
Saarland University

Faculty of Mathematics and Computer Science

Department of Computer Science

Bachelor Thesis

Design and Implementation of Efficient Algorithms for
Operations on Partitions of Sets

submitted by

Sebastian Volz

under supervision of

Nicolas Faroß

Prof. Dr. Moritz Weber

submitted

Reviewers

Prof. Dr. Moritz Weber

Prof. Dr. Markus Bläser

1

Erklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Statement
I hereby confirm that I have written this thesis on my own and that I have not used any other
media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek
der Informatik/Mathematik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science/Mathmatics Department.

Saarbrücken

2

3

Abstract

Easy quantum groups are associated with categories of partitions. These categories were initially
defined by Teodor Banica and Roland Speicher in 2009 and their classification was completed by
Sven Raum and Moritz Weber in 2016. We design and implement efficient algorithms and data
structures for finding and verifying different properties related to partitions and their categories.

More precisely, we propose algorithms for operations on partitions, constructing categories,
and linear combinations of partitions. As an extension, we introduce a tracing algorithm for
constructing categories, as well as algorithms for generalizations of classical partitions, such as
colored- and spatial partitions, which are not yet fully classified. Through tracing, we explore
specific properties related to classical, colored, and spatial partitions.

In addition, after completing the design process, we present a concrete implementation.

2

Contents

1 Introduction 1

2 Background 3
2.1 Mathematical Background . 3

2.1.1 Partitions . 3
2.1.2 Operations on Partitions . 3
2.1.3 Categories of Partitions . 5
2.1.4 Generalization: Colored Partitions . 6
2.1.5 Generalization: Spatial Partitions . 6

2.2 Computer Science Background . 8
2.2.1 Asymptotic Analysis and Notation . 8
2.2.2 Data structure: Dictionary . 9
2.2.3 Path Compression . 10
2.2.4 SymPy Python Package . 11

3 Algorithms and Data Structures for Partitions and Their Operations 12
3.1 Design Description and Implementation Details . 12
3.2 Evaluation and Results . 16

4 Algorithm 1: Constructing Categories 18
4.1 Design Description and Implementation Details . 18
4.2 Evaluation and Results . 23
4.3 Algorithm Extensions . 27

4.3.1 Algorithms for Colored Partitions . 27
4.3.2 Algorithms for Spatial Partitions . 28
4.3.3 Tracing . 30

5 Algorithm 2: Linear Combinations of Partitions 34
5.1 Design Description and Implementation Details . 34
5.2 Evaluation . 37
5.3 Application with Interval Partitions . 37

6 Discussion and Outlook 40
6.1 Limitations . 40
6.2 Future Work . 40

A Overview Categories 44

3

4

1 Introduction

1 Introduction

In this thesis, we study algorithms and data structures in the domain of partitions of sets. More
precisely, we consider operations and categories of partitions. Categories of partitions are related
to easy quantum groups, as defined in [BS09] and their classification was completed in [SR16].
Furthermore, partitions can be generalized by colored partitions and spatial partitions. The clas-
sification of colored partitions is almost completed in [TW15b] and [MW19]. In contrast, spatial
partitions, introduced in [CW16] and further investigated in [Far22], are still relatively unknown.
However, in the context of this thesis, we focus on partition problems and not the relation to
easy quantum groups. Overall, we operate at the interface of mathematics and computer science,
combining these domains to obtain an interdisciplinary perspective.

A partition p ∈ P (k, l) is a partition of a set S = {1, ..., k + l} into disjoint subsets. These
partitions can be represented by k upper and l lower points, where each point is an element of
S. Points in the same subset are connected and form a resulting block. This can be visualized as
follows:

, , , .

Furthermore, we can apply operations on them, namely the tensor product, the involution and
the composition. A category C of partitions is a set of partitions, which is closed under these
operations and contains the base partitions ∈ P (1, 1) and ∈ P (0, 2). A category C can also be

defined by a set of generating partitions. For example, the category P 1,2, representing all partitions
with a block size of one or two (with the associated easy quantum group Bn) can be depicted by
the following generating partitions:

⟨ , ⟩
This category contains every partition that can be constructed using both the generating partitions
and the base partitions, considering the operations on partitions.
After designing algorithms for the operations on partitions, we can find an algorithm, which pro-
duces subsets of categories, given a partition size constraint.

Theorem 1.1 (Section 3.2, Theorem 3.14., 3.15., 3.16.). The time complexity of the tensor product
is O(n), of the involution O(1) and of the composition O(n log(n)).

Given a set of generating partitions representing a category C, and a number n ∈ N, the
algorithm for constructing categories has the goal to provide P (n) ∩ C as an output, where P (n)
is the set of all partitions of size n.

Theorem 1.2. Let G be a set of generating partitions of a category C and n ∈ N. Then the
algorithm for constructing categories in Section 4 computes a set S ⊆ P (n) ∩ C.

The general application can be to retrieve properties of specific categories using the data pro-
duced by the construction algorithm.

Additional research in the scope of this thesis involves the development of extension algorithms
for generalizations of partitions, specifically of colored and spatial partitions. Additionally, we aim
to devise algorithms for handling linear combinations of partitions.

Extending the constructing categories algorithms for classical, colored and spatial partitions
has the purpose of tracing every necessary partition in the constructed category. As a result, we
get insights into the construction process of categories, potentially revealing noteworthy properties.

An example property for classical partitions, found during the construction process, is explained
Example 4.12.1.

Theorem 1.3 (Example 4.19.1.). It is possible to construct ∈ P (4) with ⟨ , ⟩, without using
partitions of size > 4.

For spatial partitions, we were able to get the properties described in Example 4.12.2., Theorem
4.13. and Theorem 4.14.

Theorem 1.4 (Example 4.19.2.). The sets ⟨ , , , ⟩ and ⟨ , , ⟩ generate the same
category.

1

1 Introduction

Theorem 1.5 (Theorem 4.20.). The following sets all generate P (2):

• ⟨ (2), , , , , ⟩

• ⟨ (2), , , ⟩

• ⟨ (2), , , ⟩

• ⟨ (2), , , ⟩

• ⟨ (2), , , ⟩

Theorem 1.6 (Theorem 4.21.). The following sets all generate P
(2)
2 :

• ⟨ , , , , ⟩

• ⟨ , , ⟩

• ⟨ , , ⟩

• ⟨ , , ⟩

• ⟨ , , ⟩

• ⟨ , ⟩

The concrete implementations resulting from this thesis are available in [Vol23].

Overview of the thesis

We begin by laying out the mathematical foundations in Section 2.1, by introducing the core
concepts of partitions, encompassing their definitions, operations, and categorizations. This is then
followed by the computer science background in Section 2.2. The computer science background
includes notation to analyse algorithms with respect to their complexity. Furthermore, we present
some optimization techniques and data structures used in the algorithms.

In order to get a solid foundation for algorithms in the domain of categories and linear com-
binations of partitions, we start by designing efficient algorithms for operations on partitions in
Section 3.

Afterwards, we propose algorithms for constructing categories in Section 4, including the al-
gorithm for classical partitions and the algorithms for their generalizations, namely colored and
spatial partitions. As there are categories for which understanding the partition construction pro-
cess can be meaningful, we also present an algorithm capable of tracing each partition in terms of
its construction process.

For handling linear combinations of partitions, we design algorithms for adding and multiplying
polynomial partitions terms, followed by an application example in Section 5.

Finally, we discuss the limitations and prospects for future work within the scope of this thesis
in Section 6.

2

2 Background

2 Background

In this section, we start with some preliminaries regarding both the mathematical background, as
well as the computer science background. First, we define some aspects in the area of partitions,
followed by computer science oriented techniques, such as Big-O Notation, path compression and
data structures.

2.1 Mathematical Background

At first, we introduce some concepts from combinatorics, namely partitions.

2.1.1 Partitions

In the following section, we introduce partitions. As will be explained in Section 2.1.2 and Sec-
tion 2.1.3, we can operate on them as well as classify their so called categories. All definitions
proposed in this section can be found in [BCS09], [BBC07], [Sta99] and [TW15a].

Definition 2.1 (Partition). Let k, l ∈ N. A partition p is given by k lower and l upper points.
It partitions a set {1, ..., k, k + 1, ..., k + l} into disjoint subsets, called blocks. Partitions can also
be visualized. Given p ∈ P (k, l) ⊆ P (n) with n = k + l, we first draw a row of k upper points
followed by l lower points. After numbering these points from 1 to k+ l (all elements from the set
{1, ..., k, ..., k + l}) we connect them according to the blocks defined in p.

Example 2.2. Given p ∈ P (4, 3), where s = {1, 2, 3, 4, 5, 6, 7} is the set we partition into p =
{{1, 6}, {2, 5}, {3, 4, 7}}. We can visualize p as follows:

{{1, 6}, {2, 5},
{3, 4, 7}}

∼=
1 2 3 4

5 6 7

∼=

2.1.2 Operations on Partitions

In order to operate on partitions, as defined in [BCS09], there are three main operations, namely
the tensor product, the involution (also known as horizontal reflection) and the composition. From
these three operations, combined with the base partitions, we also can derive the rotation and the
vertical reflection.

Definition 2.3 (Tensor Product). Let p ∈ P (k1, l1) and q ∈ P (k2, l2). Then the tensor product
can be obtained by concatenating p and q in form of p⊗ q ∈ P (k1 + k2, l1 + l2).

Example 2.4 (Tensor Product).

⊗
=

Definition 2.5 (Involution). Let p ∈ P (k, l). Then the unary operation involution p∗ ∈ P (l, k)
can be obtained by swapping the upper and lower points.

Example 2.6 (Involution).  ∗ =

Definition 2.7 (Composition). Let p ∈ P (k1, l1) and q ∈ P (k2, l2) and k1 = l2. Then the com-
position pq ∈ P (k2, l1) can be obtained by connecting p and q by writing q above p and joining
each lower point of q with the respective upper point of p so that we connect every point in l2 to
a point in k1 with respect to the order. After this process, any intermediate points and loops are
removed, such that only the upper points of q and the lower points of p are left.

3

2 Background

Example 2.8 (Composition).

