ∈ N

}︁
.

If all paths in HΓ are either perfect or quasi perfect it holds:

C∗(HΓ) = span {sµs∗ν | µ, ν ∈ E∗, r(µ) ∩ r(ν) ̸= ∅} .

Proof. The first part follows from the definition of paths (note that pv = sv), Proposition 2.22 and the
definition of the hypergraph C∗-algebra as universal C∗-algebra. In the second case we can rely on
Proposition 2.20 and copy the respective proof of [Rae05, Cor. 1.16]. We just have to notice, that since
sµpr(e)s

∗
β =

∑︁
v∈r(e) sµpvs

∗
β =

∑︁
v∈r(e) sµvs

∗
β, we still get by Corollary 2.23 that

span{sµs∗ν | µ, ν ∈ E∗, r(µ) ∩ r(ν) ̸= ∅}

is a subalgebra of C∗(HΓ). This is a * subalgebra which implies that the closure is a C∗-subalgebra of
C∗(HΓ) which contains the generators of C∗(HΓ). Hence the closure equals C∗(HΓ).

Remark 2.25. We can give an equivalent description of a hypergraph C∗-algebra which explicitly includes the
projections corresponding to the generalized vertices as defined in Definition 2.7. In case of hypergraphs with
only quasi perfect paths we have

C∗(HΓ) = span {sµpAs∗ν | µ, ν ∈ E∗, A ∈ E , A ∩ r(µ) ∩ r(ν) ̸= ∅} .

We finish this section with some lemmata which indicate the problems that arise in the hypergraph setting.
As we will later see, the multiple elements in the ranges are nothing to worry about. The key complications
are related to multiple vertices in the source and intersecting sources. This results in a higher relevance of
the order relation of projections.

Lemma 2.26. Let HΓ = (E0, E1, r, s) be a finite hypergraph. If for some vertex w ∈ E0 the inequality in
(HR3) is strict, i.e.

pw <
∑︂

e∈E1,w∈s(e)

ses
∗
e

it follows, that there must be an edge e ∈ E1 such that w ∈ s(e) but w ̸= s(e).

Proof. We proof the contraposition. Assume that for all e ∈ E1 with w ∈ s(e) it follows that w = s(e). Then
we get by the second hypergraph relation

ses
∗
e ⩽ pw ∀e ∈ E1 with w = s(e).

Combining this with the third hypergraph relation we get that pw =
∑︁

e∈E1,w∈s(e) ses
∗
e.
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If w ∈ s(e) implies w = s(e) for all e ∈ E1, the contraposition of the previous Lemma implies that
pw =

∑︁
e∈E1,w∈s(e) ses

∗
e. This can be extended to a set of vertices A ⊆ E0.

Lemma 2.27. For each finite hypergraphHΓ = (E0, E1, r, s) and A ⊆ E0 such that s(e)∩A implies s(e) ⊆ A
for all e ∈ E1. Then pA =

∑︁
e∈E1,s(e)⊆A ses

∗
e. This implies in particular, that

∑︁
e∈E1 ses

∗
e = 1

Proof. By the second hypergraph relation we know

ses
∗
e ⩽ ps(e) ⩽ pA for alle ∈ E1 with s(e) ⊆ A

using that (ses∗e)pA\s(e) = 0. On the other hand we get by the third hypergraph relation

pv ⩽
∑︂

e∈E1,v∈s(e)

ses
∗
e ⩽

∑︂
e∈E1,s(e)⊆A

ses
∗
e for all v ∈ A,

since pv
∑︁

e∈E1,v /∈s(e) ses
∗
e = 0. Combining both inequalities and using that we deal with finite sums, the

result follows.

Lemma 2.28. Let HΓ = (E0, E1, r, s) be a finite hypergraph. If for some edge e ∈ E1 the inequality in (HR2)
is strict, i.e.

ses
∗
e <

∑︂
v∈E0,v∈s(e)

pv,

it follows, that there must be an edge f ∈ E1 such that s(e) ∩ s(f) ̸= ∅.

Proof. We assume by contraposition, that s(e)∩s(f) = ∅ for all f ∈ E1. Then we get by the third hypergraph
relation for each v ∈ s(e):

ps(e) ⩽ ses
∗
e.

Along with the second hypergraph relation we get equality, which shows the claim.

2.3. Examples and Representations

In the following we have a look at some interesting examples of hypergraphs, which are no graphs. We first
revisit the Cuntz algebra On. We already know by Example 1.18 that it is a graph algebra, but we can also
describe it by a hypergraph.

Proposition 2.29. [Zen21, Prop. 3.11] For n ∈ N with n ⩾ 2 letHΓ = (E0, E1, r, s) be the hypergraph defined
by vertices {v1, . . . , vn} and edges {e1, . . . , en} with s(ei) = {vi} and r(ei) = {v1, . . . , vn} for i = 1, . . . , n.
Then C∗(HΓ) ∼= On.

Proof. Let {sei , pv} be the canonical generators of C∗(HΓ), and {ti} be the canonical generators of On. By
the first hypergraph relation we get s∗eisei = pr(ei) = pE0 for each i = 1, . . . , n. By Proposition 2.13, pE0 is the
unit. Thus, sei is an isometry. By Lemma 2.27, we furthermore have∑︁e∈E1 ses

∗
e = 1. Hence, the elements

sei fulfill the relations of the Cuntz algebra and by the universal property we get the *-homomorphism
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π : On → C∗(HΓ) which maps ti ↦→ sei . On the other hand, by defining Sei := ti and Pvi := tit
∗
i we get a

Cuntz-Krieger HΓ-family in On. Indeed, since the elements ti are isometries, we have by the relations of On

S∗
eiSei = t∗i ti = 1 =

n∑︂
i=1

tit
∗
i =

n∑︂
i=1

Pvi = Pr(ei).

Since the sum of tit∗i is a projection, the projections Pvi = tit
∗
i must be mutually orthogonal. Hence

S∗
eiSej = SeiPiPjSej = 0 for i ̸= j. The second and third hypergraph relation follow directly by the

definition of Pvi . Again by the universal property we get a *-homomorphism π̃ : C∗(HΓ) → On sending
sei ↦→ Sei and pvi ↦→ Pvi . Both *-homomorphisms are inverse, which proofs the claim.

We can also express the Toeplitz algebra as hypergraph C∗-algebra. We can even consider two different
hypergraphs as we see in the following example.

Proposition 2.30. The C∗-algebras generated by the following hypergraphs are both isomorphic to the Toeplitz
algebra T .

v w
e

e v w
e

e

Figure 10: Hypergraphs generating the Toeplitz algebra.

Proof. For the first hypergraph see [Zen21, Proposition 3.9]. For the second hypergraph, lets call it HΓ, we
get by the hypergraph relations

s∗ese = pw, ses
∗
e = pv + pw.

Since the sum of all projections is the unit, s∗e is an isometry. By the universal property of the Toeplitz
algebra we get a *-homomorphism ϕ : T → C∗(HΓ) defined by

u ↦→ s∗e, 1 ↦→ pv + pw = ses
∗
e.

On the other hand we can define a Cuntz-Krieger HΓ-family in T as follows

Se := u∗, Pw := uu∗, Pv := 1− uu∗.

Simple calculations show that Se is a partial isometry and Pw, Pv are mutually orthogonal projections. One
can also easily check, that they fulfill the hypergraph relations. The universal property then gives us a
*-homomorphism ψ : C∗(HΓ) → T defined by

se ↦→ Se, pw ↦→ Pw, pv ↦→ Pv.

On the generators of both algebras we can check that ϕ ◦ ψ = idC∗(HΓ) and ψ ◦ ϕ = idT . Thus we get the
required isomorphism.
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For universal C∗-algebras the question of non-triviality crucial. Since all graph C∗-algebras are non-trivial as
already stated in [Rae05], we have already some non-trivial hypergraph C∗-algebras. To get non-triviality
of universal C∗-algebras we have to construct concrete representations.

Example 2.31. We consider the hypergraph HΓ defined by vertices {w, v1, v2} and edges {e, f} with
s(e) = {w1, w2}, r(e) = {w1, w2} and s(f) = {w1, w2}, r(f) = {v}.

v

w1

w2

f

f

ee

Figure 11: Visualization of the hypergraph in Example 2.31.

A representation of C∗(HΓ) on the Hilbertspace l2(N0) is given as follows. Let x = (xn)n be a sequence in
l2(N0). Then the following projections and partial isometries define a Cuntz-Krieger HΓ-family:

Pvx := (x0, 0, . . . ),

Pw1x := (0, x1, 0, x3, 0, . . . ),

Pw2x := (0, 0, x2, 0, x4, . . . ),

Sex := (0, 0, x1, x2, . . . ),

Sfx := (0, x0, 0, 0, . . . ).

Applying the universal property of hypergraph C∗-algebras yields the representation.

Multiple representations of hypergraph C∗-algebras on the Hilbertspace l2(Z2) can be seen in [Zen21,
Section 3.3]. Since all these examples include only non-intersecting sources, we now state another example
with a slight modification of the construction compared to [Zen21], which we highlight in the upcoming
example.

Example 2.32. Consider the Hilbertspace l2(Z2) with basis e(x,y) for x, y ∈ Z. Let HΓ be the hypergraph
defined by s(e) = {v1, v2}, r(e) = v3 and s(f) = {v2}, r(f) = {v1}:

v1 v2 v3

e

f e

Figure 12: Visualization of the hypergraph in Example 2.32.

Consider subspaces of l2(Z2) by

H1 := N0 × N0,

H2 := Z \ N0 × N0,

H3 := Z× Z \ N0,
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and let Pi be the projection onto Hi for i = 1, 2, 3. Since the subspaces are disjoint, the projections are
mutually orthogonal. Using bijections

g : H3 → (Z \ N0 × {2n | n ∈ N0}) ∪ (N0 × N0) ,

h : H1 → Z \ N0 × {2n+ 1 | n ∈ N0}

we can define partial isometries

See(x,y) := δ(x,y)∈H3
eg((x,y)),

Sfe(x,y) := δ(x,y)∈H1
eh((x,y)).

These elements build a Cuntz-Krieger HΓ-family in B(l2(Z2)), the space of bounded operators on l2(Z2).
Note that we deviate at this point from the method in [Zen21]. There, the bijections were defined separately
for the coordinates x and y, while we use only one bijection defined on a product space. To check the
hypergraph relations we note that

S∗
ee(x,y) := δ(x,y)∈(Z\N0×{2n | n∈N0})∪(N0×N0) eg−1((x,y)),

S∗
fe(x,y) := δ(x,y)∈Z\N0×{2n+1 | n∈N0} eh−1((x,y)).

With this we get for the first hypergraph relation

(S∗
eSe)e(x,y) = δ(x,y)∈H3

S∗
eeg((x,y)) = δ(x,y)∈H3

e(x,y) = P3e(x,y),

(S∗
fSf )e(x,y) = δ(x,y)∈H1

S∗
feh((x,y)) = δ(x,y)∈H1

e(x,y) = P1e(x,y).

Since the ranges of g and h are disjoint we get

(S∗
eSf ) e(x,y) = δ(x,y)∈H1

S∗
e eh((x,y))

= δ(x,y)∈H1
δh(x,y)∈(Z\N0×{2n | n∈N0})∪(N0×N0) eg−1(h((x,y)))

= 0

and with the same argument we get S∗
fSe = 0. For the second hypergraph relation we have

(SeS
∗
e )e(x,y) = δ(x,y)∈(Z\N0×{2n | n∈N0})∪(N0×N0)e(x,y)

=
(︁
δ(x,y)∈Z\N0×{2n | n∈N0} + δ(x,y)∈(N0×N0)

)︁
e(x,y).

Since Z \ N0 × {2n | n ∈ N0} ∪ N0 × N0 ⊆ H2 ∪H1 we get SeS∗
e ⩽ P2 + P1. Furthermore we have for the

edge f

(SfS
∗
f )e(x,y) = δ(x,y)∈Z\N0×{2n+1 | n∈N0}e(x,y)

which proves SfS∗
f ⩽ P2. With respect to the expressions used above we get that P1 ⩽ SeS

∗
e and P2 ⩽ SfS

∗
f

which proves the third hypergraph relation. By the universal property we thus get the representation on
l2(Z2) given by the *-homomorphism π : C∗(HΓ) → B(l2(Z2)) defined by

pi ↦→ Pi, se ↦→ Se, sf ↦→ Sf .

Hence we can represent C∗(HΓ) on l2(Z2).
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Remark 2.33. We systematize the previous example and give a way to define representations on l2(Z2) of
hypergraph C∗-Algebras. Base of the construction is the decomposition of l2(Z2). Let HΓ be a finite hypergraph
given by edges {e1, ..., en} and vertices {v1, .., vm} for n,m ∈ N. We decompose l2(Z2) into m closed subspaces
H1, . . . ,Hm and let Pi for i = 1, ...,m be the corresponding projections onto Hi. Let Aj , Bj , Cj , Dj closed
subspaces of Z. Let

fj : Aj ×Bj → Cj ×Dj

be a bijective function. Then we define a partial isometry Sj as follows

Sje(x,y) := δ(x,y)∈Aj×Bj
efj(x,y).

The adjoint operator is given by

S∗
j e(x,y) = δ(x,y)∈Cj×Dj

ef−1
j (x,y).

Combining both we get

S∗
jSj = PAj×Bj ,

SjS
∗
j = PCj×Dj .

The concrete choice of the subspaces Aj , Bj , Cj , Dj depends on the given hypergraph relations:

1. By the first hypergraph relation we know that Aj ×Bj has to match the subset on which the projection
Pr(ej) maps. Hence Aj ×Bj =

⋃︁
i∈{1,...,m},vi∈r(ej)Hi.

2. To completely match the first hypergrpah relation we have to ensure that S∗
jSk = 0 for j ̸= k. To achieve

this we have to ensure that the ranges of the bijections fj are disjoint.

3. The second hypergraph relation implies that Cj ×Dj must be a subset of
⋃︁

i∈{1,...,m},vi∈s(ej)Hi.

4. The third hypergraph relation on the other hand implies that we have to ensure, that Hi is a subset
of
⋃︁

j∈{1,...,n},vi∈s(ej)Cj × Dj . Thus, it can be necessary to divide each segment of l2(Z2) in different
subspaces, if different edges have similar vertices in their source.

Note, that with the given method we will always get commutativity between Pi and SjS∗
j .

24



3. Non-Nuclear Hypergraph C*-Algebra

The definition of nuclear C∗-algebras by Takesaki in the 1960’s deals with the uniqueness of the norm
on tensor products of C∗-algebras. This property is interesting in the context of hypergraph C∗-algebras
as it allows us to show that the class of hypergraph C∗-algebras is indeed larger than the class of graph
C∗-algebras. We construct a hypergraph which generates a non-nuclear C∗-algebra. Building up on this
example we develop techniques to identify and construct further non-nuclear hypergraph C∗-algebras.

3.1. Definition of Nuclearity

The definition of nuclearity is based on tensor products of C∗-algebras A and B. We give a short overview
of the construction. For more detailed information see [BO08, Chapter 3]. Similar as for vector spaces we
can construct the algebraic tensor product A⊙B spanned by elementary tensors a⊗ b for a ∈ A and b ∈ B,
which fulfill the tensor calculus

1. (a1 + a2)⊗ b = a1 ⊗ b+ a2 ⊗ b and a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2;
2. λ(a⊗ b) = (λa)⊗ b = a⊗ (λb) for all λ ∈ C.

The tensor product fulfills a universal property: for any C∗-algebra C and any bilinear map σ : A×B → C,
there exists a unique linear map σ : A⊙B → C such that the following diagram commutes:

A×B C

A⊙B

σ

σ .