· = =

Definition 2.9 (Rotation). Let p ∈ P (k, l) and k > 0. Then the unary operator rotation prot ∈
P (k − 1, l + 1) can be obtained by shifting the very left upper point to the very left of the lower
points. Note that all points belong to the same blocks as before. The result of this operation is
called rotated version. Analogical, we can also rotate from the lower points to the upper points
and from the left side or from the right side of the partition p.

Example 2.10 (Rotation). The following figure shows an example of a left-top rotation: rot

=

Definition 2.11. Let p ∈ P (k, l). Then the unary operator vertical reflection p↔ ∈ P (k, l) can
be obtained by reversing the upper points and also reversing the lower points in p.

Example 2.12 (Vertical Reflection). ↔ =

Definition 2.13 (Category operation). An operation is called category operation if and only if it is
part of the three main operations (tensor product, involution, composition) or it can be constructed
with a combination of the main operations and base partitions ∈ P (1, 1) and ∈ P (0, 2). Because
we can construct the rotation and the vertical reflection with the rules defined above, they both
are also category operations.

Lemma 2.14. The rotation is a category operation.

Proof. Let p ∈ P (n) be a partition with n ∈ N. Then we can produce the left-top rotation with
(⊗ p) · (⊗ ⊗ ...⊗), which can be visualized as follows:

...⊗ ⊗

⊗ p

⊗

As a result we can see that the rotation can be produced with the operations tensor product and
composition and the base partitions ∈ P (1, 1) and ∈ P (0, 2).

Lemma 2.15. The vertical reflection is a category operation.

Proof. Let p ∈ P (k, l) be a partition with k, l ∈ N. Then we can produce the vertical reflection by
k top-left rotations, followed by l bottom-right rotations and one involution operation.

p↔ ⇔
(
prot

(...)rot
)∗

4

2 Background

2.1.3 Categories of Partitions

Definition 2.16 (Categories of Partitions). A category of partitions is defined by a subset C ⊆ P ,
where P :=

⋃
k,l P (k, l) is the set of all partitions, such that C contains the base partitions

∈ P (1, 1) and ∈ P (0, 2) and is closed under the category operations. This results in the
property C(k, l) := C ∩ P (k, l). We can also specify categories of partitions using a set S of so
called generator partitions, where a category is closed under the set of generator partitions ⟨S⟩
with the base partitions.

Definition 2.17 (Non-crossing Partitions). Let p be a partition. Then we say p is a non-crossing
partition, if for every pair of blocks (b1, b2) in p all upper/lower points of b2 have exclusively smaller
or exclusively higher indices than every index of the upper/lower points in b1.

Definition 2.18 (Balanced Partitions). Let p be a partition. Then we say p is a balanced partition,
if every block, that is not a singleton, has the same amount of points with even and odd indices.
Additionally, within a balanced partition, the amount of singletons with odd indices matches that
of even indices.

Example 2.19 (Categories of Partitions). The following sets are examples of categories of parti-
tions which are relevant for the subject of this thesis.

Below, we can see some example categories, followed by the generator partitions which can be
used to construct those.

1. The set P of all partitions = ⟨ , ⟩

2. The set NC of all non-crossing partitions = ⟨ ⟩

3. The set P2 of all pair partitions (every block has a size of two), = ⟨ ⟩

4. The set Peven BS of all partitions with even block size (every block has an even size), =
⟨ , ⟩

5. The set P 1,2 of all partitions with block size one or two, = ⟨ , ⟩

6. The set Peven of all partitions with an even size, = ⟨ , , ⟩

7. The set P 1,2
even of all partitions with an even size and block size one or two, = ⟨ , ⟩

8. The set NC2 of all non-crossing partitions with block size two, = ⟨ ⟩ (i. e. can be produced
by only the base partitions)

9. The set NCeven BS of all non-crossing partitions with even block size, = ⟨ ⟩

10. The set NC1,2 of all non-crossing partitions of block size one or two, = ⟨ ⟩

11. The set NCeven of all non-crossing partitions with even size, = ⟨ , ⟩

12. The set NC1,2
even of all non-crossing partitions of even size and with block size one and two,

= ⟨ ⟩

13. The set B of all balanced partitions, = ⟨ , ⟩

14. The set B2 of all balanced partitions of block size two, = ⟨ ⟩

15. The set NCBeven of all non-crossing partitions of even size, which are balanced pairs and
have an even number of singletons (blocks of size one), = ⟨ ⟩

16. The set B1,2
even of all balanced partitions of block size one and two with even number of

singletons, = ⟨ , ⟩

Furthermore, the intersection of two categories forms a new category: Let C1 and C2 be
categories, then C1 ∩ C2 is also a category.
For example,

NC2 := NC ∩ P2

.
An extensive overview of categories and the respective quantum groups can be found in Ap-
pendix A.

5

2 Background

2.1.4 Generalization: Colored Partitions

In this section, we briefly define colored partitions in order to introduce a construction algorithm
for their categories in Section 4. The classification of colored partitions is almost completed in
[TW15b] and [MW19]. In this and the following sections, we use the definitions from [TW15b] and
[MW19].

Definition 2.20 (Colored Partitions). Colored partitions are a generalization of partitions. In
order to get a colored partition, we have to assign every point in a partition either black or white.
As a result, we get a binary coloring, for example:

Remark 2.21. For colored partitions, the operations involution and tensor product remain the
same.

Let p, q be partitions. If we want to apply the composition pq, we have to ensure, that the
coloring of the upper points of p and the lower points of q is the same. The rest of the operation
does not differ from Definition 2.7.

Furthermore, the base partitions of colored partitions are , ∈ P (1, 1) and , ∈ P (0, 2).

2.1.5 Generalization: Spatial Partitions

In this section we define spatial partitions, in order to introduce a construction algorithm for their
categories in Section 4. Spatial partitions, introduced in [CW16], are still relatively unexplored.
In the following section, we use the definitions from [CW16].

Definition 2.22 (Spatial Partitions). Let k, l ∈ N and m ∈ N. A spatial partition is a partition of
the set {1, ..., k, k+1, ..., k+ l}× {1, ...,m} into disjoint subsets. Each subset forms a called block.
The first component {1, ..., k, k+ 1, ..., k+ l} is divided into k upper and l lower points, where the
second component {1,..., m} consists of m levels. We say P (m)(k, l) ⊆ P (m)(n) is the set of all
spatial partitions with k upper points, l lower points, m levels and k + l = n ∈ N. For simplicity,
we write P (m) instead of P (m)(k, l) or P (m)(n). Spatial partitions are a generalization of classical
partitions.

Example 2.23. The following example shows a visualization of a spatial partition p ∈ P (2)(1, 2).
In contrast to the classical partitions, we add dimensions to the points.

{{(1, 1), (2, 1)},
{(1, 2), (3, 2)},
{(2, 2), (3, 1)}}

∼=
(1,1)

(1,2)

(2,1)
(2,2)

(3,1)
(3,2)

∼=

Example 2.24 (Operations on Spatial Partitions). In the domain of spatial partitions, we have
the operations tensor product, involution and composition. These operations on spatial partitions
follow the same principles as on classical partitions. For example:

1. Tensor product

⊗
=

2. Involution 

∗

=

3. Composition

· = =

6

2 Background

Definition 2.25 (Partition Amplification). Let p ∈ P (k, l) be a partition with k, l ∈ N. Then we
say p(m) ∈ P (m)(k, l) is the amplified version of p (on m levels), if p(m) is given by repeating p on
each level d with 1 ≤ d ≤ m.

Example 2.26. Let p = , then p(3) is the amplified version of p, which looks as follows:

Definition 2.27 (Amplification of a Set of Partitions). Let C be a set of partitions. Similar to
Definition 2.25, we define [C] as the amplification of C, if

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

Definition 2.28 (Category of Spatial Partitions). A category of spatial partitions C be a , then
C ⊆ P (m) is a set ⊆ P (m), which is closed under the operations tensor product, involution and
composition with the base partitions (m) ∈ P (m)(1, 1) and (m) ∈ P (m)(0, 2). Similar to classical
partitions, we can represent categories of spatial partitions by a set S of generator spatial partitions
with ⟨S⟩.

Remark 2.29. Note that, if C ⊆ P is a category of partitions, then [C](m) ⊆ P (m) is a category
of spatial partitions.

Example 2.30. The following sets are examples of categories of spatial partitions defined in
[CW16], which are also relevant for the subject of this thesis.

1. The set [P](m) = ⟨ (m), (m)⟩

2. The set [P2]
(m) = ⟨ (m)⟩

3. The set [NC2]
(m) = ⟨ (2), (2)⟩ of NC2 as the minimal category of all spatial partitions

4. The set P (2) = ⟨ (2), , , , , ⟩

5. The set P
(2)
2 = ⟨ , , , , ⟩

7

2 Background

2.2 Computer Science Background

2.2.1 Asymptotic Analysis and Notation

In order to analyze an algorithm regarding the efficiency and the resulting runtime, there are several
types of asymptotic notation which are used to compare the relative performance. Particularly, we
will focus on the so called ”Big-O notation” and ”Ω-notation”.

Definition 2.31 (Big-O notation). Let g : N → N be functions. We define O(g) as the following
set:

O(g(n)) = {f : N → N |∃c>0,∃n0>0,∀n≥n0
: 0 ≤ f(n) ≤ c · g(n)}

As a result, this simply means f ∈ O(g) if and only if we can find a c and a n0 such that for
all n greater than n0, we satisfy 0 ≤ f(n) ≤ c · g(n). In other words, g grows ”faster” than f .

Note, that this leads to the following property:

lim sup
n→∞

f(n)

g(n)
< ∞

Figure 1: Example of two function g and f with f ∈ O(g)

In Figure 1, we can see an example in a geometrical point of view, in which f ∈ O(g). We can
clearly see, that there is a point n0 from which on f is smaller than g.

Definition 2.32 (Ω-notation). Let f, g : N → N be functions. We define Ω(g(n)) as the following
set:

Ω(g(n)) = {f |∃c>0,∃n0>0,∀n≥n0
: 0 ≤ c · g(n) ≤ f(n)}

The Ω-notation is used for assigning a problem a lower bound, regarding the runtime complexity.
Its application is to make predictions about how efficient can an algorithm be in order to solve the
underlying problem.

Example 2.33. The following examples apply.

1. Let f : N → N, n 7→ 1000. Then
f ∈ O(1).

If f : N → N, n 7→ n. Then
f /∈ O(1).

2. Let g : N → N, n 7→ 1000n. Then
g ∈ O(n).

If g : N → N, n 7→ n · log(n). Then
g /∈ O(n).

8

2 Background

3. Let g : N → N, n 7→ nk, where k ∈ N and let f(n) =
∑k

i=0 ain
i be a polynomial of degree at

most k. Then
f ∈ O(g).

Proof. To prove the statement f ∈ O(g), we show that

lim sup
n→∞

f(n)

g(n)
< ∞. (1)

If we insert the functions, we get

lim sup
n→∞

∑k
i=0 ain

i

nk
< ∞. (2)

Since lim sup
n→∞

nl

nk
= 0, for l < k, we can reduce the equation to

lim sup
n→∞

akn
k

nk
= ak < ∞. (3)

Remark 2.34. Let k ∈ N0. The most commonly used algorithmic runtimes are

O(nk), O(nk · log(n)), O(kn), O(n!).

2.2.2 Data structure: Dictionary

The dictionary is a frequently used data structure to optimize different operations. It is used for
storing a group of objects. Because sets and dictionaries have a strong relation, we first introduce
them.

Data Structure Set. The set in data type theory is a computer implementation of the mathe-
matical concept of sets. It stores unique objects without indices.
In order to guarantee the uniqueness of the elements in the set, so called hash functions and
collision resolution techniques (see [MST20]) are used. Hash functions map data to a fixed-size
value. Optimally we have the property, that two inputs of a hash function are equal, if and only
if the resulting output value is equal. If our hash function does not satisfy this property, we use
a collision resolution technique. Since the hash function can be calculated in O(1), we are able to
access a set in an average runtime of O(1).

Data Structure Dictionary. A dictionary is a data structure for storing pairs of values in a
key-value relationship. Every key in a dictionary points to a specific value. Analogical to a set,
the dictionary transforms the keys to a hash value. Consequently, the keys are unique like the
elements in a set. For example,

a = {4 : 5,−14 : 6, ”example” : 10, 6 : 6}

is a valid dictionary, while

b = {4 : 5,−14 : 6, ”example” : 10, 4 : 6}

is an invalid dictionary. Similarly to the set, we have the advantage of accessing the key elements
in a dictionary in an average runtime of O(1).

9

2 Background

2.2.3 Path Compression

Path compression is a technique frequently used in the Union-Find data structure, see [Tar79].
We will use this technique to optimize the runtime of the composition operation, discussed in
Section 2.1.2, regarding the runtime.
Because we use the path compression technique on a directed forest, we first define the terms
directed tree and directed forest, see [Deo12].

Definition 2.35 (Directed tree). A directed tree is a directed graph with exactly one root r. For
every node v there is exactly one path from v to r. The definition of a directed tree is equivalent
to a directed rooted connected acyclic graph.

Definition 2.36 (Directed forest). A forest is a directed graph which allows multiple roots. For
every node v there is at most one path to a root. The definition of a directed tree is equivalent
to an directed rooted (not necessarily connected) acyclic graph. In contrast to a directed tree, the
directed forest can consist of more than one connected component.

Example 2.37 (Directed forest).

1

2

3

4

5 6

7

Note that each connected component in a forest is a directed tree.

Path Compression. Let F = (V,E) be a forest of a set V representing the nodes and a set E
representing the edges in which ∀e∈E : e ∈ V × V . If there is a path v → p → r, where r is the
root, p is a path and pnodes are all nodes in p, then we assign the set v ∪ pnodes as children of r,
while deleting all edges in v → p from E. For example:

1

2

3

8

4

5 6

7

⇓
1

2

38

4

5 6

7

10

2 Background

In this example, we can observe, that the path 8 → 3 → 2 → 1 has been compressed, following the
definition above.

1 for s t a r t node in new ids :
2 a = new ids . get (s t a r t node)
3 path = [s t a r t node]
4 while a in new ids :
5 path . append (a)
6 a = new ids . get (a)
7 path . append (a)
8 for node in path :
9 i f node != path [−1] :

10 new ids [node] = path [−1]

The code above shows an implementation example, which is used in the code [Vol23] to improve
the composition operations, as already stated above. The code compresses every path in a forest
containing edges, which have not yet been compressed. The variable new ids is a dictionary from
node to node.
In general, the dictionary represents the directed forest we want to compress. Every key and value
in the dictionary stands for a node v ∈ V in the forest F = (V,E). Every two nodes v and u,
which are in a key-value relationship in the dictionary, describe an edge (v, u) ∈ E. This algorithm
has an average runtime of O(n) with n = |E|, since we either compress or iterate over every edge
at most once and the dictionary access is in average O(1), see Section 2.2.2.

2.2.4 SymPy Python Package

In this section, we will introduce the SymPy package, which is a Python library for symbolic
mathematics. It is an open-source computer algebra system written in pure Python. This package
is used in Section 5 in order to implement the operations for linear combinations of partitions.
In particular, we need to briefly introduce symbolic variables, the solve function and the expand
function. More information about this package can be found in [MSP+17].

Symbolic Variables

The SymPy library offers the functionality of symbolic variables. We can define such a variable,
by importing the sympy.abc module as follows:

1 from sympy . abc import d

By doing so, we can represent terms and expressions that depend on the variable d.

The solve function

The solve function is a powerful tool in sympy for solving algebraic equations and systems of
equations. It takes an expression or a list of expressions as input and calculates the values of the
variables that satisfy the equation. For example, to solve the equation d3 + d2 − 6d = 0, we can
use the solve function as follows:

solve(d3 + d2 − 6d, d).

This will return the solutions {−3, 0, 2}. In other words, we can use it to find the roots of a
polynomial.

The expand function

The expand function is used to simplify algebraic expressions by expanding them. It takes an
expression as input and returns its expanded form. For example, to expand the expression (d +
3) · (d− 2) · d, we can use the expand function as follows:

expand((d+ 3) · (d− 2) · d).

This will return d3 + d2 − 6d.

11

3 Algorithms and Data Structures for Partitions and Their Operations

3 Algorithms and Data Structures for Partitions and Their
Operations

In this section, we will explain the design choices of the implementation of partitions and their op-
erations (see Section 2.1.1 and Section 2.1.2). The whole implementation, including the algorithms
discussed in this chapter, can be found in [Vol23].

3.1 Design Description and Implementation Details

Prior to implementing the operations, we must first find an efficient data structure to represent a
partition. This allows the computer to operate on the partition effectively. When implementing
the operations, it is crucial to consider the chosen data structure’s suitability and impact.

Data Structure for Partitions

Since partitions are characterized by a set of upper and lower points, it is evident that we shall use
a list of two lists (List[List[], List[]]). The first list stands for the upper points, while the second
stands for the lower points.
A point of a partition is represented by a number n ∈ N, with the following rule

connected(a, b) ⇔ a = b

for all points a and b in a partition, where connected returns true if the inputs are in the same block.

Example 3.1.

[[1, 2, 3, 3],
[2, 1, 3]]

∼=

Algorithm 3.2 (Normal Form Algorithm). We clearly need an efficient method to distinguish
partitions. It is often the case, that two partition objects with a different syntax has the same
semantic. For example,

[[1, 2, 3, 3],
[2, 1, 3]]

= =
[[2, 3, 4, 4],
[3, 2, 4]]

.
Because of that, we want to ensure that, two partitions are equal, if and only if they have the

same syntax. As a result, the goal of this algorithm is to assign an input partition new point
values from 1 to the number of blocks in the partition, while we only change the syntax but not
the semantics of the partition. With that property, we can simply assume that partitions with
equal lists are equal.

Algorithm 3.3 (Helper Function Algorithm). Before proceeding with the operations on partitions,
we require a helper function that assigns new point values to a partition without altering its
structure. Let p, q be partitions with p ∈ P (k1, l1) and q ∈ P (k2, l2). Then we assign q new point
values greater than the greatest point value in p. After this step, the point values in p and q are
disjoint, since

∀pointp ∈ p∀ pointq ∈ q : pointp > pointq

.

Now we will proceed by introducing the algorithms for the operations on partitions (see Sec-
tion 2.1.2).

Algorithm 3.4 (Tensor Product Algorithm). Let p, q be partitions with p ∈ P (k1, l1) and q ∈
P (k2, l2) and List[List[k1], List[l1]], List[List[k2], List[l2]] be the respective representations of p
and q, regarding the data structure introduced above. Then the tensor product p ⊗ q can be
implemented by the concatenation of the upper lists list[k1] and list[k2] and the lower lists list[l1]
and list[l2]. In order to preserve the blocks, we have to apply the helper function algorithm
(Algorithm 3.3) before concatenating.

12

3 Algorithms and Data Structures for Partitions and Their Operations

Example 3.5 (Tensor Product Algorithm). In this example, we can see, that the algorithm first
applies the helper function algorithm (Algorithm 3.3) followed by the concatenation process.

[[1, 2],
[2, 1]]

⊗ [[1, 1],
[1]]

=
[[1, 2],
[2, 1]]

⊗ [[3, 3],
[3]]

=
[[1, 2, 3, 3],
[2, 1, 3]]

Algorithm 3.6 (Involution Algorithm). The involution operation, for the data structure intro-
duced above, can be implemented by inverting the outer list, i.e. swapping the first list standing
for the upper points with the second list standing for the lower points.