By defining a multiplication and involution as

(a1 ⊗ b1)(a2 ⊗ b2) := a1a2 ⊗ b1b2, (a⊗ b)∗ := a∗ ⊗ b∗,

the algebraic tensor product becomes a *-algebra. To get a C∗-algebra we need a C∗-norm. The completion
with respect to such a norm is then a C∗-algebra. One can proof that there is always a C∗-norm on the
algebraic tensor product [Bla06, II.9.1.3]. But there can be multiple different norms on the algebraic
tensor product. Since norms on C∗-algebras are unique, the completions with respect to these norms yield
different C∗-algebras. The main idea to construct norms on the algebraic tensor product of C∗-algebras is
to use representations on tensor products of Hilbertspaces. These have a unique norm turning them into
Hilbertspaces [BO08, Prop. 3.2.1].

Definition 3.1. Let H,K be Hilbertspaces and B(H), B(K) denote the corresponding sets of bounded
operators. Let π : A→ B(H) and σ : B → B(K) be faithful representations of C∗-algebras A and B on H
and K. Then the spatial C∗-norm an A⊙B is defined as

||
∑︂

ai ⊗ bi||min = ||
∑︂

π(ai)⊗ σ(bi)||B(H⊗K)

for ai ∈ A and bi ∈ B. The completion of A⊙B with respect to || · ||min is denoted by A⊗B. The spatial
tensor product is also called minimal tensor product.
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Definition 3.2. Given A and B, we define the maximal C∗-norm on A⊙B to be

||x||max = sup{||π(x)|| | π : A⊙B → B(H) a cyclic *-homomorphism}

for x ∈ A⊙B. We let A⊗max B denote the completion of A⊙B with respect to || · ||max. It is called that
maximal tensor product.

Definition 3.3. A C∗-algebra A is called nuclear, if for every C∗-algebra B, there is a unique C∗-norm on
A⊙B.

One can indeed show that, as the names suggest, || · ||min ⩽ || · || ⩽ || · ||max. The proof goes back to a
theorem of Takesaki which can be found in [BO08, Cor. 3.3.8, Thm. 3.4.8]. Thus to show nuclearity it is
enough to prove that the spatial and the maximal norm coincide.

Example 3.4.

1. The matrix algebra Mn(C) is nuclear for each n ∈ N as for each C∗-algebra A the algebraic tensor
productMn(C)⊙A is isomorphic toMn(A) which is a C∗-algebra and thus has a unique norm.

2. All finite dimensional C∗-algebras are nuclear as by Wedderburns Theorem, each finite dimensional
C∗-algebra is isomorphic to a finite direct sum of matrix algebras over C.

3. All graph C∗-algebras are nuclear. A sketch of the proof was outlined in [Rae05, Rem. 4.3]: The unit
circle acts on each C∗-algebra by the gauge action γ. The crossed product C∗(E)⋊γ T with regard to
the gauge action is isomorphic to a C∗-algebra of the so called skew product graph. The corresponding
graph C∗-algebra is AF. By the Takesaki-Takai Duality Theorem C∗(E) is thus stably isomorphic to
(C∗(E) ⋊γ T) ⋊γ̂ Z which is nuclear. Nuclearity is invariant under stable isomorphism which then
shows nuclearity of the graph C∗-algebra.

Nuclearity does not transfer from C∗-algebras to *-subalgebras. Neither are *-subalgebras of nuclear
C∗-algebras always nuclear nor are *-subalgebras of non-nuclear C∗-algebras non-nuclear. If we restrict
ourselves to hereditary subalgebras, then we see that nuclearity passes to hereditary subalgebras [Bla06,
Cor. IV. 3.1.14]. Since hereditary subalgebras correspond to ideals this hints to the fact that ideals and
quotients of nuclear C∗-algebras are again nuclear. Especially the quotient condition will be crucial in the
following. The proof of this proposition is non-trivial and involves the second dual of a C∗-algebra. Therefore
we refer for the proof to the given reference.

Proposition 3.5. [Bla06, Cor. IV.3.1.13, Prop. II.9.6.3] Quotients and closed ideals of a nuclear C∗-algebra
are nuclear.

As already indicated in Section 1.2 it is also possible to view the tensor product as universal C∗-algebra.

Proposition 3.6. [Bla85, Ex. 1.3g] The tensor product of a unital, nuclear C∗-Algebra A and a unital
C∗-algebra B is isomorphic to the universal C∗-algebra

A⊗B ∼= C∗(a ∈ A, b ∈ B | RA, RB, ab = ba ∀a ∈ A, b ∈ B),

where RA and RB are the normal C∗-relations on A and B.
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Proof Sketch. Since A is nuclear, there is a unique norm on the tensor product and we have not to distinguish
between different tensor products. We note that for non-nuclear C∗-algebras the given universal C∗-
algebra is isomorphic to the maximal tensor product. We consider the elementary tensors a ⊗ 1 and
1⊗ b. These commute clearly by the definition of the multiplication. Thus the universal property yields a
*-homomorphism from the universal C∗-algebra onto the tensor product mapping a ↦→ a⊗ 1 and b ↦→ 1⊗ b.
The *-homomorphism is clearly surjective, as all elementary tensors lie in the image and with some more
work it can be shown that it is also injective.

We now turn to non-nuclear examples. This will later on be useful, as we will see that not all hypergraph
C∗-algebras are nuclear. We only give an overview of the results in order to focus afterwards on the applica-
tion to hypergraph C∗-algebras. For the proofs we therefore refer to the stated sources.

Key to the example below is the relation between amenability of discrete groups and nuclearity of the
corresponding group C∗-algebra.

Definition 3.7. A group Γ is called amenable, if there exists a state µ on l∞(Γ) which is invariant under left
group action, i.e. for all s ∈ Γ and f ∈ l∞(Γ), µ(s · f) = µ(f).

Definition 3.8. Let G be a locally compact group. The group C∗-algebra is defined as

C∗(G) := C⋊α G = C∗ (︁ug unitaries for g ∈ G | ugh = uguh, ug−1 = u∗g for all g, h ∈ G
)︁
.

This definition of the group C∗-algebra is in line with the definition as norm closure of the Banach algebra
L1(G) with respect to the full norm. If the group is discrete we get the following:

Theorem 3.9. [BO08, Thm. 2.6.8] A discrete group G is amenable if and only if the group C∗-algebra C∗(G)
is nuclear.

There are many other equivalent characterizations of it, but this one is the crucial one for us.

Proposition 3.10. [BO08, Ex. 2.6.7] Let F2 be the free group of two generators. Then the group C∗-algebra
C∗(F2) is non-nuclear.

Proof Sketch. The proof uses a paradoxical decomposition of the free group with generators a and b. Let A+

be the set of all words starting with a, A− be the set of words starting with a−1. Similarly we define B+

and B−. Then we can express the free group by

F2 = A+ ∪A− ∪B+ ∪B− = A+ ∪ a ·A− = B+ ∪ b ·B−.

Assuming F2 would be amenable, there would be a left invariant mean µ. Using the left invariance combined
with the above decomposition leads to a contradiction.

In contrast to nuclearity, amenability can be transferred to subgroups.

Proposition 3.11. [Run20, Thm. 1.2.7] All closed subgroups of amenable, locally compact groups are amenable.

These two proposition combined give the base point of the creation of multiple non-nuclear C∗-algebras.

Corollary 3.12. Let G be a discrete group. If the free group of two generators is isomorphic to a subgroup of G,
then G is non-amenable and C∗(G) is non-nuclear.
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3.2. Non-Nuclear Hypergraph C*-Algebras

We now use nuclearity to show that the class of hypergraph C∗-algebras is indeed larger as the class of
graph C∗-algebras. All graph C∗-algebras are nuclear as stated in Example 3.4. And even all ultragraph
C∗-algebras are nuclear as each ultragraph C∗-algebra is Morita equivalent to a graph C∗-algebra [KMST10,
Thm. 5.22]. For hypergraph C∗-algebras this is not the case anymore as we see in the following example
from [Zen21, Prop. 3.12].

Proposition 3.13. Let n ∈ N and consider the hypergraph HΓ with vertices {v1, . . . , vn} and edge {e} with
s(e) = {v1, . . . , vn} = r(e). Then C∗(HΓ) ∼= C(T) ∗ Cn. We denote this fully connected hypergraph with n
vertices in the following by HΓ̃n.

v1
v2

. . .

vn−1

vn

Figure 13: Hypergraph HΓ̃n generating C(T) ∗ Cn. To simplify the visualization of the
hypergraphs, we omit the arrowheads for edges that point in both directions. To
be a bit more accurate, one should also include selfloops at each vertex.

Proof. We consider the universal C∗-algebras

C(T) ∼= C∗(u, 1 | u∗u = uu∗ = 1) and Cn ∼= C∗(p1, . . . , pn | p2j = p∗j = pj ,

n∑︂
j=1

pj = 1)

and show that C∗(HΓ) ∼= C(T) ∗ Cn. By the hypergraph relations we obtain s∗ese = pE0 and ses∗e = pE0 .
Hence se is a unitary by Proposition 2.13 and fulfills the relations of C(T). Furthermore it is free of the
projections, which fulfill the relations of Cn. The universal property thus yields a *-homomorphism

ϕ : C(T) ∗ Cn → C∗(HΓ)

sending u to se and pi to pvi . Conversely we can define a Cuntz-Krieger HΓ-family in C(T) ∗Cn via Se := u
and Pvi = pi. Short calculations show that the hypergraph relations are fulfilled. The universal property
yields then a *-homomorphism

ϕ̃ : C∗(HΓ) → C(T) ∗ Cn

which maps se to Se and pvi to Pvi . Both *-homomorphism are inverse to each other and give us thus the
required isomorphism.

Proposition 3.14. The C∗-algebra C(T) ∗ Cn is non-nuclear.

To prove this proposition we need a few lemmata.
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Lemma 3.15. The group C∗-algebra C∗(Z) is isomorphic to C(T).

Proof. The C∗-algebra C(T) is isomorphic to the universal C∗-algebra C∗(u, 1 | u∗u = uu∗ = 1). This
C∗-algebra is isomorphic to C∗(un, 1 n ∈ N | u∗nun = unu

∗
n = 1, unm = unum, un−1 = u∗n for n,m ∈ N).

This follows by identifying uj with the monom uj and using the universal property twice. The latter is the
universal C∗-algebra defining the group C∗-algebra C∗(Z).

Lemma 3.16. The group C∗-algebra C∗(Z/nZ) is isomorphic to Cn.

Proof. By Definition 3.8 the group C∗-algebra C∗(Z/nZ) is isomorphic to the universal C∗-algebra
C∗(u, 1 | u∗u = uu∗ = 1, un = 1). Since un = 1 the C∗-algebra consists of exactly n monoms and is
thus at most n-dimensional. By Wedderbuns Theorem all finite dimensional C∗-algebras are isomorphic to a
finite direct sum of Matrix algebras. Since the C∗-algebra is a commutative C∗-algebra, it is isomorphic
to Cm = C ⊕ · · · ⊕ C for some m ⩽ n. There is a unitary element v ∈ Cn with vn = 1. i.e. consider the
vector with entries e2πi/n. Thus, by the universal property we get a *-homomorphism ϕ : Cm → Cn. The
*-homomorphism is surjective since its image contains the unit. Thus by dimensional reasons m = n and
C∗(Z/nZ) is isomorphic to Cn.

Lemma 3.17. Let G1 and G2 be non-trivial groups and G2 be of order strictly greater than 2. The free group
on two generators F2 is a subgroup of G1 ∗G2.

Proof. Let x, y be the generators of F2. Let 1 ̸= a ∈ G1 and 1 ̸= b, c ∈ G2 such that b−1c ̸= 1 and define the
*-homomorphism

ϕ : F2 → G1 ∗G2, x ↦→ (ab)2, y ↦→ (ac)2.

The elements (ab)2 and (ac)2 are free of each other, i.e. there are no relations between them, since a
prevents interaction between the elements in G2 and since we use the square, there is also no cancellation
when multiplying with inverses. It remains to show that the *-homomorphism is injective which can be
done by concrete calculations as executed in [Web11, Lemma 3.1.7].

Proof of 3.14. Combining the previous lemmata we get that C(T) ∗ Cn is isomorphic to C∗(Z) ∗ C∗(Z/nZ).
As stated in Remark 1.6 and considering the expression of the group C∗-algebras as universal C∗-algebras,
we have C∗(Z) ∗ C∗(Z/nZ) ∼= C∗(Z ∗ Z/nZ). By Lemma 3.17 we know that F2 is a subgroup of Z ∗ Z/nZ.
Thus by Proposition 3.12 it follows that C∗(Z∗Z/nZ) is non-nuclear and hence C(T)∗Cn is non-nuclear.

In analogy to Theorem 3.9 we want to define amenable hypergraphs to be those hypergraphs whose
C∗-algebra is nuclear.

Definition 3.18. LetHΓ be a hypergraph. We callHΓ amenable, if the corresponding hypergraphC∗-algebra
is nuclear.
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3.3. Construction of Non-Nuclear Hypergraph C*-Algebras

We can now use the above non-amenable hypergraph HΓ̃n to construct further non-amenable hypergraphs.
The main idea is to use, that nuclearity transfers to quotients. This can be achieved by extending the
hypergraph HΓ̃n appropriately. The canonical generators of the corresponding hypergraph C∗-algebra
C∗(HΓ̃n) are in the following given by {tf} ∪ {qv1 , . . . , qvn}.

Proposition 3.19. Let n ⩾ 3. Let HΓ be the hypergraph defined by E0 = {w, v1, . . . , vn} and E1 = {e, f}
with

s(e) = {w}, r(e) = {vn},
s(f) = {v1, . . . , vn}, r(f) = {v1, . . . , vn}.

Then C∗(HΓ) is non-nuclear.

w

v1
v2

. . .

vn−1

vn
e

Figure 14: Non-amenable hypergraph of Proposition 3.19.

Proof. The idea of the proof relies on the fact that quotients of nuclear C∗-algebra are again nuclear, see
Proposition 3.5. Thus, by proving that the hypergraphC∗-algebra has a non-nuclear quotient, the hypergraph
C∗-algebra itself must be non-nuclear. We define a Cuntz-Krieger HΓ-family in C∗(HΓ̃n−1) by

Pw := 0,

Pvn := 0,

Pvi := qvi for i ⩽ n− 1,

Se := 0,

Sf := tf .

Indeed, for the first hypergraph relation we have

S∗
eSe = 0 = Pvn ,

S∗
fSf = t∗f tf =

n−1∑︂
i=1

qvi =

n−1∑︂
i=1

, Pvi =

n−1∑︂
i=1

Pvi + Pvn = Pr(f).

For the second hypergraph relation it follows that

SeS
∗
e = 0 = Pw,

SfS
∗
f = tf t

∗
f ⩾

n−1∑︂
i=1

qvi =
n−1∑︂
i=1

Pvi =
n−1∑︂
i=1

Pvi + Pvn = Ps(f).
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And finally the third hypergraph relation follows since

Pw = 0 = SeS
∗
e ,

Pvn = 0 ⩽ SfS
∗
f

Pvi = qvi ⩽ tf t
∗
f = SfS

∗
f .

This leads to a *-homomorphism π : C∗(HΓ) → C∗(HΓ̃n−1) that maps the canonical generators pvi ↦→ Pvi

for i ⩽ n− 1, sf ↦→ Sf and sends the other generators to 0. The *-homomorphism is surjective, since all
generators of C∗(HΓ̃n−1) lie in the range. Thus we get that C∗(HΓ)/Ker(π) ∼= C∗(HΓ̃n−1). By Proposition
3.13 we know that the C∗-algebra C∗(HΓ̃n−1) is non nuclear. Thus, C∗(HΓ) has a non-nuclear quotient
and is thus also non-nuclear.

Remark 3.20. If we consider the above example for the case n = 2, the previous procedure does not lead to a
non-nuclear quotient. Indeed, the quotient is given as C(T) which is known to be nuclear. Thus we cannot say
something about the nuclearity of the hypergraph HΓ. It could be interesting to investigate this further.

Example 3.21. We can extend the above example by adding further edges to the hypergraph in Proposition
3.13 in the same manner as in the previous example. In the following, we have n ⩾ 4.

w1

w2

v1
v2

. . .

vn−1

vn
e1

e2

Figure 15: Non-amenable hypergraph of Example 3.21.