Example 3.7 (Involution Algorithm). In this example, we can see, that the algorithm simply
swaps the two inner lists. (

[[1, 2, 3, 3],
[2, 1, 3, 4]]

)∗

=
[[2, 1, 3, 4],
[1, 2, 3, 3]]

Algorithm 3.8 (Composition Algorithm). Since the composition operation is one of the main
operations, it is evident, that our goal is to design an adequate algorithm. In order to get an
efficient implementation of the composition operation, we make use of dictionaries (Section 2.2.2)
and path compression (Section 2.2.3). Given a partition p and a partition q, we implement the
composition pq as represented by the following Python pseudo-code

1 q = p . h e l p e r f un c t i o n (q)
2

3 new ids = dict ()
4

5 for index , n in enumerate(q [1]) :
6 i f n not in new ids :
7

8 new ids [n] = p [0] [index]
9 else :

10

11 i f p [0] [index] in new ids and new ids . get (n) in new ids :
12

13 Do path compress ion from node n and p [0] [index]
14 ””” connect the two components ”””
15 new ids [new ids . get (n)] = p [0] [index]
16 else :
17 i f new ids . get (n) not in new ids :
18 new ids [new ids . get (n)] = p [0] [index]
19 else :
20 new ids [p [0] [index]] = new ids . get (n)
21

22 Do path compress ion
23

24 ””” g i v i n g the top par t new va lue s ”””
25 for index , n in enumerate(q [0]) :
26 i f n in new ids :
27 q [0] [index] = new ids . get (n)
28

29 ””” g i v i n g the bottom par t new va lue s ”””
30 for index , n in enumerate(s e l f . p a r t i t i o n [1]) :
31 i f n in new ids :
32 p [1] [i] = new ids . get (n)
33

34 return new pa r t i t i o n with q [0] as upper , p [1] as lower po in t s

Let us explain the algorithm above.
As a first step, we apply our helper function in Line 1, introduced in the tensor product paragraph,
to q, so that we can guarantee that the point numbers of p and q are disjoint.

The algorithm iterates through the lower points in q and the upper points in p, while storing the
information about the changed point values (representing the blocks) into the dictionary new ids,

13

3 Algorithms and Data Structures for Partitions and Their Operations

mapping each point value to its updated value (i.e. the point values from p to the respective point
values from q). With that information, we adjust the two partitions and unite the overlapping
disjoint subsets, like described in Section 2.1.2. As a result, the dictionary new ids goes from old
to new point value.

After that step we perform path compression in Line 21 with our dictionary new ids as forest,
as shown in Section 2.2.3. As a last step we just need to explicitly change the point numbers and
return them as a new partition.

We also need to do path compression in Line 13 due to the dictionary property, that the keys
have to be unique. We can see this special case in the example below.
A dictionary can be seen as a forest as follows:
Given the following dictionary.

dict a = {4 : 1, 2 : 1, 3 : 2, 7 : 6, 8 : 7}
We can now build the following forest from it.

1

2

3

4

6

7

8

If we would now need to connect the nodes 2 and 8, we would either lose the information that 7
and 8 are connected or that 2 and 1 are connected. Because of this conflict, we compress the paths
from 2 to the root and 8 to the root, so that we are able to connect the two trees by adding an
edge from the value of 2 to the value of 8, namely from 1 to 6.

Example 3.9 (Composition Algorithm). In this example, we want to apply the composition
algorithm on p · q, where

p =
[[1, 2, 2, 2],
[2, 3, 4]]

q =
[[5, 6],

[7, 7, 5, 6]]
.

According to the algorithm, we iterate through the upper points of p and the lower points of q.
During the iteration process, we maintain a record of the specific point values in q that need to
be transformed into corresponding point values from p, in form of a dictionary. This allows us to
merge these two partitions together. As a result we get the dictionary

{7 : 1, 1 : 2, 5 : 2, 6 : 2}.

The dictionary will then be processed with path compression, so that we get

{7 : 2, 1 : 2, 5 : 2, 6 : 2}.

Now, the algorithm replaces the lower point values of p and the upper point values of q with the
respective values in the dictionary. At the end, the algorithm outputs the partition

p · q =
[[2, 2],
[2, 3, 4]]

.

Algorithm 3.10 (Rotation Algorithm). In order to get an algorithm for the rotation, we proceed
as follows. Given a partition p, represented by our partition data structure, with the goal of
getting a rotated version, we can simply remove one of the first or last element of one of the lists
and append it to the respective first or last element of the other list, depending on whether we
want to perform either a left or right or either a top or bottom rotation.

Example 3.11 (Rotation Algorithm top-left).(
[[1, 1],
[1, 2]]

)rot

=
[[1],

[1, 1, 2]]

14

3 Algorithms and Data Structures for Partitions and Their Operations

Algorithm 3.12 (Vertical Reflection Algorithm). To obtain a vertically reflected form of the input
partition p, it is sufficient to reverse the two lists in the outer list of the partition data structure.

Example 3.13 (Vertical Reflection Algorithm).(
[[1, 2, 2],
[1, 1, 3]]

)↔

=
[[2, 2, 1],
[3, 1, 1]]

15

3 Algorithms and Data Structures for Partitions and Their Operations

3.2 Evaluation and Results

In order to evaluate the runtime of the presented techniques above, we will use the Big-O Notation
introduced in Section 2.2.1.

Space Complexity

Let n be the number of points in our partition p. The space complexity of the chosen data structure
is O(n), because we store for every point a value in a list.

Time Complexity

Theorem 3.14. The time complexity of the tensor product is O(n).

Proof. In order to proof this, we show that the runtime of the algorithm in Section 3.1 is O(n).
At first sight, one might guess that, the runtime of the tensor product should be O(1), by using
linked lists, because we simply need to concatenate two lists. However, because we need to adjust
the point values of one of the partitions as described in Section 3 with the helper function, we have
a time complexity of O(n).

Indeed, the helper function algorithm (introduced in Algorithm 3.3) has a runtime of O(n),
because we need to find the maximal point value in one of the partitions, which has for obvious
reasons a worst case runtime of O(n). After that, we only need to assign new values greater than
the calculated maximal number as follows:

1 new ids = dict ()
2 for n in p :
3 new ids [n] = max id
4 max id += 1
5

6 for i , n in enumerate(p [0]) :
7 p [0] [i] = new ids . get (n)
8

9 for i , n in enumerate(p [1]) :
10 p [1] [i] = new ids . get (n)
11

12 return p

Here, max id is the maximal point value and p is the partition we want to assign new values. Since
we iterate a constant amount of times through the n point partition p, namely three, we also have
a time complexity of O(n).

Theorem 3.15. The time complexity of the involution is O(1).

Proof. Since we only swap two elements in a list, namely the upper list and the lower list in the
outer list of the data structure, where each list is considered as one element, we have a constant
time complexity O(1).

Theorem 3.16. The time complexity of the composition is O(n log(n)).

Proof. In order to proof this, we show that the runtime of the algorithm for the composition in
Section 3.1 is O(n log(n). Let p and q be partitions. After initializing q with new point values,
by calling the helper function, we iterate through every lower point of q and upper point of p. In
every iteration we check whether we already have the point we are operating on in our dictionary
from old to new point values. Since we use dictionaries (see Section 2.2.2) and the helper function,
which has a time complexity of O(n), we have an overall runtime of O(n) until this state. After we
are done iterating through all the points, we perform path compression, as shown in Section 2.2.3,
and assign the old points the new point values. Both of these steps have a time complexity of
O(n).

However as illustrated in Section 3.1, there is a special case, in which we need to perform one
path compression operation during the iteration process to prevent information loss. Since we
merely do this compression technique for two paths and in as much as the fact that our work is not

16

3 Algorithms and Data Structures for Partitions and Their Operations

entirely redundant, we get a worst case runtime of O(n log(n)). This is because we can compare
our algorithm with the find operation of the union find data structure with path compression,
which has a worst case runtime of O(n log(n)), see [Fis72].

As a result the overall runtime of the composition operation is O(nlog(n)))

Remark 3.17. This remark discusses the extent in practise of performing path compression, as
described above, and performing path compression in every iteration step. As a result, we can see
the benefit of introducing the special case, instead of naively running path compression in every
for iteration.

partition size 6 8 10 12 14 16
steps w/o redundancy 912 13.950 206.161 3.027.009 44.507.030 657.155.024
steps w redundancy 988 19.425 348.164 5.985.883 100.507.030 1.666.412.924

In the table above, we can observe the extent of performing path compression as described above
(see Row 1) and the extent of performing path compression in every for iteration (see Row 2).

This data comes from counting the path compression steps while constructing every possible
partition in NC2 (see Section 2.1.3) with the algorithm represented in Section 4. Every time the
algorithm checks whether a node needs to be compressed and every time we compress a node
along one edge, the counter is incremented. The numbers 6, 8, 10, 12 and 14 are the sizes n with
NC2 ∩ P (n).

The larger our n gets, the greater the gap between these two different approaches becomes.
This illustrates, that performing path compression after the for iteration and in the case discussed
and applied in Algorithm 3.7, is more efficient, than performing it in every for iteration step.

Theorem 3.18. The time complexity of the rotation is O(n).

Proof. Because we can append and remove an element to or from a list in O(n), we have an overall
runtime of O(n).

Theorem 3.19. The time complexity of the vertical reflection is O(n).

Proof. To obtain a reversed version of a list, we have to iterate through the whole list. Since our
partition is of size n, we have a time complexity of O(n).

Remark 3.20. Note, that by adding the Normal Form Algorithm, explained in Section 3.1, we
add an extra runtime of O(n) to every operation. This only effects the runtime of the involution
and rotation algorithm.

17

4 Algorithm 1: Constructing Categories

4 Algorithm 1: Constructing Categories

In the following chapter, we will present and evaluate an algorithm for constructing categories of
partitions. Let C be a category, then we are interested in C ∩ P (n) (see Section 2.1.3). The whole
implementation, including the algorithms discussed in this chapter, can be found in [Vol23].

4.1 Design Description and Implementation Details

The goal of designing and implementing an algorithm for constructing categories is to get a tool,
which is able to retrieve the size of specific categories as well as to output all partitions contained
in a specific category. The input is a set of partitions (represented by the data structure shown in
Section 3.1) and a parameter n ∈ N. The output is desired to be a set of all partitions, generated
by our input set with all possible operations (see Section 2.1.2), of size n.

More precisely, we want to compute the following:
Let P be a set of partitions, we are interested in

⟨P⟩ ∩ P (n) (1)

and

#(⟨P⟩ ∩ P (n)) (2)

Note, that (2) can simply be retrieved with (1), but not necessarily the opposite. Because of this
property we concentrate on finding an algorithm for (1) and then calculate the length of the output
to get to a solution for (2). However, the algorithm presented in this chapter does not guarantee
finding every partition in ⟨P⟩ ∩ P (n). Its goal, however, is to achieve this. The reasons for this
circumstance will also be discussed in this section.

Basic Algorithm Structure

The figure Algorithm 1 below shows the basic structure of our approach in a naive setting, namely
without optimization techniques and the restriction on extending a certain number of points in the
partitions we operate on.