The only restriction is, that the remaining quotient must still be a non-nuclear C∗-algebra. In our setting this
is the case, if at most n− 2 vertices are connected to a source. Thus for m ⩽ n− 2 the following hypergraph
is non-amenable and the corresponding hypergraph algebra is thus non-nuclear:

E0 := {w1, . . . , wm, v1, . . . vn},
E1 := {e1, . . . , em, f},
s(ei) := {wi}, r(ei) = {vn−i+1},
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}.

Sending all partial isometries sei and projections corresponding to their source or range to zero, and sending
pvi ↦→ qvi for i ⩽ n−m and sf ↦→ tf we get a surjective *-homomorphism π : C∗(HΓ) → C∗(HΓ̃n−m) and
hence that C∗(HΓ)/Ker(π) ∼= C∗(HΓ̃n−m). Thus C∗(HΓ) is non-nuclear.
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There are multiple ways to create further non-nuclear hypergraph C∗-algebras with the above technique. We
could add multiple vertices to the source/range of e, attache more edges to the hypergraph, and so on. The
main idea would be always to set the partial isometry corresponding to the new edge equal to zero and use
the hypergraph relations to determine which projections must be zero. Then we consider the hypergraph
HΓ̃m with edge f , were we delete all vertices, whose projection is zero, from the range and source. The
resulting Cuntz-Krieger family leads to a surjective *-homomorphism which then leads to an isomorphism be-
tween the quotient and the non-nuclearC∗-algebraC∗(HΓ̃m). We added a bunch of examples in Appendix C.

Nevertheless, the above illustrations are somewhat misleading. The examples originate as manipulations
of the non-amenable hypergraph. Thus, at first glance, the non-nuclear subhypergraph HΓ̃n seems to be
decisive. But in fact the quotient given by C∗(HΓ̃m) for some m < n is crucial.

w

v1
v2

. . .

vn−1

vn
e

Figure 16: Visualization of the part of the hypergraph in Proposition 3.19 corresponding to
the non-nuclear quotient. It is highlighted in blue with bold edges.

To get a better graphical understanding we express the above technique by concrete requirements on the
hypergraph. The idea is to extract a non-amenable part of the hypergraph with slight modifications on the
edges by deleting vertices from its source and range. This gives an easy way to check non-amenability for a
given hypergraph without using the corresponding C∗-algebra.

Proposition 3.22. Let HΓ = (E0, E1, r, s) be a finite hypergraph. If there exist N0 ⊆ E0 and N1 ⊆ E1

such that N0 ∩ r(e) ̸= ∅ and N0 ∩ s(e) ̸= ∅ holds if and only if e ∈ N1 and the hypergraph defined by
HΓ̃ = (N0, N1, rN , sN ) with

rN (e) := r(e) ∩N0,

sN (e) := s(e) ∩N0

is non-amenable, then HΓ is non-amenable.

Proof. We show that HΓ̃ is a quotient of C∗(HΓ). We can define a Cuntz-Krieger HΓ-family in C∗(HΓ̃) by

Pv :=

{︄
qv for v ∈ N0

0 for v ∈ E0 \N0,

Se :=

{︄
te for e ∈ N1

0 fore ∈ E1 \N1.

Since all edges whose sources and sinks intersect with N0 lie in N1, the hypergraph relations of the Cuntz-
Krieger family directly follow from the hypergraph relations in C∗(HΓ̃). Indeed, as the projections and
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partial isometries corresponding to vertices and edges not in HΓ̃ are 0, they can be added without changing
any relations. By the universal property we get *-homomorphism π from C∗(HΓ) onto C∗(HΓ̃) which is
surjective as all generators of C∗(HΓ̃) lie in its range. Hence C∗(HΓ)/Ker(π) ∼= C∗(HΓ̃). Thus C∗(HΓ)
contains a non-nuclear quotient and is hence non-nuclear. In other words, HΓ is non-amenable.

Example 3.23. We apply the above proposition to the hypergraph defined by vertices {v1, . . . , vn} and edges
e, f, g with s(e) = {v5}, r(e) = {v5}, s(f) = {v4}, r(f) = {v5}, s(g) = {v1, v2, v3}, r(g) = {v1, v2, v3, v4}.

v5 v4 v3

v1

v2

f
e

Figure 17: Visualization of the hypergraph in Example 3.23. The non-amenable part of the
hypergraph is highlighted in blue with bold edges.

By defining N0 := {v1, v2, v3} and N1 = {f} it is easy to check, that both sets fulfill the requirements of
the proposition. Since sN (g) = rN (g) = {v1, v2, v3}, the resulting hypergraph is given by HΓ̃3, which is
non-amenable. Thus the initial hypergraph is also non-amenable.

The previous constructions have the objective to check if a given hypergraphs is non-amenable by deleting
and manipulating edges and vertices. The emerging question now is, how to attache a non-amenable
hypergraph to an arbitrary hypergraph to receive a non-amenable hypergraph. The technique below defines
some kind of product between two hypergraph C∗-algebras.

Proposition 3.24. Let HΓ = (E0, E1, rΓ, sΓ) and H∆ = (F 0, F 1, r∆, s∆) be finite hypergraphs. For fixed
f ∈ E1 and w ∈ F 0 we define a linked hypergraph HΘ by

G0 := E0 ∪ F 0,

G1 := E1 ∪ F 1,

r(e) :=

{︄
rΓ(e) for e ∈ E1

r∆(e) for e ∈ F 1,

s(e) :=

⎧⎪⎨⎪⎩
sΓ(e) for e ∈ E1 \ {f}
sΓ(f) ∪ {w} for e = f

r∆(e) for e ∈ F 1.

If HΓ is non-amenable, then HΘ is non-amenable.

Proof. We show that C∗(HΓ) is a quotient of C∗(HΘ). To do this we define a Cuntz-Krieger HΘ-family in
C∗(HΓ) by letting all projections and partial isometries corresponding to vertices and edges in H∆ be zero
and identify the elements corresponding to vertices and edges in HΓ with the generators of C∗(HΓ). The
clue is, that by letting all elements corresponding to C∗(H∆) be zero, we "delete" the new vertex in the
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source and obtain HΓ. We denote the elements in the constructed Cuntz-Krieger HΘ-family by Te and Qv.
This is indeed a Cuntz-Krieger HΘ-family. The crucial part is the linking edge f and the vertex w. If we
consider the hypergraph relations for these we get:

T ∗
f Tf = s∗fsf = prΓ(f) = pr(f) = Qr(f),

TfT
∗
f = sfs

∗
f ⩽ psΓ(f) = psΓ(f) + 0 = QsΓ(f) +Qw = Qs(f),

Qw = 0 ⩽
∑︂

e∈G1,w∈s(e)

TeT
∗
e .

The *-homomorphism π given by the universal property is clearly surjective, as all generators of C∗(HΓ) are
in the range. Thus we get that C∗(HΓ) is isomorphic to C∗(HΘ)/Ker(π). Thus C∗(HΘ) has a non-nuclear
quotient, since HΓ is non-amenable. Hence C∗(HΘ) is non-nuclear and HΘ is non-amenable.

In the previous proposition, we added the vertex w to the source of the edge f . Similarly we could have
also added the vertex w to the range of f . In either cases the quotient deletes the further vertex in the
source/range. Furthermore, we must not restrict ourselves to a single connection. Using the same idea of
the proof we could extend to multiple linking edges and multiple new vertices in their sources/ranges.

Example 3.25. We consider the hypergraph HΓ̃n and the hypergraph generating C(T).

we

v1
v2

. . .
vn−1

vn

Figure 18: Hypergraph generating C(T) and hypergraph HΓ̃n.

We extend the edge f in HΓ̃n by adding the vertex w in its source.

we

v1
v2

. . .
vn−1

vn

Figure 19: Non-amenable hypergraph created by linking the hypergraphs of Example 3.25.

Then by the last proposition the emerging hypergraph is non-amenable.

Besides for non-nuclearity the above technique is also a nice feature to calculate quotients in general. We
wont deepen this topic as it is would go beyond the scope of this thesis and leave it for future research.
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4. Connections Between Hypergraph C*-Algebras

Multiple hypergraphs can have a similar corresponding C∗-algebra. By decomposing the range of an edge,
we give a concrete way to construct new hypergraphs while leaving the corresponding C∗-algebra invariant.
This furthermore gives us information about the relation between graph and ultragraph C∗-algebras and
shows the crucial differences of hypergraphs. Besides the connection between different hypergraph C∗-
algebras we investigate the connection of hypergraph C∗-algebras to known C∗-algebras. We consider the
Gauge Uniqueness Theorem in the second section as tool to identify C∗-algebras isomorphic to hypergraph
C∗-algebras. We construct an example, which proves that the Gauge Uniqueness Theorem does not hold in
the general case. Given this constraint, we develop restrictions on the hypergraph and its corresponding
C∗-algebra under which we can generalize the Gauge Uniqueness Theorem.

4.1. Decomposition of Ranges

In [KMST10] it is shown that each ultragraph C∗-algebra is Morita equivalent to a graph algebra. In the
finite case this even strengthens to isomorphisms, as we will see in the following. The key is to take the
range of an edge apart and form new edges, according to each vertex in the range. The source remains
unchanged. We can adapt this idea and generalize it for hypergraphs.

Theorem 4.1. Let HΓ = (E0, E1, r, s) be a finite hypergraph. Define the hypergraph HΓ̃ = (Ẽ
0
, Ẽ

1
, r̃, s̃) as

Ẽ
0
:= E0,

Ẽ
1
:= {(e, v) | e ∈ E1, v ∈ r(e)},

r̃((e, v)) := v,

s̃((e, v)) := s(e).

The corresponding hypergraph C∗-algebras are isomorphic, i.e. C∗(HΓ) ∼= C∗(HΓ̃). In particular it holds that
r̃ : Ẽ

1 → Ẽ
0.

Decomposition

Figure 20: Visualization of the decomposition of ranges. The different colors and thickness
of the edges indicate different edges.

Proof. Let {qv | v ∈ Ẽ
0}, {tα | α ∈ Ẽ

1} be the universal Cuntz-Krieger HΓ̃-family. We define

Pv := qv ∀v ∈ E0,

Se :=
∑︂

v∈r(e)

t(e,v) ∀e ∈ E1.
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The elements {Pv | v ∈ E0} are mutually orthogonal projections and a quick calculation shows that
{Se | e ∈ E1} are partial isometries with mutually orthogonal ranges. Together they form a Cuntz-Krieger
HΓ-family in C∗(HΓ̃), as we see in the following.

(HR1): Using the first hypergraph relation for the universal Cuntz-Krieger HΓ̃-family we get

S∗
eSf =

∑︂
v∈r(e)

t∗(e,v)
∑︂

w∈r(f)

t(f,w)

=
∑︂

v∈r(e)

∑︂
w∈r(f)

t∗(e,v)t(f,w)

= δe,f
∑︂

v∈r(e)

qv

= δe,f
∑︂

v∈r(e)

Pv.

(HR2): Using that the ranges of (e, w) and (e, z) for distinct vertices w, z are disjoint we get using Proposition
2.12 that t(e,w)t

∗
(e,z) = 0 forw ̸= z. Since the second hypergraph relation implies that t(e,w)t

∗
(e,w) ⩽

∑︁
v∈s(e) qv

for all w ∈ r(e) we get

SeS
∗
e =

∑︂
w∈r(e)

t(e,w)

∑︂
z∈r(e)

t∗(e,z)

=
∑︂

w∈r(e)

t(e,w)t
∗
(e,w)

⩽
∑︂

v∈s(e)

qv

=
∑︂

v∈s(e)

Pv.

(HR3): Using the third hypergraph relation for C∗(HΓ̃) and the orthogonality of the ranges of (e, w) and
(e, z) for distinct vertices w and z, we get

Pv = qv

⩽
∑︂

α∈Ẽ1
,v∈s(α)

tαt
∗
α

=
∑︂

e∈E1,v∈s(e)

∑︂
w∈r(e)

t(e,w)t
∗
(e,w)

=
∑︂

e∈E1,v∈s(e)

∑︂
w∈r(e)

t(e,w)

∑︂
z∈r(e)

t∗(e,z)

=
∑︂

e∈E1,v∈s(e)

SeS
∗
e .

Hence all hypergraph relations are fulfilled and we thus get a *-homomorphism ϕ : C∗(HΓ) → C∗(HΓ̃)
which maps the canonical generators se ↦→ Se and pv ↦→ Pv.
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To construct the inverse map we define the elements

Qv := pv ∀v ∈ Ẽ
0
,

T(e,v) := sepv ∀(e, v) ∈ Ẽ
1
.

Clearly, the elements Qv are mutually orthogonal projections and a short calculation confirms that T(e,v) is a
partial isometry for each (e, v) ∈ Ẽ

1. By construction these elements have orthogonal ranges. We check that
these elements form a Cuntz-Krieger HΓ̃-family in C∗(HΓ).

(HR1): The first hypergraph relation of C∗(HΓ) yields

T ∗
(e,v)T(f,w) = pvs

∗
esfpw

= δe,fpvs
∗
esepw

= δe,fpv
(︁ ∑︂
z∈r(e)

pz
)︁
pw

= δe,fδv,wpv

= δ(e,v),(f,w)Qv.

(HR2): Using the definition of partial isometries and the order relation of projections we get by applying the
second hypergraph relation of C∗(HΓ)

T(e,v)T
∗
(e,v) = sepvpvs

∗
e

⩽ ses
∗
e

⩽
∑︂

w∈s(e)

pv

=
∑︂

w∈s((e,v)))

Qv.

(HR3): We recall, that pr(e) =
∑︁

v∈r(e) pv. With this we get by the third hypergraph relation of C∗(HΓ)

Qv = pv

⩽
∑︂

e∈E1,v∈s(e)

ses
∗
e

⩽
∑︂

e∈E1,v∈s(e)

sepr(e)s
∗
e

⩽
∑︂

e∈E1,v∈s(e)

∑︂
v∈r(e)

sepvs
∗
e

=
∑︂

e∈E1,v∈s(e)

∑︂
v∈r(e)

T(e,v)T
∗
(e,v)

=
∑︂

α∈Ẽ1
,v∈s(α)

TαT
∗
α.
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The universal property gives us thus the *-homomorphism ψ : C∗(HΓ̃) → C∗(HΓ)which maps the canonical
generators te ↦→ Te and qv ↦→ Qv. One can easily check, that the *-homomorphisms ϕ and ψ are inverse to
each other which yields the claim.

Instead of a complete decomposition of the range into its single vertices we could have also disassembled it
into a disjoint union of nonempty sets, i.e. r(e) = E1 ∪ · · · ∪ En and associate to each set Ej the edge (e, Ej).

Corollary 4.2. Let HΓ = (E0, E1, r, s) be a finite hypergraph. For each e ∈ E1 let r(e) = E1 ∪ · · · ∪ Ene for
nonempty disjoint sets Ej and ne ∈ N. Define the hypergraph HΓ̃ = (Ẽ

0
, Ẽ

1
, r̃, s̃) as

Ẽ
0
:= E0,

Ẽ
1
:= {(e, Ej) | e ∈ E1, j = 1, . . . , ne},

r̃((e, Ej)) := Ej ,
s̃((e, Ej))) := s(e).

The corresponding hypergraph algebras are isomorphic, i.e. C∗(HΓ) ∼= C∗(HΓ̃).

Remark 4.3. Sadly we only get the decomposition for ranges. The same approach for sources is not possible. For
example the element pvse for a vertex v ∈ s(e) is in general no partial isometry. Furthermore, this is also clear
since otherwise all C∗-algebras of finite hypergraphs would be isomorphic to graph C∗-algebras, contradicting
the existence of non-amenable hypergraphs and the fact that nuclearity is an invariant under isomorphism.

Using the previous Theorem we can now show, that in the finite case, ultragraph algebras are isomorphic
to graph C∗-algebras and do thus not extend the class of graph algebras. For the infinite case we refer to
[KMST10, Thm. 5.22] where it is shown, that, up to Morita equivalence, ultragraph C∗-algebras and graph
C∗-algebras are the same.

Corollary 4.4. The C∗-algebra of a finite ultragraph is isomorphic to a graph C∗-algebra.

Proof. We apply Theorem 4.1 to the ultragraph to receive a graph whose C∗-algebra is isomorphic to the
C∗-algebra corresponding to the ultragraph.

Example 4.5. Using the decomposition of the range, one can give an alternative proof, that the C∗-algebra
of the hypergraph defined by s(e) = w, r(e) = {v, w} is the Toeplitz algebra. A straight forward calculation
using the Cuntz-Krieger families is given in [Zen21, Prop. 3.9]. Applying Theorem 4.1 instead, leads to the
graph on the right.

v we
e

Decomposition v w(e, v)
(e, w)

Figure 21: Decomposition of ranges applied to the hypergraph generating the Toeplitz
algebra.

The corresponding graph algebra of the right graph is the Toeplitz algebra and as we get an isomorphism
between both hypergraph C∗-algebras by Theorem 4.1, the same holds true for the hypergraph algebra of
the initial hypergraph.
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Instead of taking the range apart we can reverse the above construction to merge edges with similar sources
and disjoint ranges. We state the corollary in case of two edges, but it can be directly generalized to any
finite number of edges by iteration.

Corollary 4.6. Let HΓ = (E0, E1, r, s) be a finite hypergraph. Consider e, f ∈ E1 with s(e) = s(f) and
r(e) ∩ r(f) = ∅. The hypergraph HΓ̃ given by

Ẽ
0
:= E0,

Ẽ
1
:= (E1 \ {e, f}) ∪ g,

s̃(h) := s(h) ∀h ∈ E1 \ {e, f}, s̃(g) := s(e),

r̃(h) := r(h) ∀h ∈ E1 \ {e, f}, r̃(g) := r(e) ∪ r(f)

generates an isomorphic hypergraph C∗-algebra.

Proof. We apply Proposition 4.1 to HΓ and HΓ̃. Both yield the same hypergraph, which gives the required
isomorphism.

This Corollary is interesting, as it gives us a concrete way to construct a hypergraph out of a graph without
changing the corresponding C∗-algebra.

Example 4.7. We consider the matrix algebra Mn(C). As stated in Example 1.17 the C∗-algebra of the
graph with s(ej) = v and r(ej) = wj for j = 1, . . . , n − 1 is isomorphic to Mn(C). Applying the above
corollary we get, that the hypergraph defined by one edge e with s(e) = {v} and r(e) = {w1, . . . , wn−1}
also generates the matrix algebraMn(C).

v

w1

...
wn−1

e1

en−1

Merged ranges
v

w1

...
wn−1

e

e

Figure 22: Merging of ranges applied to the hypergraph generatingMn(C).
Besides of new examples, the decomposition and merge of ranges yields interesting insights about the parts
in which hypergraph C∗-algebras show a different behaviour compared to graph and ultragraph C∗-algebras.
Since ranges can be decomposed, the crucial differences seem to occur solely by multiple vertices in the
source. The connection to the order relation seen in Lemma 2.26 and Lemma 2.28 could be interesting to
investigate further.

4.2. Gauge Uniqueness Theorem

Hypergraph C∗-algebras are universal C∗-algebras. Thus, one possibility to identify a C∗-algebra isomorphic
to the hypergraph C∗-algebra, is to check that it fulfills the universal property. Nevertheless, this can be a
bit nasty. To expand our toolbox, we take a closer look at the Gauge Uniqueness Theorem, which yields
faithful representations of graph C∗-algebras. It is probably one of the most used theorems in the context of
graph C∗-algebras because of its simple application. Under specific assumptions on the hypergraph, we can
extend it. But we will see, that it does not completely generalizes to hypergraphs.
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The basis of the Gauge Uniqueness Theorem for graph algebras is the existence of a continuous action of
the unit circle T on the graph C∗-algebra, which leaves the projections invariant and rotates the partial
isometries. This action is called gauge action and the existence of such an action for graph C∗-algebras follows
by the universal property. Adapting the proof we get the existence of the gauge action for hypergraphs.

Proposition 4.8. Let HΓ = (E0, E1, r, s) be a finite hypergraph with universal Cuntz-Krieger HΓ-family
{se, pv}. Then there exists a continuous action of T on C∗(HΓ) such that

γz(se) = zse ∀e ∈ E1, γz(pv) = pv ∀v ∈ E0.

The action is called gauge action.

Proof. The proof is similar as for graphs [Rae05, Prop. 2.1]. For fixed z ∈ T the collection {zse, pv} is
again a Cuntz-Krieger HΓ-family. Thus, the universal property of hypergraph C∗-algebras leads to the
existence of an isomorphism γz : (C∗(E), {se, pv}) → (C∗(E), {zse, pv}) which maps se to zse and pv to
pv. On generators, γw ◦ γz agrees with γwz for z, w ∈ T. Thus they agree on all of C∗(HΓ) and γ is a
*-homomorphism. We still need to show continuity of z ↦→ γz(a) for all, but fixed a ∈ C∗(HΓ). The
argument again follows as in [Rae05, Prop. 2.1] using an ϵ/3-argument, with the exception, that we now
choose elements c =

∑︁
λµ1...µn,ϵ1,...,ϵns

ϵ1
µ1
...sϵnµn

for each fixed element a ∈ C∗(HΓ) and use, that scalar
multiplication is continuous and the composition of continuous functions remain continuous to conclude
that w ↦→ γw(c) is continuous.

In the context of graph C∗-algebras, the existence of such an action yields a faithful representation of the
graph C∗-algebra. We state this in the following Theorem.

Theorem 4.9 (Gauge Uniqueness Theorem). [BHRS02, Thm. 2.1] Let E be an arbitrary graph, let {Se, Pv}
be a Cuntz-Krieger E-family in a C∗-Algebra A, and let π be the representation of C∗(E) such that π(se) = Se
and π(pv) = Pv. Suppose that each Pv is non-zero, and that there is a strongly continuous action β of T on
C∗(Se, Pv) such that βz ◦ π = π ◦ γz for z ∈ T. Then π is faithful.

Proof Sketch. The idea of the proof of the Gauge Uniqueness Theorem is to project the graph C∗-algebra
C∗(E) onto the fixed point algebra

C∗(E)γ := {a ∈ C∗(E) | γz(a) = a for all z ∈ T}

by averaging over the gauge action. Then since

||
∫︂
T
γz(a)dz|| ⩽ ||π(a)|| for all a ∈ C∗(E),

faithfulness of the *-homomorphism on C∗(E)γ leads to faithfulness on C∗(E). The key point is the
faithfulness on the fixed point algebra. For graphs, C∗(E)γ is an AF-Algebra: by Lemma 1.22 the elements
s∗µsν for |µ| = |ν| = k and r(µ) = r(ν) = v are matrix units and with this, one gets that the graph C∗-algebra
is the inductive limit of C∗-algebras of compact operators. Using this, and the fact that every matrix unit
has non-zero image under the representation π we get the required faithfulness.

Remark 4.10. For hypergraphs, we cannot construct these matrix units, since the elements to not cancel as
nicely as for graphs, see Corollary 2.23. Hence we cannot imitate this proof directly.
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In general, the Gauge Uniqueness Theorem does not apply to hypergraphs, as we see in the next example.

Example 4.11. Recalling the expression of the free product and the tensor product of two C∗-algebras A
and B as universal C∗-Algebra by

A ∗B := C∗(a ∈ A, b ∈ B | RA, RB),

A⊗B := C∗(a ∈ A, b ∈ B | RA, RB, ab = ba ∀a ∈ A, b ∈ B),

we directly get by the universal property, that there is always a surjective *-homomorphism of the free
product C∗-algebra onto the tensor product C∗-algebra. We consider now the hypergraph HΓ̃n defined by
s(e) = r(e) = {v1, . . . , vn}. The corresponding hypergraph C∗-Algebra is given by C∗(HΓ̃n) ∼= C(T) ∗ Cn,
see Proposition 3.13. Let {Se, Pv} be the Cuntz-Krieger HΓ̃n-family in C(T) ∗Cn given by the isomorphism.
Using the observation above we get a surjective *-homomorphism

π : C∗(HΓ̃n) ∼= C(T) ∗ Cn → C(T)⊗ Cn

defined by se ↦→ Se, pvi ↦→ Pvi . The tensor product C(T)⊗ Cn has a gauge action γ̃ with the property, that
π ◦ γ = γ̃ ◦ π, while γ is the gauge action on C∗(HΓ̃n). Thus, the preliminaries for the gauge uniqueness
theorem would be given. Nevertheless, the *-homomorphism π cannot be injective: C(T) ∗Cn is not nuclear
as seen in Proposition 3.14. On the other hand, since C(T) and Cn are both nuclear, we get that the tensor
product C(T)⊗ Cn is nuclear [Bla06, IV. 3.1.1]. Nuclearity is an invariant under isomorphism, and since
we saw above, that π is surjective it cannot be injective.

Remark 4.12. We have a closer look at the structure of the hypergraph in the counterexample. The hypergraph
HΓ̃n has only perfect paths. The corresponding hypergraph C∗-algebra is not generated by the canonical partial
isometry se, as span(se) = {1, sne , (s∗e)n | n ∈ N} does not contain the canonical projection pv. On the other
hand, we can manipulate this hypergraph by decomposing the range of the edge e to construct a hypergraph
whose C∗-algebra is generated by the canonical partial isometries but which now has partial paths instead of
(quasi) perfect paths.

v1 v2
e Decomposition

v1 v2

e2

e2

e1

e1

Figure 23: Decomposition of ranges applied to HΓ̃2.

This already hints, what we will see later: It is possible to prove gauge uniqueness if both is give, i.e. the hypergraph
has only (quasi) perfect paths and the corresponding C∗-algebra is generated by the partial isometries.

Keeping this remark in mind we try to define specific conditions under which we can extend the Gauge
Uniqueness Theorem to hypergraphs. The main idea of the proof is based on an isomorphism between
the C∗-algebras of the graph and the dual graph as shown in [Rae05, Ex. 2.7] to make use of the Gauge
Uniqueness Theorem for graphs.
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Definition 4.13. Let HΓ = (E0, E1, r, s) be a finite hypergraph. The dual graph Γ̃ is defined as

E0̃ := {e | e ∈ E1},

E1̃ := {(e, f) | e, f ∈ E1, s(f) ∩ r(e) ̸= ∅},
s̃((e, f)) := e,

r̃((e, f)) := f.

Example 4.14. To given an example of the dual graph we consider the following hypergraph and its dual.

w

v1
v2

. . .
vn−1

vn
e Dual Graph

e f
(e, f)

(f, f)

Figure 24: Dual Graph of the hypergraph of Example 3.19.

Remark 4.15. The dual graph is really a graph, not a hypergraph anymore. Hence it will not be possible to
recover the result of graph algebras, where the graph and the dual graph generated isomorphic C∗-Algebras
if the graph has no sinks. This would not be in line with the non-nuclear examples of hypergraph-algebras.
Nevertheless, it could be interesting to investigate if there are other connections between the hypergraph and
its dual. Do hypergraphs with similar dual graphs share any properties? Are all non-nuclear hypergraph
C∗-algebras isomorphic to the C∗-algebra of its dual graph?

Lemma 4.16. Let HΓ = (E0, E1, r, s) be a finite hypergraph with only quasi perfect paths and no sinks. Then
it holds for all e ∈ E1

pr(e) =
∑︂

f∈E1, s(f)⊆r(e)

sfs
∗
f .

Proof. This is a direct consequence of Lemma 2.27, since by definition of quasi perfect paths we have
s(f) ∩ r(e) implies s(f) ⊆ r(e) for all e, f ∈ E1.

Proposition 4.17. Let HΓ = (E0, E1, r, s) be a finite hypergraph with only quasi perfect paths and no sinks.
Γ̃ be its dual graph. Then C∗(Γ̃) is canonically isomorphic to the C∗-subalgebra of C∗(HΓ) generated by
{se | e ∈ E1}.

Proof. We define a Cuntz-Krieger Γ̃-family in C∗(HΓ) by

Qe := ses
∗
e ∀e ∈ Γ̃

0
,

T(e,f) := seQf ∀(e, f) ∈ Γ̃
1
.

To check that this is a Cuntz-Krieger Γ̃-family, a short calculation using the hypergraph relations of C∗(HΓ)
shows, that the elementsQe aremutually orthogonal projections and the elements T(e,f) are partial isometries.
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It remains to check the Cuntz-Krieger relations for graphs, since the dual graph is a graph. Since the
hypergraph has only quasi perfect paths, all paths ef fulfill s(f) ⊆ r(e) which implies by Lemma 2.12 and
the definition of Qf , that Qfpr(e) = Qf . With this we get the first Cuntz-Krieger relation:

T ∗
(e,f)T(g,h) = (seQf )

∗(sgQh)

= Qfs
∗
esgQh

= δe,gQfpr(e)Qh

= δe,gQfQh

= δe,gδf,hQf

= δ(e,f),(g,h)Qr((e,f)).

For the second Cuntz-Krieger relation we need, that for quasi perfect paths with no sinks Lemma 4.16
applies and we get:

Qe = ses
∗
e

= sepr(e)s
∗
e

= se

⎛⎝ ∑︂
f∈E1,s(f)⊆r(e)

sfs
∗
f

⎞⎠ s∗e

= se

⎛⎝ ∑︂
f∈E1,s(f)⊆r(e)

Qf

⎞⎠ s∗e

=
∑︂

f∈E1,s(f)⊆r(e)

seQfs
∗
e

=
∑︂

f∈E1,s(f)⊆r(e)

T(e,f)T
∗
(e,f)

=
∑︂

x∈Γ̃1
,s(x)=e

TxT
∗
x .

Thus, by the universal property, we get the canonical *-homomorphism π : C∗(Γ̃) → C∗(HΓ) defined
by qe ↦→ Qe and t(e,f) ↦→ T(e,f). Since the dual graph is really a graph, we are back in the familiar area
and can use the Gauge Uniqueness Theorem 4.9. Let γ and γ̃ be the gauge action on C∗(HΓ) and C∗(Γ̃)
respectively. Then a short calculation shows, that π ◦ γ̃z = γz ◦ π for all z ∈ T. Thus the requirements for
the Gauge Uniqueness Theorem are given (note that all projections are non-zero) and the *-homomorphism
π is injective. By definition of the Cuntz-Krieger family {T(e,f), Qf} we know that Im(π) ⊆ C∗(se | e ∈ E1).
Using again Lemma 4.16 we get

se = sepr(e) = se
∑︂

f∈E1,s(f)⊆r(e)

sfs
∗
f =

∑︂
f∈E1,s(f)⊆r(e)

seQf =
∑︂

f∈E1,s(f)⊆r(e)

T(e,f).

Hence the Cuntz-Krieger family {T(e,f), Qf} generates {se | e ∈ E1}. Thus, Im(π) = C∗(se | e ∈ E1) and π
is an isomorphism between C∗(Γ̃) and C∗(se | e ∈ E1).
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For specific hypergraphs we thus get an isomorphism between the hypergraph C∗-algebra and the graph
C∗-algebra of its dual graph.

Corollary 4.18. Let HΓ = (E0, E1, r, s) be a finite hypergraph with only quasi perfect paths, no sinks and
C∗(HΓ) be generated by {se | e ∈ E1}. Γ̃ be its dual graph. Then C∗(Γ̃) ∼= C∗(HΓ).

Remark 4.19. As stated in Remark 4.15, the isomorphism of C∗(Γ̃) and C∗(HΓ) cannot hold for non-amenable
hypergraphs. Thus, there cannot be a non-amenable hypergraph with only quasi perfect paths and no sinks
such that C∗(HΓ) be generated by {se | e ∈ E1}.