Algorithm 1: Basic structure of the algorithm without optimization techniques

Input: List of partitions p and partitions size n
Output: Set of partitions ⟨p⟩ ∩ P (n)

1 Initialize variables
2 while new partitions found in last iteration or at beginning do
3 while new partitions found in last iteration do
4 do every possible unary operation and store new found partitions
5 end
6 while new partitions found in last iteration do
7 do every possible tensor product operation and store new found partitions
8 end
9 while new partitions found in last iteration do

10 do every possible composition operation and store new found partitions
11 end

12 end
13 return all found partitions of size n;

We will use this structure with some optimization techniques, introduced in this chapter below,
to prevent redundant computation. We will begin by examining Line 4, where we initialize the
required variables. In succession, we concentrate on the outer while loop, where the preparation
for the inner while loops take place. Subsequently, we discuss the functionality of the inner while
loops. During the whole explanation, we compare our techniques with more naive approaches.

18

4 Algorithm 1: Constructing Categories

Used variables

First of all, we will examine the variables which are used. For a naive algorithm, we would only
need to initialize the following variables:

1 #s to r e a l l cand ida te s found
2 a l l p a r t i t i o n s = {Par t i t i on ([1 , 1] , []) , Pa r t i t i on ([1] , [1]) }
3

4 #end output : A l l p a r t i t i o n s found o f s i z e n
5 a l l p a r t i t i o n s o f s i z e n = set ()
6

7 #compare a l l owed expansion s i z e wi th max(n , max length)
8 max length = n

Note that we use not only these variables but also additional optimization variables explained
in the upcoming paragraph. Let n be the input size and pmax be the greatest partition in the input
set p, regarding the number of points. The all partitions variable is our container set for storing
all found partitions of size ≤ max(n, size(pmax)). Through generating the categories listed in Sec-
tion 4.2, it seems to be sufficient to not let any partitions expand greater than max(n, size(pmax)),
represented by the variable max length, in order to get to the desired output for the listed cate-
gories in Section 2.1.3. It must be emphasized, that this property does not apply for all generating
partition sets. The variable all partitions of size n is our output set, in which we store all parti-
tions from the set all partitions with size equal n. This is done at the end of the algorithm.

To avoid computation which has already happened, we introduce the following extra variables:

9 #a l l cand ida te s s t o r ed in d i c t from s i z e to p a r t i t i o n
10 a l l p a r t i t i o n s b y s i z e = dict ()
11

12 #a l l cand ida te s s t o r ed in t u p l e wi th a d i c t f o r top s i z e to
p a r t i t i o n and bottom s i z e to p a r t i t i o n

13 a l l p a r t i t i o n s b y s i z e t o p b o t t om = (dict () , dict ())
14

15 #s to r e p a r t i t i o n s a l r eady unary operated
16 a l r eady u = set ()
17

18 #s to r e p a r t i t i o n s a l r eady tensor product operated
19 a l r e ady t = set ()
20

21 #s to r e p a r t i t i o n s a l r eady composi t ion operated
22 a l r e ady c = set ()
23

24 #a l l cand ida te s f o r unary opera t i ons
25 to unary = set ()
26

27 #s to r e pa i r s t h a t are cand ida te s to g e t t ensor product operated
28 t o t en s = set ()
29

30 #s to r e pa i r s t h a t are cand ida te s to g e t composi t ion operated#
31 to comp = set ()

The variables already u, already t, and already c keep track of the partitions that have already
undergone the corresponding operations. The variable already u contains all partitions processed
by the unary operations. In the variables already t and already c, we store the pairs of partitions,
which have already been operated regarding tensor product and composition operations. Since
these binary operations are not commutative, the order has to be taken into account. We use the
variables to unary, to tens, and to comp to store the partitions and partition pairs intended for
processing with their corresponding operations. These three variables are emptied every time a
new iteration of the outer while loop starts.

To optimize the retrieval of candidates added to the sets to unary, to tens, and to comp, we
introduce the dictionary all partitions by size and the variable all partitions by size top bottom.
This approach helps to avoid iterating through the entire all partitions set repeatedly.

19

4 Algorithm 1: Constructing Categories

As the name suggest, the variable all partitions by size contains every partition with the
corresponding size in a dictionary from size to a set of partitions. This variable is used for getting
the candidates for the tensor product operation in advance, since we do not want to exceed the
max length.

Similarly, the variable all partitions by size top bottom incorporates two dictionaries: one from
size of the top part to a set of partitions and the other from size of the bottom part to a set of
partitions. This variable is of practical value for getting candidates for the composition operation
in advance, since we do not want to exceed the max length and since we have to keep a specific
format for the composition operation (see Section 2.1.2).

Note that, without these dictionaries, we would need to iterate through every partition in
all partitions for each partition in all partitions, resulting in a significantly less efficient process.
But with these dictionaries, we only iterate for every partition in all partitions through the fitting
partitions in all partitions, considering constraints like size and format.

After adding the base partitions and the input list of partitions to the respective sets, we start
the operation process.

Outer while-loop

In preparation for the inner while-loops, we need to calculate the candidates which are going to
be operated on and processed, in order to add them into the respective sets to unary, to tens and
to comp. Take into account that we are now looking at the while loop of Line 2 to 12 of the basic
algorithm code.

The preparation for the unary operations is remarkably intuitive, by simply iterating through
the all partitions set and adding every partition to the to unary set, if it is not contained in the
already u set.

In the process of the tensor product, we also iterate through the all partitions set. Since we
now have a binary operator, we have to iterate again through a set of partitions in order to get
pairs that we can add into the to tens set.
The naive implementation would look as follows

1 for i in a l l p a r t i t i o n s :
2 for i i in a l l p a r t i t i o n s :
3 i f (i , i i) not in a l r e ady t :
4 t o t en s . add ((i , i i))
5 a l r e ady t . add ((i , i i))

Since the all partitions set can become exceedingly large, we would get a long processing time
for just iterating through every pair. This process is fairly inefficient since most of the candidates
would exceed the max length limit by applying the tensor product. The solution is to use the
all partitions by size dictionary, by considering for every partition in the all partition set only
the partitions, which are not resulting in a partition being greater than max length.
This can be implemented as follows

1 for i in a l l p a r t i t i o n s :
2 a l l p a r t i t i o n s t emp t e n s o r = set ()
3 for key in a l l p a r t i t i o n s b y s i z e . keys () :
4 i f t u p l e t o p a r t i t i o n (i) . s i z e () + int (key) <= max length :
5 a l l p a r t i t i o n s t emp t e n s o r = a l l p a r t i t i o n s t emp t e n s o r

. union (a l l p a r t i t i o n s b y s i z e . get (key))
6 for i i in a l l p a r t i t i o n s t emp t e n s o r :
7 i f (i , i i) not in a l r e ady t :
8 t o t en s . add ((i , i i))
9 a l r e ady t . add ((i , i i))

This analogically applies for the composition operation as follows

20

4 Algorithm 1: Constructing Categories

1 for i in a l l p a r t i t i o n s :
2 a l l pa r t i t i on s t emp comp =
3 a l l p a r t i t i o n s b y s i z e t o p b o t t om [1] . get (len (i [0]))
4 for i i in a l l pa r t i t i on s t emp comp :
5 i f (i , i i) not in a l r e ady c :
6 i f len (i [1]) + len (i i [0]) <= max length :
7 to comp . add ((i , i i))
8 a l r e ady c . add ((i , i i))

For the composition, we additionally check whether the format is fitting.

Applying unary operations

Now we are in Lines 3 to 5 of the basic structure pseudo-code of our algorithm.
In general, we will distinguish between three different unary operations for our algorithms: the

involution, the rotation, and the vertical reflection (see Section 2.1.2).
For the purpose of getting an algorithm which performs every possible unary operation, we can

formulate two main approaches

Naive Approach

The rotation and the vertical reflection can be represented by a combination of the three main
operations: the involution, the tensor product and the composition. Nevertheless, we will include
them, because it safes computation time in practise. In theory, when evaluating the runtime of
our algorithm using the Big-O notation, the difference would be negligible, as both the simulation
of the rotation and the vertical reflection require only a constant number of steps.

With the goal of obtaining every possible combination of the three unary operations, we encode
them to integer values as follows

0 stands for do nothing,
1 stands for rotation,
2 stands for involution,

3 stands for vertical reflection.

Now, we can construct a tree of degree 4 with the operation values as nodes in the following
manner:

0

0

0

0 1 2 3

1 2 3

1

0 1 2 3

2

0 1 2 3

3

0 1 2 3

0 1 2 3...

... ...

O(n)

The tree above has the height O(n), because we can rotate a partition of size n into n different
states. Furthermore, with the involution and the vertical reflection, we are able to transform a
partition to one other state. As a result, we can apply every possible combination to a partition, if
we follow the tree structure above by traversing every path of the tree from the root until we end
up at a leaf. While passing an edge, we apply the corresponding operation, encoded via integers
with the rules described above.

With this technique we can ensure to transform a partition into every other state, which can
be reached by the defined unary operations. However, this approach has several disadvantages.
Since we have a tree of degree four and a depth of O(n), we need to traverse 4O(n) different paths,
which leads to a massive time complexity.

This can be attributed to the fact, that the tree contains numerous redundancy. For example,
the following paths have all the same effect on a partition:

21

4 Algorithm 1: Constructing Categories

0 → 0 → 1 → 0 → 0,
0 → 0 → 0 → 0 → 1,
0 → 1 → 0 → 0 → 0,

as well as

0 → 2 → 1,
0 → 1 → 2,

because the unary operations are in contrast to the binary operations commutative. As a result,
even though this approach seems intuitive, we see that the redundancy is too great in order to
design an efficient algorithm for our domain.

Used approach

To avoid the described redundancy, we use a method that includes a while loop. This loop ter-
minates if there are no more possibilities to generate a partition not contained in all partitions.
This technique can be illustrated with the following pseudo-code.

1 while new partitions found in last iteration do
2 for partition in to unary do
3 partitionrotated = rotation(pp)
4 add partitionrotated to all partitions and to to unary if not already in

all partitions
5 partitioninvolution = involution(pp)
6 add partitioninvolution to all partitions and to to unary if not already in

all partitions
7 partitionvertical reflection = vertical reflection(pp)
8 add partitionvertical reflection to all partitions and to to unary if not already in

all partitions
9 remove partition from to unary add partition to already u

10 end
11 set while condition to false if to unary is empty

12 end

Because we do not extend paths if they would get superfluous, we reduce the size of our tree
substantially. In contrast to Approach 1, the structure of the tree could look as follows

0

1

1 2

1 2 3

1 2 3

3

2

1

1 2 3

2 3

3

1 2

1 2 3

3

...

...

Note, that we reduce the maximal degree to three, since we do not need the option of ”doing
nothing” represented by 0 anymore. In addition, we get a tree with significantly less paths as well.
As a result, we use this approach for our algorithm.

Applying binary operations

Now, we are in Lines 6 to 11 of the basic structure pseudo code of our algorithm.
Since the methods for applying the tensor product and the composition are relatively compa-

rable, it is more intuitive to elucidate them simultaneously.

22

4 Algorithm 1: Constructing Categories

The overall strategy looks as follows

1 while new partitions found in last iteration do
2 for p in partitions found in last iteration do
3 for pp in partitions found in last iteration with size ≤ max length− size(p) for

tensor product or with fitting format for composition do
4 if (p, pp) not in already t/c then
5 add (p, pp) to to tens/comp
6 end

7 end

8 end
9 for (p, pp) in to tens do

10 apply tensor product or composition
11 store result for next iteration
12 remove (p, pp) in to tens/comp
13 add (p, pp) in already t/c

14 end

15 end

Similar to the outer while loop, we also optimize the selection of candidates for the second entry in
the tuples within to tens/comp. This is achieved by avoiding extensions beyond the max length
value when performing the tensor product, or by only considering candidates with the appropriate
format during the composition process. By doing so, we efficiently reduce the number of candidates
for further operations, ensuring an effective algorithm. As already described above, we can use a
dictionary from size to partitions or rather from size of the upper/lower point to partition for that
domain.

With the combination of optimizing the process of choosing the candidates both in the outer
and in the respective inner while loops and additionally simultaneously introducing constrains, we
are able to avoid computations which are redundant.

Nevertheless, not every operation we perform leads to a new partition, since a partition can be
constructed by more than one combination. As a result we still have superfluous work. However,
this kind of redundancy is not preventable without using more resources than we would save.

4.2 Evaluation and Results

After designing the algorithm presented in Section 4.1, we are prepared to construct the categories
defined in Section 2.1.3. After this process, we can evaluate the results, regarding the paper
[Web13] and [BCS09], and find resulting sequences.

partition size 0 1 2 3 4 5 6 7 8
P 1 1 2 5 15 52 203 877 4140
NC 1 1 2 5 14 42 132 429 1430
P 1,2 1 1 2 4 10 26 76 232 764
NC1,2 1 1 2 4 9 21 51 127 323

Table 1: Comparison and sizes of categories with not necessarily even block size.

Table 1 shows #(⟨P⟩∩P (0, n)) for n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}, regarding the categories which contain
both even and odd partitions. In contrast, Table 2 includes the categories with only partitions of an
even size. These values are exclusively calculated from the algorithm presented in Section 4.1 and
implemented in [Vol23]. Entries containing a hyphen (”-”) signify extended computation durations
on my computer.

Comparison of the results

In order to evaluate the results in Table 1 and Table 2, we compare our values with the moments of
the laws of characters stated in [BS09], [BCS09] and [Web13]. The moments of a law of character
count the partitions in a category. The laws of characters are a generalization of random variables

23

4 Algorithm 1: Constructing Categories

partition size 0 2 4 6 8 10
P2 1 1 3 15 105 945

Peven 1 2 15 203 4140 -
P 1,2
even 1 2 10 76 764 -

Peven BS 1 1 4 31 379 -
NC2 1 1 2 5 14 42

NCeven BS 1 1 3 12 55 273
NCeven 1 2 14 132 1430 -
NC1,2

even 1 2 9 51 323 2188
B 1 1 3 16 131 1496
B2 1 1 2 6 24 120

NCBeven 1 2 7 30 143 728
B1,2

even 1 2 7 34 209 1546

Table 2: Comparison and sizes of categories with even block size.

in the free probability theory. An overview of the categories with their corresponding quantum
groups can be found in Appendix A.

Theorem 4.1. The outputs from the algorithm for P2, NC2 and B2 match the laws of characters
from [Web13].

Proof. We get the followings laws from Proposition 4.1 in [Web13]:

• The law of P2 is the real Gaussian, the moments can be calculated with the formula

g(n) =

{
0 if n odd,

n!! if n even.

• The law of NC2 is the semicircle, which corresponds to the Catalan numbers (see [Sta15])

• the law of B2 is the squeezed complex Gaussian, the moments can be calculated with the
series g of the real Gaussian as follows:

(squeezed complex(gn))k =

{
0 if k odd,∑ k

2
i=0

(k
2
i

)
· g2i · gk−2i if k even.

The corresponding implementations of the functions that yield the matching outputs can be found
in [Vol23].

Theorem 4.2. The outputs from the algorithm for P 1,2, P 1,2
even, NC1,2, NC1,2

even, NCBeven

and B1,2
even match the laws of characters from [Web13].

Proof. We get the followings laws from Proposition 4.2 in [Web13], :

• The law of P 1,2 is the shifted real Gaussian, the moments can be calculated with the series
g of the real Gaussian as follows:

(shifted(gn))k =

k∑
i=0

(
k

i

)
· gi.

• The law of P 1,2
even is the symmetry shifted real Gaussian, the moments can be calculated with

the series g of the real Gaussian as follows:

(shifted(gn))k =

{
0 if k odd,∑k

i=0

(
k
i

)
· gi if k even.

• The law of NC1,2 is the shifted semicircle, the moments can be calculated with the series sc
of the semicircular as follows:

(shifted(scn))k =

k∑
i=0

(
k

i

)
· sci.

24

4 Algorithm 1: Constructing Categories

• The law of NC1,2
even is the symmetry shifted semicircle, the moments can be calculated with

the series sc of the semicircular as follows:

(shifted(cn))k =

{
0 if k odd,∑k

i=0

(
k
i

)
· ci if k even.

• The law of NCBeven is the squeezed shifted circle, which is related to the Fuss-Catalan
numbers (see Proposition 4.3. in [Web13]) and can be calculated with the formula

f(n) =
1

k + 1

(
3k + 1

k

)
.

• The law of B1,2
even is the squeezed shifted complex Gaussian

√
(1 + g̃)(1 + g̃)∗, the moments

can be calculate using the following formula with the series g of the real Gaussian:

(squeezed(shifted(complex(gn))))k =∑
i1+i2+i3+i4=k

(
k!

i1! · i2! · i3! · i4!

)
· (

√
2)i2−2i3−2i4 · gi2+2i3

· g2i4 .

The corresponding implementations of the functions that yield the matching outputs can be found
in [Vol23].

Theorem 4.3. The output from the algorithm for Peven BS matches the law of character from
[BS09].

Proof. Comparing the values from Table 2 with [OEI], we get the sequence A005046, which cor-
responds to number of partitions of a 2n-set into even blocks. Accordingly, Proposition 2.5. from
[BS09] says that the quantum group of PevenBS are the partitions with blocks of size 2.

Theorem 4.4. The outputs from the algorithm for P, Peven, NC,NCeven and B match the laws
of characters from [BCS09].

Proof. We get the followings laws from Theorem 7.3. in [BCS09]:

• The law of P is the Poisson, the moments can be calculated with the Bell numbers.

• The law of Peven is the symmetry Poisson.

• The law of NC is the free Poisson.

• The law of NCeven is the symmetry free Poisson.

• The law of B is the ∞-Bessel, which can be calculated with the formula

b(n) =

{
1 if n = 0,∑n−1

i=0

(
n
i

)
·
(
n−1
i

)
· b(i) if k even.

The moments of the (symmetry) poisson distribution can be calculation from the Bell numbers and
the moments from the (symmetry) free poisson distribution can be calculation from the Catalan
numbers. The implementations can be found in [Vol23].

Theorem 4.5. The output from the algorithm for NCeven BS matches the law of characters from
[BBC07].

Proof. We get the following law from [BBC07]:

• The law of NCeven BS is the free Bessel, which can be calculated with the following formula

b(n) =

k∑
b=1

1

b
·
(
k − 1

b− 1

)
·
(

2k

b− 1

)
.

The corresponding implementation of the free Bessel that yield the matching outputs can be found
in [Vol23].

25

4 Algorithm 1: Constructing Categories

Runtime

Evidently, the property, the greater the category, the more resources we need, applies regarding
time and space complexity. As a result, we can derive the following assumption.

Theorem 4.6. Let (ak)k∈N be a sequence, describing the size distribution of a category and n ∈ N
the input of the algorithm standing for the partition size (see Section 4.1). Then the algorithm
presented in Section 4.1 has a worst case lower bound runtime of

Ω

(k∑
i=1

(ai)

)
k∈N,k≤n

· n log(n)


assuming, we use the operations on partition approximately constant equally often. However, in
any case, the lower bound

Ω

(k∑
i=1

(ai)

)
k∈N,k≤n


applies.

Proof. Because (ak)k∈N describes the size distribution of a category and n ∈ N the input of the
algorithm standing for the partition size (see Section 4.1). We have to construct at least(

k∑
i=1

(ai)

)
k∈N,k≤n

partitions ≤ max length in the category in order to get to an output.
Since the composition is the operation with the greatest time complexity of O(n log(n)), we get a
lower bound worst case runtime of

Ω

(k∑
i=1

(ai)

)
k∈N,k≤n

· n log(n)



But as already discussed in Section 4.1, we cannot avoid having redundancy in the construction
process. Because of that, it is hard to make precise predictions about the runtime in general.

For our algorithm, experience has shown, that for n ≤ 8, we are able to get an output for every
category within at most a few hours, even for the biggest category P . For smaller categories, like
for example NC2, we can go even slightly higher with the input n. These measurements are, of
course, influenced by the performance of the computer being used.

The following table shows the comparison of the smallest category NC2, only containing the
base partitions, and the greatest category P , containing all partitions. We compare the two
categories based on the number of operations that are performed until the algorithm terminates.

partition size 1 2 3 4 5 6 7 8

P 1717 1717 1717 1717 16.480 246.775 4.712.101 114.603.058

NC2 - 10 - 97 - 499 - 3104

We can clearly see the enormous difference between the resources needed for constructing P and
NC2, and on the other hand the general amount of operations, which is significantly greater than
the respective sums of the sequences as described above. This is the result of the already discussed
redundancy, which is nearly inevitable.