Theorem 4.20. Let HΓ = (E0, E1, r, s) be a finite hypergraph with only quasi perfect paths, no sinks and
C∗(HΓ) be generated by {se | e ∈ E1}. Let {Pv, Se} be a Cuntz-Krieger HΓ-family in a C∗-algebra B with
each Pv ̸= 0. If there is a continuous action β : T → Aut(B) such that the gauge action γ commutes with the
canonical *-homomorphism π : C∗(HΓ) → B, i.e. π ◦ γz = βz ◦ π for all z ∈ T. Then π is faithful.

Proof. Since C∗(HΓ) is generated by {se | e ∈ E1}, we get using Proposition 4.17, that C∗(Γ̃) is isomorphic
to C∗(HΓ) by an isomorphism ϕ. Furthermore, the *-homomorphism π ◦ ϕ generates a Cuntz-Krieger
Γ̃-family in B with nonzero projections. Since the canonical isomorphism ϕ is equivariant for the gauge
actions and π ◦ γz = βz ◦ π by assumption, we get:

(π ◦ ϕ) ◦ γz = βz ◦ (π ◦ ϕ) ∀z ∈ T.

Applying the Gauge Uniqueness Theorem for graphs we get, that π◦ϕ is faithful and since ϕ is an isomorphism,
we get that π is faithful.

We gave some negative results for which Theorem 4.20 cannot be applied and in which gauge uniqueness is
not valid. Lets turn to the cases in which it is valid.

Corollary 4.21. Let G be an ultragraph without sinks. Then the Gauge Uniqueness Theorem is valid.

Proof. We check that ultragraphs fulfill the requirements of Theorem 4.20. Since the source of each
edge in an ultragraphs is given by one vertex, combining the second and third hypergraph relations yield
pv =

∑︁
e∈E1,v=s(e) ses

∗
e. Since all vertices emit at least one edge, this equality is valid for all vertices and

hence, the C∗-algebra is generated by the partial isometries. Furthermore, each path is automatically quasi
perfect, as r(e) ∩ s(f) ̸= 0 implies that r(e) ∩ s(f) = s(f), as s(f) consists of just one vertex.

Without changing the C∗-algebra we can transform each hypergraph into a hypergraph whose partial
isometries generate the corresponding hypergraph C∗-algebra. However, the method below leads to
hypergraphs with partial paths in general.

Lemma 4.22. For each C∗-algebra C∗(HΓ) corresponding to a finite hypergraph HΓ = (E0, E1, r, s) without
sinks, exists a hypergraph HΓ̃ = (Ẽ

0
, Ẽ

1
, r̃, s̃) such that C∗(HΓ) ∼= C∗(HΓ̃) and C∗(HΓ) is generated by the

canonical partial isometries {tẽ | x ∈ Ẽ
1} of C∗(HΓ̃).

Proof. Let HΓ̃ be the hypergraph obtained by decomposing the range of HΓ, see Theorem 4.1. Since HΓ

has no sinks, HΓ̃ has no sinks. Hence for each vertex v ∈ E0 there is an edge ẽ ∈ Ẽ
1 such that v = r̃(ẽ).

The first hypergraph relation thus yields pv = t∗ẽtẽ.
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Remark 4.23. It is not yet clear if there exist hypergraphs which are not ultragraphs with the required properties.
Or, if we can describe ultragraphs without sinks to be exactly the hypergraphs with quasi perfect paths whose
C∗-algebra is generated by its canonical partial isometries. This could be interesting for further research.

Till know, we only considered hypergraphs without sinks. For ultragraphs, the Gauge Uniqueness Theorem
can be extended to ultragraphs with sinks.

Theorem 4.24. [Tom03, Thm. 6.8] Let G be an ultragraph, {se, pA} the canonical generators in C∗(G) and γ
the gauge action on C∗(G). Also let B be a C∗-algebra and ϕ : C∗(G) → B be a *-homomorphism for which
ϕ(pA) ̸= 0 for all nonempty A ∈ E0. If there exists a continuous action β of T on B such that βz ◦ ϕ = ϕ ◦ γz
for all z ∈ T, then ϕ is faithful.

Proof Sketch. We give a rough sketch of the idea of the proof: First, one generalizes the setting to infinite
ultragraphs [Tom03, Prop. 5.5]. The idea there is, to approximate the ultragraph C∗-algebra by C∗-algebras
of finite graphs, for which the Gauge Uniqueness Theorem applies. The construction of these finite graphs is
based on the dual graph of subgraphs, but with some technicalities to account for "boundary vertices". Then
by adding a tail to each sink v0, i.e. attaching a chain

v0 v1 v2 v3 . . .

Figure 25: Adding a tail to a sink.

one can embed the ultragraph C∗-algebra into the C∗-algebra of the infinite ultragraph without sinks and
use that for these the Gauge Uniqueness Theorem holds. For more details see [Tom03, Thm. 6.8]

Remark 4.25. Hypergraphs build a nice and straightforward generalisation of graphs and ultragraphs. Nev-
ertheless they lack of some nice properties which are useful to work with, such as gauge uniqueness. Another
generalization of ultragraphs was done in [BP07] by Bates and Pask. The idea traces back to shift spaces. The
edges of a graph are labelled with elements of an alphabet. In this setting paths correspond to words in the
alphabet which defines a language of the shiftspace. The representation reminds of the hypergraph construction,
as the source and range maps defined on the language of the shiftspace allow multiple valued sources and ranges
and two elements α, β in the language connect to a path, if the range of α and the source of β have nonempty
intersection. The same holds true in the hypergraph case, as we stated in Definition 2.18. We can reformulate
hypergraphs as labelled graphs: LetHΓ = (E0, E1, r, s) be a hypergraph. We construct a corresponding labelled
graph (L, π) as follows. The graph L is defined as

L0 := E0,

L1 := {e(v,w) | v ∈ s(e), w ∈ r(e)},
sL(e(v,w)) := v,

rL(e(v,w)) := w

and the labelling is given by
π : L1 → E1, e(v,w) ↦→ e.

So far so good. But this labelled space is not left resolving [BP07, Definition 3.2], i.e. the restriction of the
labelling π to r−1

L (w) is not injective for some w ∈ L0, if we have multiple valued sources. The upcoming theory
in the paper of Bates and Pask restricts to the case of left resolving labelled graphs, which thus excludes our
hypergraph construction.
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5. Moves on Hypergraphs

In this section we discuss basic moves to manipulate hypergraphs. These moves play an important role in
the classification of graph C∗-algebras. We introduce four of these moves, adapt them to the hypergraph
setting and investigate the corresponding C∗-algebras. For readers familiar with the theory of symbolic
dynamics it is to be noted that the moves we consider are closely related to flow equivalence of shifts spaces
[LM21]. The four basic moves are
(Move S) Removing a source,
(Move R) Reduction at a non-sink,
(Move O) Outsplitting,
(Move I) Insplitting.
The equivalence relation generated by the moves S, R, O and I is called move equivalence and is denoted
by ∼ME . We will see, that in the special case of graphs, move S, move R and move I preserve Morita
equivalence. For move O we even get isomorphic C∗-algebras. Recalling that Morita equivalence implies
stable isomorphism for C∗-algebras with approximate unit by Theorem 1.29, this essentially proves an
important theorem, which we state here to emphasize the power of the moves.

Theorem 5.1. [Sør13, Thm. 4.8] Let E and F be graphs such that E ∼ME F . Then the graph C∗-algebras
are stably isomorphic, i.e. C∗(E)⊗K ∼= C∗(F )⊗K.

Besides stable isomorphism we even get, that K-theory is an invariant under move equivalence by Theorem
1.30. Nevertheless, the shown moves alone do not completely classify the unital graph C∗-algebras. That
means, there are graphs which are stably isomorphic, but they are notmove equivalent. A recent breakthrough
in the classification of C∗-algebras shows that one can indeed classify graph C∗-algebras by moves. In the
paper [ERRS21] of Søren Eilers et al. they introduce a new move P which, together with the Cuntz splice
(move C), completes the set of moves necessary to classify graph C∗-algebras up to stable isomorphism
[ERRS21, Thm. 3.1]. The proof of this result is highly non-trivial and we make no attempt to completely
replicate it for hypergraphs. Our purpose in the following chapter is to take first steps to understand the
behavior of moves on hypergraphs and to work out the challenges that come with it. The construction of the
moves is motivated by [ERRS18, Def. 2.14-2.17]. Since the upcoming proofs are often quite technical, we
remind the reader that {se, pv} are the canonical generating elements of C∗(HΓ).

5.1. Move S - Removing a Source

Definition 5.2 (Move S). Let HΓ = (E0, E1, r, s) be a finite hypergraph. Let w ∈ E0 be a source. The
hypergraph HΓS obtained by application of move S is defined as

E0
S := E0 \ {w}, E1

S := E1 \ {e | w ∈ s(e)}, sS := s|E1
S
, rS := r|E1

S
.

We call HΓS the hypergraph obtained by removing the source w from the hypergraph HΓ.

For graphs this move leads to Morita equivalent C∗-algebras [Sør13, Prop. 3.1]. The question now is if we
still obtain Morita equivalence between C∗(HΓ) and C∗(HΓS) and thus similar K-Theories. The main idea
is, that the restriction the of the Cuntz-Krieger HΓ-family is a Cuntz-Krieger HΓS-family.
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w
e

e
Move S

Figure 26: Illustration of the application of move S for hypergraphs.

Remark 5.3. As seen in the figure above, removing the source is not a "local" property anymore. By deleting
the edges emerging from the source, we possibly also delete connections between other vertices. This impacts
the third hypergraph relation. If there is an edge f ∈ E1 with w ∈ s(f), such that there exists another vertex
v ̸= w with v ∈ s(f) we get

pv ⩽
∑︂

e∈E1,v∈s(e)

ses
∗
e >

∑︂
e∈E1

S ,v∈s(e)

ses
∗
e

as sfs∗f is not contained in the second sum. Thus we cannot say anything about the validity of the third
hypergraph relation. To omit this, we restrict us to the special case, where for all edges e ∈ E1 starting at the
source w it holds that w ∈ s(e) implies w = s(e), i.e. the source is a one-point set. Other edges can still have
multiple vertices as source. This restrictions ensures that no "edges" between vertices in E0

S are deleted. Hence,
the hypergraph must look locally like an ultragraph.

Proposition 5.4. Let HΓ = (E0, E1, r, s) be a finite hypergraph with source w such that for all e ∈ E1

with w ∈ s(e) it holds w = s(e). HΓS be the hypergraph obtained by removing the source w from HΓ.
Then {pv, se | v ∈ E0

S , e ∈ E1
S} is a Cuntz-Krieger HΓS-family in C∗(HΓ) and there exists a canonical

*-homomorphism π : C∗(HΓS) → C∗(HΓ) sending the canonical generators qv ↦→ pv for all v ∈ E0
S and

te ↦→ se for all e ∈ E1
S .

Proof. We check that {pv, se | v ∈ E0
S , e ∈ E1

S} fulfills the hypergraph relations for HΓS . The first two
relations hold in general, even without the restriction on the source w since the move does not change
anything at the corresponding edges and vertices. For the third hypergraph relation we note that by the
given restriction for each v ̸= w it follows that e ∈ E1

S for each edge e ∈ E1 with v ∈ s(e) since w /∈ s(e).
Thus we get by the third hypergraph relation of C∗(HΓ)

pv ⩽
∑︂

e∈E1,v∈s(e)

ses
∗
e =

∑︂
e∈E1

S ,v∈s(e)

ses
∗
e ∀v ∈ E0

S .

Hence the universal property yields the required *-homomorphism.

Proposition 5.5. The *-subalgebra Im(π) is a full corner in C∗(HΓ).

Proof. We define the projection p =∑︁v∈E0
S
pv and claim first that Im(π) = pC∗(HΓ)p. Since

pv = ppvp ∀v ∈ E0
S ,

se =
(︁ ∑︂
v∈s(e)

pv
)︁
se
(︁ ∑︂
v∈r(e)

pv
)︁
= p
(︁ ∑︂
v∈s(e)

pv
)︁
se
(︁ ∑︂
v∈r(e)

pv
)︁
p ∀e ∈ E1

S ,

the image of the canonical generators is contained in pC∗(HΓ)p. Hence, Im(π) ⊆ pC∗(HΓ)p.
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On the other hand it holds for all paths µ in HΓ by Proposition 2.12

• psµ =

{︄
0 if s(µ) = w

sµ ∈ C∗(pv, se) else,
• ps∗µ = s∗µ,
• sµp = sµ,

• s∗µp =

{︄
0 if s(µ) = w

s∗µ ∈ C∗(pv, se) else.
We consider a general Element sϵ1µ1

...sϵnµn
̸= 0 with paths µj in HΓ, ϵj ∈ {1, ∗} and ϵj ̸= ϵj+1. Since w

is a source, using the relations given in Proposition 2.22, we get that only the first and last isometries
in sϵ1µ1

...sϵnµn
can correspond to edges with source w. Thus we can use the relations above and get that

psϵ1µ1
...sϵnµn

p ∈ span{pv, se|v ∈ E0
S , e ∈ E1

S} ⊆ Im(π). Hence pC∗(HΓ)p ⊆ Im(π). Combining both parts
we get the claimed equality.

To show that the corner pC∗(HΓ)p is full, let I be a closed two-sided ideal containing the corner. Thus I
contains {pv, se | v ∈ E0

S , e ∈ E1
S} by definition of p and Proposition 2.12. Then we note, that for all e ∈ E1

with s(e) = w we have pr(e) ∈ I and hence se = sepr(e) ∈ I. Given our special case, we get by Lemma 2.27
that pw =

∑︁
e∈E1,s(e)=w ses

∗
e. Thus pw ∈ I as linear combination of elements in the ideal. Hence, I contains

all generators of C∗(HΓ) and must thus be equal to it.

Corollary 5.6. For finite graphs and ultragraphs, move S yields Morita equivalent C∗-algebras.

Proof. In the special case of graphs and ultragraph we can apply the Gauge Uniqueness Theorem. The
canonical *-homomorphism π is thus injective and the C∗-algebra C∗(HΓS) is isomorphic to a full corner of
C∗(HΓ). Proposition 1.27 then implies Morita equivalence of the C∗-algebras.

For general hypergraphs we could not proof injectivity of the *-homomorphism π. It is easy to deduce
injectivity on span{se, pv | e ∈ E1

S , v ∈ E0
S}, but this does not directly imply injectivity on the closure. Thus,

we cannot say something about the Morita equivalence.

Remark 5.7. We revisit the example from Remark 3.20 once again. LetHΓ be the hypergraph with s(e) = {w},
r(e) = {v2} and s(f) = r(f) = {v1, v2}.

w v2 v1
e

f

f

Figure 27: Hypergraph of Example 3.19 for n = 2. The application of move S is marked
blue.

We can link the question of nuclearity of C∗(HΓ) to the question of injectivity of the *-homomorphism of move S.
Applying move S to the hypergraphHΓ yields the non-amenable hypergraphHΓ2

˜ . Thus, if the *-homomorphism
π obtained from Proposition 5.4 is injective, we get non-amenability of HΓ, since nuclearity is an invariant of
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Morita equivalence. On the other hand, if we can proof that the hypergraph HΓ is non-amenable, we have a
counterexample and know that move S does not produce Morita equivalent C∗-algebras in general.

Example 5.8. There are examples were move S yields Morita equivalent C∗-algebras even if the restriction
w ∈ s(e) implies w = s(e) is not given. We consider the following application of move S. The C∗-Algebra of

v we
e

Move S w

Figure 28: Move S applied to the hypergraph generating the Toeplitz algebra.

the hypergraph on the left is the Toeplitz Algebra, and the C∗-Algebra of the right graph is C. For both the
K-theory is given by K0 = Z and K1 = 0. Hence by Theorem 1.30 both hypergraph C∗-algebras are Morita
equivalent.

5.2. Move R - Reduction at a Non-Sink

Definition 5.9 (Move R). Let HΓ = (E0, E1, r, s) be a finite hypergraph. Let w ∈ E0 be a vertex that emits
exactly one edge f and only one vertex x ̸= w emits to w. The graph ER obtained by application of move R
is defined as

E0
R := E0 \ {w},

E1
R := E1 \

(︁
r−1({w}) ∪ {f}

)︁
∪
{︁
ef | e ∈ E1, r(e) = {w}

}︁
,

sR(e) = s(e), sR(ef ) = s(e),

rR(e) = r(e), rR(ef ) = r(e) \ {w} ∪ r(f).

x

w

f

f

Move R
x

Figure 29: Illustration of the application of move R for hypergraphs. Each color/thickness
represents one edge.