Note that for P , we perform the same amount of operations in each computation until partition
size 4.

26

4 Algorithm 1: Constructing Categories

Proof. Let pmax be the greatest generator partition and n be the input partition size. Then the
algorithm produces every partition ≤ max(n, size(pmax)). For n ≤ 4, max(n, size(pmax)) is equal
to 4, since the generator partitions of P are ∈ P (4) and ∈ P (3). Therefore, we perform the
same amount of operations for n ≤ 4, namely 1717.

In practise with the SAMSUNG Galaxy Book Pro EVO featuring an Intel® Core™ i7 Processor
and 16 GB of RAM, I observed the following approximate construction times associated with Table
1 and Table 2:

partition size 0 1 2 3 4 5 6 7 8
P 0.02s 0.03s 0.03s 0.03s 0.03 0.35s 10s 2m24s 6.5h
NC 0.005s 0.005s 0.005s 0.005s 0.03s 0.2s 2s 35s 8m55s
P 1,2 0.017s 0.02s 0.02s 0.02s 0.02s 0.12s 1s 11s 2m24s
NC1,2 < 0.001s < 0.001s < 0.001s 0.015s 0.05s 0.3s 1.8s 11s 1m30s

partition size 0 2 4 6 8 10
P2 0.001s 0.002s 0.003s 0.05s 2.1s 3m13s

Peven 0.02s 0.03s 0.03s 10s 6.5h > 8h
P 1,2
even 0.017s 0.02s 0.02s 1s 2m24s > 8h

Peven BS 0.003s 0.003s 0.003s 0.1 19s > 8h
NC2 < 0.001s < 0.001s 0.002s 0.01s 0.07s 0.7s

NCeven BS 0.008s 0.016s 0.016s 0.13s 1.7s 56s
NCeven 0.005s 0.005s 0.03s 2s 8m55s > 8h
NC1,2

even 0.03s 0.03s 0.03s 1s 50s 43m
B 0.06s 0.06s 0.06s 0.06s 3s 8m
B2 0.01s 0.01s 0.01s 0.01s 0.1s 4s

NCBeven < 0.001s < 0.001s 0.007s 0.1s 4s 1m12s
B1,2

even 0.2s 0.2s 0.2s 0.2s 8s 9m7s

4.3 Algorithm Extensions

In Section 2.1.5 and in Section 2.1.4, we introduced generalizations of the classical partitions,
namely the spatial partitions and the colored partitions. In the following section, we briefly discuss
the algorithm presented and analyzed in Section 4.1 and Section 4.2 for the domain of spatial and
colored partitions. Furthermore, we propose an helpful extension tool, called tracing, for our
constructing categories algorithms. The whole implementation, including the algorithms discussed
in this chapter, can be found in [Vol23].

4.3.1 Algorithms for Colored Partitions

We remain consistent in our data structure for partitions by using lists, similar to our previous
approach. For classical partitions, we operate on a list of two lists, in which the first list represents
the upper points and the second list the lower points. Since we are now incorporating colors, we
use a list of lists, specifically four lists in the form of List[List[], List[], List[], List[]]. The first
and second lists retain their purpose of representing the upper and lower points, respectively. The
third list describes the colors of the upper points, while the fourth list denotes the colors of the
lower points. Because we have a binary coloring, we use zeros and ones for the colors.

Example 4.7.

[[1, 2, 3, 3], [2, 1, 3],
[1, 0, 0, 1], [0, 1, 0]]

∼=

Since the vertical reflection is not defined in the domain of colored partitions, we only have to
adjust the tensor product, the involution, the composition and the rotation. In general, we can
simply overwrite the respective functions by running the classical operation algorithms with the
lists representing the upper and lower points. In addition, for the composition, we have to check
the colors of the input partitions as described in Section 2.1.2.
We operate on the colors as follows:

27

4 Algorithm 1: Constructing Categories

Algorithm 4.8 (Tensor Product.). Let p, q be the input partitions of size n,m and pcolor ∈ {0, 1}n,
qcolor ∈ {0, 1}m the respective point colors, then we simply concatenate the lists of the upper point
colors and the lists of the lower point colors.

Algorithm 4.9 (Involution.). Let p be the input partition of size n and pcolor ∈ {0, 1}n the
respective point colors. Then we simply swap the lists of the upper point colors and the lists of
the lower point colors.

Algorithm 4.10 (Composition.). Let p, q be the input partitions of size n, m and pcolor ∈ {0, 1}n,
qcolor ∈ {0, 1}m the respective point colors. For the final output colored partition, we simply use
the upper point colors of qcolor as the upper point colors and the lower point colors of pcolor as the
lower point colors.

Algorithm 4.11 (Rotation.). Let p be the input partition of size n and pcolor ∈ {0, 1}n the
respective point colors. Then we rotate pcolor, while inverting the color of the rotated point.

Theorem 4.12. The time complexities of the operations on colored partitions are equal to the
operations on classical partitions.

Proof. Follows directly from the fact, that we reuse the classical operation algorithms, while not
adding greater extra complexity.

With the algorithms for the operations of colored partitions as a foundation and the base
partitions , ∈ P (1, 1) and , ∈ P (0, 2), we are able to run the constructing categories algorithm
as presented in Section 4.1.

In order to get a brief application for this variation of the algorithm, we define the following
colored partition categories (see [TW15b]) in Example 4.2.

Example 4.13 (colored Partition Categories).

1. The set Oloc = ⟨⟩, constructed from the base partitions

2. The set Ogrp,loc = ⟨ ⟩

3. The set Oglob(2) = ⟨ ⟩

Now, as a demonstration, we can run the algorithm with the defined categories and get:

partition size 0 1 2 3 4 5 6 7 8
Oloc 1 0 6 0 40 0 280 0 2016

Ogrp,loc 1 0 6 0 60 0 840 0 15.120
Oglob(2) 1 0 12 0 160 0 2240 0 -

The table shows the number of partitions of size 0, 1, 2, 3, 4, 5, 6, 7 and 8 in the corresponding
categories.

Note, that categories containing the generator partition are more extensive, because they
contain for every partition p ∈ P (n) all different coloring combinations (see [TW15b]). As a
consequence, the computation of Oglob(2) for n = 8 took too long on my PC.

4.3.2 Algorithms for Spatial Partitions

Similar to colored partitions, we want to maintain the data structures consisting of lists. Like for
classical partitions, we use the data structure List[List[], List[]]. But instead of storing the point
values in the lists representing the lower and upper point, we store lists containing the point values.

Example 4.14.

[[[1, 2]],
[[1, 3], [3, 2]]]

∼=

Since we are not defining the vertical reflection and the rotation for spatial partitions, we only have
to concentrate on the three main operations the tensor product, the involution and the composition.

The general approach for designing algorithms for operations on spatial partitions is to use the
techniques from the operations on classical partitions, we already discussed in Section 3.

28

4 Algorithm 1: Constructing Categories

Algorithm 4.15 (Tensor Product.). Let p, q be the input spatial partitions. Similar to the classical
partition tensor product, we simply concatenate the first list of p with the first list of q and the
second list of p with the second list of q.

Algorithm 4.16 (Involution.). Let p be the input spatial partition. Similar to the classical
partition involution, we swap the upper with the lower points, be inverting the outer list.

Algorithm 4.17 (Composition). Let p, q be the input spatial partitions. In order to design an
algorithm for the composition, we reuse the techniques from the algorithm we already have for the
classical partition composition. Initially we unfold the spatial partition, by resolving the lists in
the two lists representing the upper and lower points. For example:

[[[1, 2, 1], [2, 3, 3]], [[3, 4, 4], [5, 5, 1], [6, 6, 6]]]

⇓
[[1, 2, 1, 2, 3, 3], [3, 4, 4, 5, 5, 1, 6, 6, 6]]

After this step, we run the classical composition algorithm in order to get the new ids dictionary,
which contains the information of old point values to new point values as described in Section 3.
Afterwards, we iterate through the point values of the input spatial partition to change the them
according to the new ids dictionary. As a result we get our output pq.

Theorem 4.18. The time complexities of the operations on spatial partitions are equal to the time
complexities of the operations on classical partitions.

Proof. Follows directly from the fact, that we reuse the classical operation algorithms, while not
adding greater extra complexity.

With the algorithms for the operations of spatial partitions as a basis and the base partitions
(m) ∈ P (m)(1, 1) and (m) ∈ P (m)(0, 2), we are able to run the constructing categories algorithm
similar to the algorithm presented in Section 4.1.

While running the algorithm to construct the categories defined in Section 2.1.5, it appears that
for spatial partitions, it is more common, that we have to let the intermediate step partitions exceed
the max length constraint. We saw in Section 4.2 that increasing the value of max length leads
to a substantial growth in runtime. As a result, the construction algorithm for spatial partition
categories does not work as well as for classical partitions. Without allowing the intermediate step
partitions grow beyond max length, we get the following results

partition size 0 2 4 6 8 10 12

[P](2) 1 (1) 2 (2) 6 (6) 16 (20) 45 (75) 194 (312) 919 (1421)
[NC2]

(2) 1 (1) 0 (0) 3 (3) 0 (0) 8 (10) 0 (0) 31 (35)
[P2]

(2) 1 (1) 0 (0) 3 (3) 0 (0) 9 (15) 0 (0) 69 (105)
P (2) 1 (1) 4 (6) 45 (75) 510 (1421) 6666 (37.260) - -

P
(2)
2 1 (1) 2 (3) 8 (15) 22 (105) 177 (945) 2374 (10.395) -

Note that in this table, we consider every spatial partition in contrast to Section 4.2, where we
only consider every p ∈ P (0, n).

Following each entry in the table, we find the corresponding desired value enclosed within
brackets, which can be retrieved from the sizes of the categories of the classical partitions. In other
words, the brackets enclose the actual size, which may deviate from our calculations. This relation
shows, that the problem of constructing categories is much more complex for spatial partitions.
Nevertheless, the algorithm retains its significance, as demonstrated in Example 4.19.2 and in
Theorem 4.20./4.21.