Remark 5.10. For graphs the above definition of the edge ef just yields the path ef . The generalization
to hypergraphs using paths would mean "losing" the other elements in the range of e. Thus, we modify the
idea of paths to account for further vertices in the range. Nevertheless, to simplify the upcoming proofs, we
restrict ourselves to the case when w ∈ r(e) implies w = r(e). In this case we have ef = ef . This is not
really a restriction, since we can transform any finite hypergraph into a hypergraph with this condition using
the decomposition of ranges in Theorem 4.1. Then we can apply the propositions before re-transforming the
hypergraphs. Note that we could have also used this method involving the decomposition of ranges to define the
moves for ultragraphs based on the results from graphs.
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Similar as for move S we restrict ourselves to the special case were the edge f has no further vertices in its
source other than w. In this case we can define a Cuntz-Krieger HΓR-family in C∗(HΓ).

Proposition 5.11. Let HΓ = (E0, E1, r, s) be a finite hypergraph with vertex w ∈ E0 that emits exactly one
edge f and only one vertex x emits to w. For all edges e ∈ E1 with w ∈ r(e) it holds w = r(e). The elements
{Qv | v ∈ E0

R} and {Ty | y ∈ E1
R} defined as

Qv := pv,

Ty :=

{︄
se if y = e ∈ E1 \

(︁
r−1({w}) ∪ {f}

)︁
sef if y = ef ∈

{︁
ef | e ∈ E1, r(e) = {w}

}︁
form a Cuntz-Krieger HΓR-family in C∗(HΓ). Then there exists a *-homomorphism π : C∗(HΓR) → C∗(HΓ)
which maps the generators qv ↦→ Qv for all v ∈ E0

R and ty ↦→ Ty for all y ∈ E1
R.

Proof. The elementsQv are clearly mutually orthogonal projections and the elements Ty are partial isometries
since ef are a quasi perfect paths. The first hypergraph relation for e ∈ E1

R follows directly from the first
hypergraph relation for HΓ, since w /∈ r(e) implies that the range is completely contained in E0

R. For
ef ∈ E1

R we have

T ∗
ef
Tef = s∗efsef = s∗fs

∗
esesf = s∗fpr(e)sf = s∗fpwpr(e)sf = s∗fpwsf = s∗fsf = pr(f) = QrR(ef ).

The delta-condition T ∗
y Tz = 0 for y ̸= z follows directly from s∗esg = 0 for e ̸= g. The second hypergraph

relation is again clear for e ∈ E1
R. For ef ∈ E1

R we get

TefT
∗
ef

= sefs
∗
ef = sesfs

∗
fs

∗
e ⩽ seps(f)s

∗
e = sepwps(f)s

∗
e = ses

∗
e ⩽ ps(e) = QsR(ef )

while we used in the last step that w /∈ s(e) since e ̸= f . It remains to check the third hypergraph relation.
We have for all vertices v ∈ E0

R

Qv = pv

⩽
∑︂

e∈E1,v∈s(e)

ses
∗
e

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

ses
∗
e +

∑︂
e∈E1,v∈s(e),w∈r(e)

ses
∗
e.

At this stage we need the restriction that s(f) = w to get sfs∗f = pw and thus by Lemma 2.12 that
ses

∗
e = sesfs

∗
fsf . With this we get

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

TeT
∗
e +

∑︂
e∈E1,v∈s(e),w∈r(e)

TefT
∗
ef

=
∑︂

y∈E1
R,v∈sR(y)

TyT
∗
y .

Thus, we get the required canonical *-homomorphism by the universal property.
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Again we would want to achieve Morita equivalence as in the case of graph C∗-algebras. Similar as for move
S, one step in this direction is to show that the image of π is a full corner of C∗(HΓ).

Proposition 5.12. Let π be the canonical *-homomorphism obtained from move R. Then Im(π) is a full corner
in C∗(HΓ).

Proof. We define the projection p =∑︁v∈E0
R
pv and show that Im(π) = pC∗(HΓ)p. We first show that the

Cuntz-Krieger HΓR-family in HΓ is contained in the corner, which proves that Im(π) ⊆ pC∗(HΓ)p. Indeed,
we have

Qv = pv = ppvp,

Te = se = ps(e)sepr(e) = pps(e)sepr(e)p,

Tef = sesf = ps(e)sesfpr(f) = pps(e)sesfpr(f)p,

where we used that w /∈ s(e) for e ̸= f , w /∈ r(e) for e ∈ E1 \
(︁
r−1({w}) ∪ {f}

)︁ and that w /∈ r(f) as
s(f) = w ̸= x.

To show that the corner is contained in Im(π) we first consider some properties of the crucial edges in
r−1({w}) ∪ {f} and the interaction of the corresponding partial isometries. Let µ = µ1 . . . µn be a path in
HΓ.

• If µ1 = f it holds by Lemma 2.12 that psµ = ppwsµ = 0 and similarly s∗µp = 0. The first hypergraph
relation furthermore gives that s∗fse = s∗esf = δe,fpr(f) = Qr(f) for all e ∈ E1.

• If µj = f for j = 2, . . . n, by the definition of paths we must have µj−1 ∈ r−1({w}) and hence
sµj−1sµj = Tµj−1f

.

• If µj ∈ r−1({w}) for j = 1, . . . , n− 1, we get again by the definition of paths that µj+1 = f and hence
sµjsµj+1 = Tµjf

.

• If µn ∈ r−1({w}) we get by Lemma 2.12 that sµp = sµpwp = 0 and similarly ps∗µ = 0. Furthermore, by
definition of paths and the fact that only one vertex emits to w, sµns

∗
e ̸= 0 if and only if e ∈ r−1({w}).

Since in our special case sfs∗f = pw and r(µn) = {w} we get for e ∈ r−1({w}) again by Lemma 2.12
that sµns

∗
e = sµnpws

∗
e = sµnsfs

∗
fs

∗
e = Tµnf

T ∗
ef
. Similarly we can show that ses∗f = TefT

∗
µnf

.

Thus combining these properties we get that for a general element S := sϵ1µ1
. . . sϵnµn

∈ C∗(HΓ) where
µ1, . . . , µn are paths in HΓ and ϵj ∈ {1, ∗}, ϵj ̸= ϵj+1 that pSp ∈ Im(π). Proposition 2.3 then yields the
claim.

It remains to show that the corner is full. Let I be a closed two-sided ideal containing the corner pC∗(HΓ)p.
Then I contains all projections corresponding to the vertices in E0

R. Consider e ∈ r−1({w}). Then e ̸= f
and w /∈ s(e) and hence ps(e) ∈ I. Thus se = ps(e)se ∈ I by properties of the ideal. The first Cuntz-Krieger
relation then gives pw = s∗ese ∈ I. Hence by Proposition 2.13, the ideal contains the unit and hence it must
be all of C∗(HΓ). Thus the corner is not contained in a proper closed two sided ideal and is thus full.

Similar as for move S we get the following corollary by the Gauge Uniqueness Theorem.

Corollary 5.13. For finite graphs and ultragraphs, move R yields Morita equivalent C∗-algebras.
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5.3. Move O - Outsplitting

Definition 5.14 (Move O). Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a
sink. We partition the set of outgoing edges in finitely many nonempty sets:

{e ∈ E1 | w ∈ s(e)} = E1 ∪ · · · ∪ En.

The hypergraph HΓO obtained by performing move O on HΓ is defined by

E0
O := E0 \ {w} ∪ {w1, . . . , wn},

E1
O := {e1 | e ∈ E1, w /∈ r(e)} ∪ {e1, . . . , en | e ∈ E1, w ∈ r(e)},

rO(e
i) :=

⎧⎪⎨⎪⎩
r(e) if i = 1 and w /∈ r(e)

(r(e) \ {w}) ∪ {w1} if i = 1 and w ∈ r(e)

wi if i > 1 and w ∈ r(e),

sO(e
i) :=

{︄
s(e) if w /∈ s(e)

(s(e) \ {w}) ∪ {wj} if w ∈ s(e) and e ∈ Ej .

We call HΓO the hypergraph obtained by outsplitting HΓ at w.

we

e

Outsplitting w2

w1

w3

e1

e2

e3

e1

Figure 30: Illustration of the application of Move O for hypergraphs. Each color/thickness
marks one edge and we partition the set of outgoing edges of w into one-point
sets.

Remark 5.15. The definition of the range was made like this to simplify notations and avoid distinction of
cases. It does not matter if r(e) \ {w} is merged with w1 or some other wj . We could have also split it up. It just
has to be ensured that the ranges of ei are disjoint.

We show in the following, that the outsplitting produces isomorphic C∗-algebras even in the hypergraph
setting. The idea is to construct a Cuntz Krieger HΓ-family in HΓO and a Cuntz-Krieger HΓO-family in
HΓ and show that the *-homomorphisms given by the universal property are inverse to each other. The
proofs are quite technical as they involve various case distinctions. But they consist mainly of combination
of simple results seen in Section 2.2.
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Proposition 5.16. Let HΓ = (E0, E1, r, s) be a finite hypergraph, w be a vertex that is not a sink and HΓO

be the hypergraph obtained by outsplitting HΓ at w. Let {qv | v ∈ E0
O}, {te | e ∈ E1

O} be the universal
Cuntz-Krieger HΓO-family. Then {Pv | v ∈ E0}, {Se | e ∈ E1} defined as

Pv :=

{︄
qv if v ̸= w∑︁n

i=1 qwi if v = w,

Se :=

{︄
te if w /∈ r(e)∑︁n

i=1 tei if w ∈ r(e)

forms a Cuntz-Krieger HΓ-family in HΓO.

Proof. The elements Pv are nonzero mutually orthogonal projections since the projections qv are nonzero
mutually orthogonal projections. The elements Se are clearly partial isometries if w /∈ r(e). For the other
case we note that the ranges of e1, . . . , en are disjoint. Thus we get

SeS
∗
e =

(︄
n∑︂

i=1

tei

)︄(︄
n∑︂

i=1

tei

)︄∗

=

n∑︂
i=1

teit
∗
ei .

Using the first hypergraph relation for HΓO we get

S∗
eSe =

(︄
n∑︂

i=1

tei

)︄∗(︄ n∑︂
i=1

tei

)︄
=

n∑︂
i=1

t∗eitei .

Combining both and using that tei are partial isometries we get that Se are partial isometries.

(HR1): For the first hypergraph relation we first consider the case were w /∈ r(e):

S∗
eSe = t∗e1te1 = qrO(e1) = Pr(e).

For w ∈ r(e) we get using the second equation above:

S∗
eSe =

n∑︂
i=1

t∗eitei =

n∑︂
i=1

qrO(ei) = qr(e)\w +

n∑︂
i=1

qwi = Pr(e)\w + Pw = Pr(e).

By the hypergraph relations of HΓO we know that t∗
ei
tfj = 0 for e ̸= f or i ̸= j. With this at hand we

directly get that S∗
eSf = 0 for e ̸= f .

(HR2): For the second hypergraph relation we again start with the case w /∈ r(e):

SeS
∗
e = te1t

∗
e1 ⩽ qsO(e1) =

{︄
Ps(e) e /∈ Ej
qs(e)\w + qwj ⩽ qs(e)\w +

∑︁n
j=1 qwj = Ps(e)\w + Pw = Ps(e) e ∈ Ej .
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For w ∈ r(e) it follows using the first equation:

SeS
∗
e =

n∑︂
i=1

teit
∗
ei ⩽

n∑︂
i=1

qsO(ei).

Similar as in the equation above we get qsO(ei) ⩽ Ps(e) for all i = 1, . . . n. Using the definition of the order
relation we get especially, that

n∑︂
i=1

qsO(ei) ⩽ Ps(e)

which yields the required result.

(HR3): We finally tackle the last hypergraph relation. For v ̸= w we have

Pv = qv

⩽
∑︂

x∈E1
O,v∈sO(x)

txt
∗
x

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

te1t
∗
e1 +

∑︂
e∈E1,v∈s(e),w∈r(e)

n∑︂
i=1

teit
∗
ei

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

te1t
∗
e1 +

∑︂
e∈E1,v∈s(e),w∈r(e)

(︄
n∑︂

i=1

tei

)︄(︄
n∑︂

i=1

tei

)︄∗

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

SeS
∗
e +

∑︂
e∈E1,v∈s(e),w∈r(e)

SeS
∗
e

=
∑︂

e∈E1,v∈s(e)

SeS
∗
e .

For v = w we can duplicate the above calculation to get for each i = 1, . . . , n that

qwi ⩽
∑︂
e∈Ei

SeS
∗
e .

Using that {e ∈ E1 | w ∈ s(e)} = E1 ∪ · · · ∪ En and SeS∗
e are mutually orthogonal projections we get

Pw =
n∑︂

i=1

qwi ⩽
∑︂

e∈E1,w∈s(e)

SeS
∗
e .

By the above proposition the universal property of C∗(HΓ) yields a *-homomorphism

π : C∗(HΓ) → C∗(HΓO), pv ↦→ Pv, se ↦→ Se.

We already know that the *-homomorphism is an isomorphism for graphs [BP04, Thm. 3.2]. The next
proposition extends this to the case were HΓ is a hypergraph which looks like an ultragraph at the vertex w.
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Proposition 5.17. Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a sink such
that for all e ∈ E1 with w ∈ s(e) it follows w = s(e). Let HΓO be the hypergraph obtained by outsplitting HΓ
at w. The elements {Qv | v ∈ E0

O}, {Tei | ei ∈ E1
O} defined as

Qv :=

{︄
pv if v ̸= wj∑︁

e∈Ej ses
∗
e if v = wj ,

Tei :=

{︄
se if wj /∈ rO(e

i)

seQrO(ei) if wj ∈ rO(e
i)

form a Cuntz-Krieger HΓO-family in HΓ.

Proof. Since we assumed that for all e ∈ E1 with w ∈ s(e) it follows w = s(e), it follows for all vertices
v ̸= w that (ses∗e)pv = 0 = pv(ses

∗
e). Hence, since the sets Ej are disjoint and the projections pv are mutually

orthogonal, we get using the first hypergraph relation of C∗(HΓ) that the projections Qv are mutually
orthogonal. Furthermore we get that Qwipw = Qwi , which will be useful later on. It remains to check
that Tei are partial isometries and that the elements fulfill the hypergraph relations. The first will be a
consequence of the calculations in the first hypergraph relation.

(HR1): The first relation for e1 ∈ E1
O with w /∈ r(e) is obvious. In case that w ∈ r(e) we get for e1

T ∗
e1Te1 = QrO(e1)s

∗
eseQrO(e1)

= QrO(e1)pr(e)QrO(e1)

=
(︁
Qw1 + pr(e)\{w}

)︁
pr(e)

(︁
Qw1 + pr(e)\{w}

)︁
= Qw1 + pr(e)\{w}

= QrO(e1),

using that Qwjpv = δv,wQwj . This explains also the case for i = 2, . . . , n since

T ∗
eiTei = QrO(ei)s

∗
eseQrO(ei)

= Qwipr(e)Qwi

= Qwi

= QrO(ei).

By the first hypergraph relation for C∗(HΓ) and the orthogonality of the projections we get T ∗
ei
Tfj = 0

for ei ̸= f j . Furthermore, using these results it is straightforward to see that the elements Tei are partial
isometries.

(HR2): For the second hypergraph relation we again consider the case i = 1 and w ∈ r(e) first. We have

Te1T
∗
e1 = ses

∗
e ⩽

{︄
ps(e) = QsO(e1) if s(e) ̸= w∑︁

f∈Ej sfs
∗
f = Qwj = QsO(e1) if s(e) = w,

where we used the assumption that either w /∈ s(e) or w = s(e) for all e ∈ E1 and that the elements sfs∗f
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are mutually orthogonal projections. For w = s(e) we have using QrO(ei) ⩽ 1

TeiT
∗
e1 = seQrO(ei)s

∗
e ⩽ ses

∗
e

which can be estimated similar to the previous case.

(HR3): Finally we check the third hypergraph relation. We note, that the assumption that w ∈ s(e) implies
w = s(e) leads to pw =

∑︁n
j=1Qwj by Lemma 2.27. For v ∈ E0\{w}we then have using the third hypergraph

relation for C∗(HΓ)

Qv = pv

⩽
∑︂

e∈E1,v∈s(e)

ses
∗
e

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

Te1T
∗
e1 +

∑︂
e∈E1,v∈s(e),w∈r(e)

sepr(e)s
∗
e

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

Te1T
∗
e1 +

∑︂
e∈E1,v∈s(e),w∈r(e)

se

⎛⎝ n∑︂
j=1

Qwj + pr(e)\{w}

⎞⎠ s∗e

=
∑︂

e∈E1,v∈s(e),w/∈r(e)

Te1T
∗
e1 +

∑︂
e∈E1,v∈s(e),w∈r(e)

⎛⎝se(Qw1 + pr(e)\{w})s
∗
e +

n∑︂
j=2

seQwjs∗e

⎞⎠
=

∑︂
e∈E1,v∈s(e),w/∈r(e)

Te1T
∗
e1 +

∑︂
e∈E1,v∈s(e),w∈r(e)

n∑︂
j=1

TejT
∗
ej

=
∑︂

ei∈E1
O,v∈sO(ei)

TeiT
∗
ei .

For v = wj we have by definition that Qwj =
∑︁

e∈E1,wj∈s(e) ses
∗
e. Hence the same calculation as above yields

the required result.

Theorem 5.18. Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a sink such that
for all e ∈ E1 with w ∈ s(e) implies w = s(e). Let HΓO be the hypergraph obtained by outsplitting HΓ at w.
Then C∗(HΓ) ∼= C∗(HΓO).

Proof. By Proposition 5.16 we get the canonical *-homomorphism

π : C∗(HΓ) → C∗(HΓO), pv ↦→ Pv, se ↦→ Se.

Proposition 5.17 yields the canonical *-homomorphism

π̃ : C∗(HΓO) → C∗(HΓ), qv ↦→ Qv, te ↦→ Te.

Straightforward calculations show that both *-homomorphisms are inverse to each other on the generators.
Thus they are inverse on the whole C∗-algebras and we get the required isomorphism.
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For graphs and ultragraphs the condition w ∈ s(e) implies w = s(e) is trivially fulfilled. Hence the theorem
is particularly valid for these specific hypergraphs.

Corollary 5.19. For finite graphs and ultragraphs, move O yields isomorphic C∗-algebras.

5.4. Move I - Insplitting

Before we define move I, we have a look at the indelay which introduces vertices to delay the arrival of an
edge on its range. One can define this even in a more general setting with a so called Drinen range vector
as done in [BP04, Ch. 4]. We only consider the special case needed for the connection to move I, which we
consider afterwards. The constructions and proofs in the following section are adapted from [BP04, Ch. 4
and 5] and extended to the hypergraph setting. The upcoming proofs are again quite technical and deal
with similar case distinctions as seen for move O. We will thus only highlight the critical steps and provide
the details in Appendix A.

Definition 5.20 (Indelay). Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a
source. We partition the set of incoming edges in finitely many nonempty sets:

{e ∈ E1 | w ∈ r(e)} = E1 ∪ · · · ∪ En.

The hypergraph HΓD obtained by an indelay of HΓ at w is defined by

E0
D := E0 \ {w} ∪ {w1, . . . , wn},

E1
D := E1 ∪ {f1, . . . fn},

rD(e) :=

{︄
r(e) if w /∈ r(e)

(r(e) \ {w}) ∪ {wj} if w ∈ r(e),

rD(f
j) := wj ,

sD(e) :=

{︄
s(e) if w /∈ s(e)

(s(e) \ {w}) ∪ {w1} if w ∈ s(e),

sD(f
j) := wj+1.

v1

v2

v3

w v4
Indelay

v1

v2

v3

w1

v4w2

w3

f1

f2

Figure 31: Illustration of the application of the indelay. The colored edges of different
thickness symbolize one edge each. The incoming edges are partitioned into
one-point sets.
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Quite intuitively, one sees that the composition of he colored paths with the paths fj in the right hypergraph
yields the left hypergraph, when identifying w with w1. We formalize this in form of a Cuntz-Krieger family
in the following. Similar as in Proposition 5.11 we consider the case when w ∈ r(e) implies w = r(e). By
applying the decomposition of ranges to the hypergraph we can recover this setting for each hypergraph
without changing the hypergraph C∗-algebra (up to isomorphism).

Proposition 5.21. Let HΓ = (E0, E1, r, s) be a finite hypergraph, w be a vertex that is not a source such that
w ∈ r(e) implies w = r(e). HΓD be the hypergraph obtained by an indelay of HΓ at w. Let {qv, te} be the
universal Cuntz-Krieger HΓD-family. Then {Pv | v ∈ E0}, {Se | e ∈ E1} defined as

Pv :=

{︄
qv if v ̸= w

qw1 if v = w

Se :=

{︄
te if w /∈ r(e)

tetfj−1
. . . tf1 if w ∈ Ej

forms a Cuntz-Krieger HΓ-family in HΓD.

Proof. The hypergraph relations follow by mainly straightforward calculations, see AppendixA. We mention
shortly the critical tricks. For the first hypergraph relations note that fj . . . f1 are perfect paths for all
j ∈ {1, . . . n− 1}. Thus, for all e ∈ Ej it follows by Proposition 2.20 that

S∗
eSe = qrD(f1) = qw1 = Pw.

This result also explains, why we have to add the assumption that w ∈ r(e) implies w = r(e). The assumption
implies furthermore, that efj . . . f1 is a perfect path and since qwj = tfj−1

t∗fj−1
by the construction of the

edges fj ∈ E1
D this leads to SeS∗

e = tet
∗
e for all e ∈ E1, which is crucial for the second hypergraph relation.

For the third hypergraph relation we use that v ∈ sD(e) implies v ∈ s(e) and w1 ∈ sD(e) implies w ∈ s(e).
Combining this with the hypergraph relations of HΓD shows that the given elements form a Cuntz-Krieger
HΓ-family.

Proposition 5.22. There is a surjective *-homomorphism from C∗(HΓD) onto a full corner of C∗(HΓ).

Proof. By the previous propositionwe can apply the universal property and get the canonical *-homomorphism

π : C∗(HΓ) → C∗(HΓD), pv ↦→ Pv, se ↦→ Se

Let F := E0 \ {w} ∪ {w1} ⊆ E0
D. We show that the image of π is given by the corner pC∗(HΓD)p with

p := qF =
∑︁

v∈E0,v ̸=w qv + qw1 . By definition of Pv we get Pv = pPvp. For all e ∈ E1 we have sD(e) ⊆ F .
For e ∈ E1 with w /∈ r(e) we have rD(e) ⊆ E0 \ {w} ⊆ F and for e ∈ Ej we have rD(efj−1 . . . f1) = w1 ⊆ F .
Hence by applying Proposition 4.16 we get Se = pSep. Thus, the image of the generators of C∗(HΓ) is
contained in pC∗(HΓD)p and Im(π) ⊆ pC∗(HΓD)p.

To see the converse we consider a general element S := tϵ1µ1
. . . tϵmµm

for paths µ1, . . . , µm in HΓD and
ϵ1, . . . , ϵm ∈ {1, ∗}. We show that pSp ∈ Im(π). We first have a deeper look at a path µ = e1 . . . ek in HΓD.

• If ej ∈ E1 for j = 1, . . . , k we have sD(µ) ⊆ F . Hence ptµ = tµ = Sµ ∈ Im(π).

58



• If ej ∈ E1 for j = 1, . . . , k and wi /∈ rD(µ), we have rD(µ) ⊆ E0 \ {w}. Hence tµp = tµ = Sµ ∈ Im(π).
On the other hand, if wi ∈ rD(µ) we have wi = rD(µ) by assumption and hence tµp = 0 ∈ Im(π).

• If ej = fl for some j ∈ {1, . . . , k} and l ∈ {1, . . . , n− 1}, either the whole path fl . . . fn−1 is contained
in µ or ek = fl+k−j . If e1 ̸= f l and ek ̸= fl+k−j , the path ν := ej−1fl . . . fn−1 is contained in µ and
hence tµ = se1 . . . Sν . . . sek ∈ Im(π). Hence it remains to consider the cases, when the path starts or
ends with an element in {f1, . . . , fn−1}.

– If e1 = f l we have sD(µ) = wl /∈ F and hence ptµ = 0 ∈ Im(π). On the other hand, if we have a
second path α such that t∗αtµ ̸= 0 or tµ∗tν ̸= 0, we must have αj = fl+j−1 since we have perfect
paths. Hence using properties of perfect paths the elements vanish and we are left with paths
µ′, α′ which dies not contain the elements {f1, . . . , fn}. Hence tµ′ = sµ′ ∈ Im(π).

– If ek = fl+k−j we have tµp = 0 ∈ Im(π). A similar argument as in the last step shows, that the
interaction with another path α cancels the elements tfj and we are left with tµ′ = sµ′ ∈ Im(π).

Combining these arguments it follows that pSp ∈ Im(π).

It remains to show that the corner is full. Let I ⊆ C∗(HΓD) be a closed two-sided ideal containing
pC∗(HΓD)p. Then I contains the projections qv = pqvp for all v ∈ E0 \ {w} ∪ {w1}. Since sD(e) ⊆
E0 \ {w} ∪ {w1} for all e ∈ E1, we get te = pte ∈ I for all e ∈ E1. Since Ej ̸= ∅, for each vertex wj there
exists an edge e ∈ E1 such that wj = rD(e). Hence since pwj = t∗ete ∈ I. Thus all canonical projections are
contained in the ideal, and thus by Proposition 2.13 the unit is contained in the ideal. This shows that the
ideal must be all of C∗(HΓD) and the corner is full.

Similar as seen for the previous moves, we could not recover a proof of injectivity. In case of graphs and
ultragraphs, the Gauge Uniqueness Theorem can be applied to get injectivity of π. Hence in these cases the
previous proposition provides an isomorphism of C∗(HΓ) onto a full corner of C∗(HΓD).

Corollary 5.23. For finite graphs and ultragraphs, the indelay yields Morita equivalent C∗-algebras.

Definition 5.24 (Move I). Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a
source. We partition the set of incoming edges in finitely many nonempty sets:

{e ∈ E1 | w ∈ r(e)} = E1 ∪ · · · ∪ En.

The hypergraph HΓI obtained by performing move I on HΓ is defined by

E0
I := E0 \ {w} ∪ {w1, . . . , wn},

E1
I := {e1 | e ∈ E1, w /∈ s(e)} ∪ {e1, . . . , en | e ∈ E1, w ∈ s(e)},

rI(e
i) :=

{︄
r(e) if i = 1 and w /∈ r(e)

(r(e) \ {w}) ∪ {wj} if ei ∈ Ej ,

sI(e
i) :=

⎧⎪⎨⎪⎩
s(e) if w /∈ s(e)

(s(e) \ {w}) ∪ {w1} if i = 1 and w ∈ s(e)

{wi} i = 2, . . . , n.

We call HΓI the hypergraph obtained by insplitting HΓ at w.
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Figure 32: Illustration of the application of Move I for hypergraphs. Each color/thickness
symbolizes one edge and Ej are one-point sets.

Now we can connect the indelay with Move I and receive isomorphic C∗-algebras.

Proposition 5.25. Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a source such
that w ∈ s(e) implies w = s(e). The incoming edges of w be partitioned into disjoint sets E1 ∪ · · · ∪ En. Let
HΓD and HΓI be the corresponding hypergraphs formed by an indelay and an insplitting respectively. Then
C∗(HΓD) ∼= C∗(HΓI).

Proof. Let {pv, se} and {qv, te} be the canonical generators of C∗(HΓI) and C∗(HΓD) respectively. We
define a Cuntz-Krieger HΓI -family in C∗(HΓD) by

Pv := qv,

Sei :=

{︄
te if i = 1

tfi−1
. . . tf1te if i = 2, . . . , n.

On the other hand we can define a Cuntz-Krieger HΓD-family in C∗(HΓI) by

Qv := pv

Te := se1

Tfj :=
∑︂

e∈E1,w∈s(e)

sej+1s∗ej .

The proof that these are really Cuntz-Krieger families is quite technical, but not very difficult. We provide it
in Appendix A. Applying the universal property twice we get the *-homomorphisms

π : C∗(HΓI) → C∗(HΓD) and π̃ : C∗(HΓD) → C∗(HΓI)

pv ↦→ Pv qv ↦→ Qv

sei ↦→ Sei te ↦→ Te

which are inverse to each other. To see this, we show that both are inverse to each other on the generators.
This is clear for all projections and edges except of ei ∈ C∗(HΓI) with i = 2, . . . , n and fj ∈ C∗(HΓD). For
these we get
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π̃ ◦ π(sei) = π̃(tfi−1
. . . tf1te)

=

⎛⎝∑︂
g∈E1

sgis
∗
gi−1

⎞⎠ . . .

⎛⎝∑︂
g∈E1

sg2s
∗
g1

⎞⎠ se1

= seis
∗
ei−1 . . . se2s

∗
e1se1

= sei .

Since w ∈ s(e) implies w = s(e) we get by Lemma 2.27 hat qw1 =
∑︁

e∈E1,w∈s(e) tet
∗
e. Using this it follows

π ◦ π̃(tfi) = π(
∑︂
e∈E1

sei+1s∗ei)

=
∑︂

e∈E1,w∈s(e)

tfi . . . tf1tet
∗
et

∗
f1 . . . t

∗
fi−1

= tfi . . . tf1

⎛⎝ ∑︂
e∈E1,w∈s(e)

tet
∗
e

⎞⎠ t∗f1 . . . t
∗
fi−1

= tfi . . . tf1qw1t∗f1 . . . t
∗
fi−1

= tf i ,

where we used the properties of perfect paths.

Combining Proposition 5.22 and Proposition 5.25 we get that under the assumption, that the hypergraph
looks locally like an ultragraph, the C∗-Algebra of the insplitted hypergraph is almost Morita equivalent to
the C∗-Algebra of the initial hypergraph.

Corollary 5.26. Let HΓ = (E0, E1, r, s) be a finite hypergraph and w be a vertex that is not a source such
that for all e ∈ E1 with w ∈ s(e) it follows w = s(e). HΓI be the hypergraph obtained by insplitting HΓ at w.
Then there is a surjective *-homomorphism from C∗(HΓI) onto a full corner of C∗(HΓ).

Similar as for the other moves we again get Morita equivalence in the case of graphs and ultragraphs.

Corollary 5.27. For finite graphs and ultragraphs, move I yields Morita equivalent C∗-algebras.

Remark 5.28. In order to approach the question whether a similar classification result as in [ERRS21] holds
for hypergraph C∗-algebras, further research has to be done in this topic. One major problem concerns the
injectivity of the canonical *-homomorphisms respectively the lack of the Gauge Uniqueness Theorem. Except
of move O we could not prove it yet. But we could not construct a counterexample either, so maybe there is
a workaround. On the other hand we had to restrict the moves to hypergraphs which look locally like an
ultragraph. This reinforces the thesis that the large differences arise from the multi-valued sources and new
tool-sets have to be developed to deal with these. We will list these issues together with further research topics in
the upcoming final chapter.
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6. Further Research Topics

In the course of this thesis, questions and issues have arisen at several points that are of interest for future
work on this and related topics. We summarize these as an overview below.

• Based on our results for finite hypergraphs a next step could be to investigate infinite hypergraphs.
We already shed some light on critical steps in the definition, see Definition 2.8. Another indication
can be the results on infinite ultragraphs in [Tom03].

• Building on the specific characteristics of hypergraph C∗-algebras, one can investigate further implica-
tions of the path structure, commutativity of projections and the relevance of the order relation of
projections. As starting points are for example the Lemmata 2.26 and 2.28 to be mentioned, which
emphasize the relevance of the multi-valued source and intersecting sources, which we observed to be
the crucial difference of hypergraphs at multiple stages throughout this thesis. Based on this it can be
interesting to construct further counter examples and representations.

• The topic of non-nuclearity offers a broad field of research questions. One can investigate concrete
conditions for nuclearity and try to describe them via properties of the hypergraph. Recalling our
construction of further non-nuclear hypergraph C∗-algebras based on non-nuclear quotients, see
Proposition 3.19, the visualization of quotients in hypergraphs is interesting to look at. Within
this context one can examine the ideal structure of hypergraph C∗-algebras and their relation to
saturated and hereditary subgraphs. This is especially interesting as hereditary subalgebras of nuclear
C∗-algebras are nuclear. Thus, this could be used to further enlarge the number of examples of
non-nuclear hypergraph C∗-algebras.

• Our counterexample in Example 4.11 has shown that a direct generalization of the Gauge Uniqueness
Theorem is not possible. This raises several new research questions: Can the theorem be generalized
with another action? Do the restrictions under which the Gauge Uniqueness Theorem holds already
describe the ultragraph C∗-algebras (see Remark 4.23)? Are there other ways to proof injectivity of
representations?

• In the realm of the Gauge Uniqueness Theorem we touched the dual graph of a hypergraph. We saw
that it looses information, especially, its C∗-algebra is not isomorphic, not even Morita equivalent to
the initial hypergraph C∗-algebra, see Remark 4.15. Multiple questions are interesting in this regard:
Which information is lost? Have the hypergraphs with similar dual properties in common? Are there
other constructions/generalizations of the dual graph which give more insights?

• The manipulation of hypergraphs by moves and the corresponding changes in the associated graphs
remain an exciting area of research. Based on our results for the moves S, R, I, O, further investigations
can be made. In particular, by constructing counterexamples. Of particular interest is also the
observation that the hypergraphs must locally look like ultragraphs in order to apply the moves, see
Remark 5.3. In the context of classification of hypergraphC∗-algebras, generalization and development
of further moves may yield new results.

• In connection with Morita equivalence, which plays a decisive role in this thesis, stands the K-theory
of hypergraph C∗-algebras. For graph C∗-algebras there is already an explicit way to compute the
K-groups [RS03, Thm. 3.2]. This result can be applied to ultragraphs by Morita equivalence. With
the structural insights into the theory of hypergraph C∗-algebras laid by this work, we have formed a
foundation which allows a deeper entry into the subject of K-theory of hypergraph C∗-algebras.
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A. Further Proofs

Proof Remark 2.14 - Unital C*-algebra for infinite hypergraphs

The proof follows exactly the steps from the corresponding proofs for ultragraphs[Tom03, Lem. 3.2] with
exception of the definition of the sets An. We assume first that

E0 ∈

⎧⎨⎩
n⋃︂

i=1

⎛⎝ ⋂︂
e∈Xi

r(e)

⎞⎠ ∪
m⋃︂
i=1

⎛⎝⋂︂
e∈Yi

s(e)

⎞⎠ ∪ F
⃓⃓⃓
Xi, Yi ⊆ E1 finite, F ⊆ E0 finite

⎫⎬⎭ =:M.

Then we have by Proposition 2.12 that pE0 acts as unit on the elements sϵ1µ1
...sϵnµn

for paths µ1, . . . , µn in HΓ,
ϵ1, ...ϵn ∈ {1, ∗}, ϵj ̸= ϵj+1 and n ∈ N. These span of these elements is dense in C∗(HΓ) by Proposition
2.24. This implies that pE0 the unit of C∗(HΓ).

For the other direction we list the vertices {v1, v2, . . . } and edges {e1, e2, . . . } and define the following sets

An :=
n⋃︂

i=1

r(ei) ∪
n⋃︂

i=1

s(ei) ∪
n⋃︂

i=1

{vi}.

For each n ∈ N, An ∈M and we have An ⊆ An+1. By definition of An, there is an n ∈ N large enough for
each element sϵ1µ1

...sϵmµm
, such that pAn acts as unit on sϵ1µ1

...sϵmµm
. Hence the elements pAn form an approximate

unit on C∗(HΓ). Since C∗(HΓ) is unital, the approximate unit must converge in norm to the unit, which
can only happen if the approximate unit is eventually constant. Indeed, assuming that it is not constant,
i.e. for each m ∈ N there is some n > m such that Am ⊊ An, there exists a vertex v ∈ An \Am and hence
(pAn − pAm)pv = pv = pv(pAn − pAm). This implies that pAn − pAm is a non-zero projection and has thus
norm one, contradicting the fact that it must be a Cauchy sequence. Thus, there is some k ∈ N such that
pAk

= 1. Since pAk
⩾ pE0 ⩾ 1, we must have pAk

= pE0 and hence E0 = Ak ∈M .

Proof Proposition 5.21 - Indelay

(HR1): For e ∈ E1 with w /∈ r(e) we have

S∗
eSe = tet

∗
e = qr(e) = Pr(e).

For e ∈ Ej , i.e. for e ∈ E1 with w ∈ r(e), it holds applying the relations for perfect paths

S∗
eSe = t∗f1 . . . t

∗
fj−1

t∗etetfj−1
. . . tf1

= t∗f1tf1

= qrD(f1)

= qw1

= Pw.
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Since by the first hypergraph relation t∗etg = 0 for e, g ∈ E1
D with e ̸= g, it follows S∗

eSg = 0 for all e, g ∈ E1

with e ̸= g.

(HR2): For e ∈ E1 with w /∈ r(e) we have since Pw := qw1

SeS
∗
e = tet

∗
e ⩽ qsD(e) =

{︄
Ps(e) w /∈ s(e)

qw1 +
∑︁

v∈sD(e),v ̸=wj
qv = Ps(e) w ∈ s(e).

The second case for e ∈ Ej follows similar, since qwj = tfj−1
t∗fj−1

and the perfect path relations yield

SeS
∗
e = tfj−1

. . . tf1t
∗
fj−1

t∗ete = tet
∗
e.

(HR3): For v ̸= w we have

Pv = qv ⩽
∑︂

e∈E0
D,v∈sD(e)

tet
∗
e =

∑︂
e∈E0

D,v∈s(e)

SeS
∗
e

where we used tet∗e = SeS
∗
e for all e ∈ E1 and v ∈ sD(e) if and only if v ∈ s(e). For v = w we use that

w1 ∈ sD(e) if and only if w ∈ s(e). With this we get

Pw = qw1 ⩽
∑︂

e∈E0
D,w1∈sD(e)

tet
∗
e =

∑︂
e∈E0

D,w∈s(e)

SeS
∗
e .

Thus, all hypergraph relations are fulfilled.

Proof Proposition 5.25 - Indelay and Move I

We first prove that

Pv := qv,

Sei :=

{︄
te if i = 1

tfi−1
. . . tf1te if i = 2, . . . , n

is in fact a Cuntz-Krieger HΓI -family in C∗(HΓD).
(HR1): We first note that by definition, rD(e) = rI(e

i) for all e ∈ E1. Thus we get for i = 1

S∗
e1Se1 = t∗ete = qrD(e) = PrI(e1).

For i = 2, . . . , n we get using the fact that the fj build perfect paths

S∗
eiSei = t∗et

∗
f1 . . . t

∗
fi−1

tfi−1
. . . tf1te = t∗ete = qrD(e) = PrI(ei).

It follows directly that for ei ̸= gj we have S∗
ei
Sgj = 0.
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(HR2): For i = 1 we get using that sD(e) = sI(e
1) for all e ∈ E1

Se1S
∗
e1 = tet

∗
e ⩽ qsD(e) = PsI(e1).

For i = 2, . . . , n we get, using again that we deal with perfect paths

SeiS
∗
ei = tfi−1

. . . tf1tet
∗
et

∗
f1 . . . t

∗
fi−1

⩽ t∗fi−1
tfi−1

= qwi

= Pwi

= PsI(ei).

(HR3): Consider v ̸= wi for i > 1. Then we have that v ∈ sD(e) if and only if v ∈ sI(e
1). Recalling that

Se1 = te we get

Pv = qv ⩽
∑︂

e∈E1
D,v∈sD(e)

tet
∗
e ⩽

∑︂
e∈E1

I ,v∈sI(e)

SeS
∗
e .

In case of v = wi for i > 1 we have using the perfect paths

Pwi = qwi

= tfi−1
t∗fi−1

= tfi−1
. . . tf1t

∗
f1 . . . t

∗
fi−1

= tfi−1
. . . tf1qw1t

∗
f1 . . . t

∗
fi−1

⩽ tfi−1
. . . tf1

⎛⎝ ∑︂
e∈E1

D,v∈sD(e)

tet
∗
e

⎞⎠ t∗f1 . . . t
∗
fi−1

=
∑︂

e∈E1
D,v∈sD(e)

tfi−1
. . . tf1tet

∗
et

∗
f1 . . . t

∗
fi−1

=
∑︂

ei∈E1
D,wi∈sI(ei)

SeiS
∗
ei .

Next we prove that

Qv := pv,

Te := se1 for e ∈ E1,

Tfj :=
∑︂

w∈s(e)

sej+1s∗ej

is in fact a Cuntz-Krieger HΓD-family in C∗(HΓI).
(HR1): For e ∈ E1 we have using that rI(e1) = rD(e)

T ∗
e Te = s∗e1se1 = prI(e1) = QrD(e).
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For the remaining edges {f1, . . . , fn−1} it holds using that rI(ej+1) = rI(e
j) and using that using that

sI(e
i) = wi for i = 2, . . . , n

T ∗
fj
Tfj =

⎛⎝ ∑︂
w∈s(e)

sejs
∗
ej+1

⎞⎠⎛⎝ ∑︂
w∈s(e)

sej+1s∗ej

⎞⎠
=
∑︂

w∈s(e)

sejs
∗
ej+1sej+1s∗ej

=
∑︂

w∈s(e)

sejs
∗
ej

= pwj

= Qwj

= QrD(fj).

(HR2): For e ∈ E1 we have since sI(e1) = sD(e)

TeT
∗
e = se1se1 ⩽ psI(e1) = QsD(e).

Similar as for (HR1) we get for the remaining edges {f1, . . . , fn−1} using that sI(ei) = wi for i = 2, . . . , n

TfjT
∗
fj

=

⎛⎝ ∑︂
w∈s(e)

sej+1s∗ej

⎞⎠⎛⎝ ∑︂
w∈s(e)

sejs
∗
ej+1

⎞⎠
=
∑︂

w∈s(e)

sej+1s∗ejsejs
∗
ej+1

=
∑︂

w∈s(e)

sej+1s∗ej+1

= pwj+1

= Qwj+1

= QsD(fj).

(HR3): For v ̸= wj we get since sI(e1) = sD(e)

Qv = pv ⩽
∑︂

ei∈E1
I ,v∈sI(ei)

seis
∗
ei =

∑︂
e∈E1

D,v∈sD(e)

TeT
∗
e .

The case v = wj for j = 2, . . . , n follows directly from the calculation in (HR2).
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B. List of Graph and Hypergraph C*-Algebras

We list some examples of graph- and hypergraph C∗-algebras as overvies. We visualize them and use colored
edges of different thickness to mark single edges if it simplifies the picture.

C∗-Algebra Definition Hypergraph

C E0 = {v}, E1 = ∅

Mn(C) E0 = {v1, . . . , vn}
E1 = {e1, . . . , en−1}
s(ej) = vj+1, r(e) = vj

v1 v2 . . . vn
e1 e2 en−1

E0 = {v, w}
E1 = {e1, . . . , en−1}
s(ej) = v, r(ej) = w

v w

e1

en−1

...

E0 = {v, w1, . . . , wn−1}
E1 = {e1, . . . , en−1}
s(ej) = v, r(ej) = wj

v

w1

...
wn−1

e1

en−1

On E0 = {v}
E1 = {e1, . . . , en}
s(ej) = v, r(ej) = v

v e1 . . . en

E0 = {v1, . . . , vn}
E1 = {e1, . . . , en}
s(ej) = vj , r(ej) = {v1, . . . , vn}

v1

v2

. . .

vn

e1 e2

en
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T E0 = {v, w}
E1 = {e, f}
s(e) = w, r(e) = v
s(f) = w, r(f) = w

v w
e

f

E0 = {v, w}
E1 = {e, f}
s(e) = {w}, r(e) = {v, w}

v w
e

e

E0 = {v, w}
E1 = {e, f}
s(e) = {v, w}, r(e) = {w}

v w
e

e

M2(C(T)) E0 = {v, w}
E1 = {e, f}
s(e) = v, r(e) = w
s(f) = w, r(f) = v

v w

e

f

C(T) ∗ Cn E0 = {v1, . . . , vn}
E1 = {e}
s(e) = {v1, . . . , vn}
r(e) = {v1, . . . , vn}

v1
v2

. . .

vn−1

vn

O2 ∗ Cn E0 = {v1, . . . , vn}
E1 = {e1, . . . , em}
s(ej) = {v1, . . . , vn}
r(ej) = {v1, . . . , vn}

v1
v2

. . .

vn−1

vn
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C. List of Non-Amenable Hypergraphs

In the following we list a bunch of non-amenable hypergraphs. Since we have to be ensure that the remaining
quotient is non-nuclear, n must be chosen sufficiently large. The crucial non-nuclear part of the hypergraph
is colored blue.

E0 := {v1, . . . vn}
E1 := {f}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

v1
v2

. . .
vn−1

vn

E0 := {w, v1, . . . vn}
E1 := {e, f}
s(e) := {w}, r(e) := {vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

w

v1
v2

. . .
vn−1

vn
e

E0 := {w1, w2, v1, . . . vn}
E1 := {e, f}
s(e) := {w1, w2}, r(e) := {vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

w1

w2

v1
v2

. . .
vn−1

vn

e

e

E0 := {w, v1, . . . vn}
E1 := {e, f}
s(e) := {w}, r(e) := {vn−1, vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn} w

v1
v2

. . .
vn−1

vn
e

e

E0 := {w1, w2, v1, . . . vn}
E1 := {e1, e2, f}

s(e1) := {w, vn−1}, r(e1) := {vn−1, vn}
s(e2) := {w, vn−1}, r(e2) := {vn−1, vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

w1

w2

v1
v2

. . .
vn−1

vn
e1

e2
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E0 := {v1, . . . vn}
E1 := {e, f}
s(e) := {vn−1}, r(e) := {vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

v1
v2

. . .
vn−1

vn

e

E0 := {w, v1, . . . vn}
E1 := {e, f}
s(e) := {w, vn−1}, r(e) := {vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

w

v1
v2

. . .
vn−1

vn
e

e

E0 := {w, v1, . . . vn}
E1 := {e, f}
s(e) := {w, vn−1}, r(e) := {vn−1, vn}
s(f) := {v1, . . . , vn}, r(f) := {v1, . . . , vn}

w

v1
v2

. . .
vn−1

vn
e

e e

e

E0 := {w, v1, . . . vn}
E1 := {e, f}
s(e) := {w}, r(e) := {w}
s(f) := {w, v1, . . . , vn}, r(f) := {v1, . . . , vn}

we

v1
v2

. . .
vn−1

vn

E0 := {w, v1, . . . vn}
E1 := {e, f}
s(e) := {w, vn}, r(e1) := {w}
s(f) := {w, v1, . . . , vn}, r(f) := {v1, . . . , vn}

we

v1
v2

. . .
vn−1

vn

E0 := {w, v1, . . . vn}
E1 := {e1, e2, e3, f}

s(e1) := {w}, r(e1) := {w}
s(e2) := {w}, r(e2) := {vn}
s(e3) := {vn}, r(e3) := {w}
s(f) := {w, v1, . . . , vn}, r(f) := {v1, . . . , vn}

we1

v1
v2

. . .
vn−1

vn
e2

e3
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