29

4 Algorithm 1: Constructing Categories

4.3.3 Tracing

Tracing is a helpful method for getting insights about the history of the emergence of the con-
structed partitions. Essentially, we use a dictionary to store for every partition how it was con-
structed.

At that time, the input for our construction algorithm is a list of partitions and the output
partition size n ∈ N. By introducing tracing, we add an extra optional input variable called
tracing ∈ {true, false}. To enable tracing, we have to set the input variable tracing to true. By
default tracing is disabled.

If tracing is enabled, we additionally get a dictionary containing the trace as an output, besides
the constructed partitions of size n. Let p, p1 and p2 be partitions. Then an element of the tracing
dictionary has the form

p : ((p1), unary operation)

or

p : ((p1, p2), binary operation),

where the key p is the result of the corresponding value. The value is a tuple of the partitions and
the operation. The operation is encoded as the first letter of the name of the operation. So in
general, the key is the result of the value in our tracing dictionary.

Every time we construct a partition, which is not already contained in all partitions, we add
it to the dictionary as a key plus the partitions and the operation which produced it as the
corresponding value.

In order to get the whole trace of a specific partition, we propose a function called get trace,
which iterates through the dictionary called trace. As a result, the algorithm prints out the whole
trace from a specific partition down to the generator and base partitions via breath first search.
This is implemented as follows.

1 def g e t t r a c e (trace , s t a r t) :
2 ””” t rack the t race wi th brea th f i r s t search ”””
3

4 i f s t a r t not in t r a c e :
5 print (f ” Pa r t i t i on { s t a r t } not found in t r a c e ”)
6

7 t rack = [s t a r t]
8 for p in t rack :
9 i f p in t r a c e :

10 print (p , ” : ” , t r a c e . get (p))
11 for i in t r a c e . get (p) [0] :
12 i f i not in t rack :
13 t rack . append (i)

Here, the variable trace is the dictionary containing the trace from the construction algorithm
and start is the partition we want to trace.
Note that we use breath first search, since it improves legibility compared to depth first search.

Example 4.19 (Applications). Tracing has some applications in giving insights about the con-
struction process. Based on these insights we can derive certain properties. For example:

1. Finding different ways for constructing a partition

Lemma 2.6. (c) in [Web13] says, that ∈ ⟨ , ⟩. The proof contains a construction

example of a rotated version of , in which the intermediate step partitions become greater
than the generator partitions. If we now want to know, whether, and particularly how,
we can construct without letting any intermediate step partitions expand greater than
max length (in this case 4), we can run our algorithm with tracing enabled.

As a result, the function get trace gives us the following trace:

((1, 2), (3, 1)) : ((((1, 2), (3, 2)), ((1, 2), (1, 1))), ′c′)
((1, 2), (3, 2)) : ((((1,), (2,)), ((1,), (1,))), ′t′)
((1, 2), (1, 1)) : ((((1, 1), (1, 1)), ((1, 2), (1, 3))), ′c′)

30

4 Algorithm 1: Constructing Categories

((1,), (2,)) : ((((1,), (2,)), ′i′),)
((1, 1), (1, 1)) : ((((1, 1), (1, 1)), ′i′),)
((1, 2), (1, 3)) : ((((1,), (1,)), ((1,), (2,))), ′t′)

We can visualize (the simplified version of) this trace in form of a tree as follows:

composition

tensor product composition

tensor product

In this case, there is indeed a way to construct with ⟨ , ⟩, without expanding any
intermediate step partitions greater than 4.

2. Checking whether a set of generator partitions is minimal

Let S be a set of generator partitions, representing a category C. We want to know, whether
there is a strict subset s ⊊ S, which generates C. If so, how can we produce S \ s with s?
As a human, this problem can be remarkably difficult.

With our construction algorithm combined with tracing, we can use the following method.

The first question, whether there is a subset s ⊊ S, can be answered by running the con-
struction algorithm with S and all strict subsets of s. If there is a set s, which generates
for an input partition size of n ∈ N the same partitions as S for n, then we know that the
generator partitions S \ s can be removed. Furthermore, we can use tracing, in order to
solve the problem of how S \ s is produced with s. For example,

Let C be a category defined with S = ⟨ , , , ⟩ as the set of generator partitions. If

we apply the method described above, we can see that we can remove without modifying

C. By enabling tracing, we get a counterexample, which illustrates why can be removed.

As a result we get the following trace:

(((1, 2), (2, 3)), ((1, 2), (2, 3))) :
(((((1, 2), (2, 2), (3, 4)), ((1, 2), (3, 4))),
(((1, 2), (3, 4)), ((1, 2), (3, 5), (5, 4)))), ′c′)

(((1, 2), (2, 2), (3, 4)), ((1, 2), (3, 4))) :
(((((1, 2), (2, 2)), ((1, 2),)), (((1, 2),), ((1, 2),))), ′t′)

(((1, 2), (3, 4)), ((1, 2), (3, 5), (5, 4))) :
(((((1, 2),), ((1, 2),)), (((1, 2),), ((1, 3), (3, 2)))), ′t′)

(((1, 2), (2, 2)), ((1, 2),)) :
(((((1, 1), (2, 3), (3, 4)), ((2, 4),)),
(((1, 2), (3, 3)), ((1, 4), (4, 2), (3, 3)))), ′c′)

(((1, 2),), ((1, 2),)) :
(((((1, 2), (2, 3), (4, 4)), ((1, 3),)),(((1, 2),), ((3, 3), (1, 4), (4, 2)))), ′c′)

(((1, 2),), ((1, 3), (3, 2))) : (((((1, 3), (3, 2)), ((1, 2),)), ′i′))

31

4 Algorithm 1: Constructing Categories

(((1, 1), (2, 3), (3, 4)), ((2, 4),)) :
(((((1, 1),), ()), (((1, 2), (2, 3)), ((1, 3),))), ′t′)

(((1, 2), (3, 3)), ((1, 4), (4, 2), (3, 3))) :
(((((1, 2),), ((1, 3), (3, 2))), (((1, 1),), ((1, 1),))), ′t′)

(((1, 2), (2, 3), (4, 4)), ((1, 3),)) :
(((((1, 2), (2, 3)), ((1, 3),)), (((1, 1),), ())), ′t′)

(((1, 2),), ((3, 3), (1, 4), (4, 2))) :
((((), ((1, 1),)), (((1, 2),), ((1, 3), (3, 2)))), ′t′)

(((1, 1),), ()) : ((((), ((1, 1),)), ′i′),)

(((1, 2), (2, 3)), ((1, 3),)) : (((((1, 3),), ((1, 2), (2, 3))), ′i′),)

(((1, 1),), ((1, 1),)) : (((((1, 1),), ((1, 1),)), ′i′),)

((), ((1, 1),)) : (((((1, 1),), ()), ′i′),)

Note that the trace shows the first construction process, where the partition was generated,
which does not represent the smallest possible way to construct the partition. As a result, a
trace can also be fairly exhausting to retrace, as we can see above.

Further improvements can consist of implementing a method that is able to visualize a trace
for improving the retracing process, as well as the readability. The tracing tree in the first
application example could be a possible visualization choice.

Applying the approach demonstrated in Example 4.19.2, we can further simplify Theorem 3 in
[CW16].

Theorem 4.20. The following sets all generate P (2):

• ⟨ (2), , , , , ⟩

• ⟨ (2), , , ⟩

• ⟨ (2), , , ⟩

• ⟨ (2), , , ⟩

• ⟨ (2), , , ⟩

Proof. Traces can be found in [Vol23] in the file traces.txt. As demonstrated in Example 4.19.2, we
use the algorithm to generate traces, revealing the process of constructing each partition within
the generating set from Theorem 3 in [CW16] for each new set.

Theorem 4.21. The following sets all generate P
(2)
2 :

• ⟨ , , , , ⟩

• ⟨ , , ⟩

• ⟨ , , ⟩

• ⟨ , , ⟩

• ⟨ , , ⟩

• ⟨ , ⟩

32

4 Algorithm 1: Constructing Categories

Proof. Traces can be found in [Vol23] in the file traces.txt. As demonstrated in Example 4.19.2, we
use the algorithm to generate traces, revealing the process of constructing each partition within
the generating set from Theorem 3 in [CW16] for each new set. For the last generating set, we
also produced a trace, showing the opposite direction

∈ ⟨ , , , , ⟩,

in order to ensure, that it only produces partitions included in P
(2)
2 .

33

5 Algorithm 2: Linear Combinations of Partitions

5 Algorithm 2: Linear Combinations of Partitions

In this section, we will present an implementation for linear combinations of partitions. In general,
we are interested in calculating polynomial terms, involving partitions. In order to achieve this goal,
we will define and implement calculation rules for partitions, similar to the definitions in [GW21]
and [GW19], but slightly adapted and simplified to our domain. The whole implementation,
including the algorithms discussed in this chapter, can be found in [Vol23].

Definition 5.1. Let p1, ..., pn be partitions and f1, ..., fn be polynomials of the form fi(d) =∑k
j=0 ajd

j with degree at most k ∈ N. Then we say that, the sum f1 · p1 + ... + fn · pn is a
polynomial partition term (i.e. a linear combination of partitions) of length n and degree at most
k.

Definition 5.2. Let p1, p2 be partitions and f(d) =
∑k

i=0 aid
i and g(d) =

∑k
i=0 bid

i be polyno-
mials of degree at most k ∈ N. We define f · p1 + g · p2 as follows:

f · p1 + g · p2 =

{
(f + g) · p1 if p1 = p2,

f · p1 + g · p2 if p1 ̸= p2.

Definition 5.3. Let p1 ∈ P (k, l), p2 ∈ P (m, k) with k, l,m ∈ N and f(d) =
∑k

i=0 aid
i and

g(d) =
∑k

i=0 bid
i be polynomials of degree at most k ∈ N. We define (f · p1) · (g · p2) as follows:

(f · p1) · (g · p2) = f(d) · g(d) · d loops · (p1 · p2)

The multiplication between two partitions is defined by the composition operation and loops ∈ N
is the number of omitted blocks (when composing p1 and p2), called loops.

Example 5.4.

3 · d · · 4 · d · = 3 · d · 4 · d · = 12 · d3 ·

5.1 Design Description and Implementation Details

Data Structure

In order to operate on polynomial partition terms, we need a suitable data structure. For the
implementation, we import the package for classical partitions discussed in Section 3.1.

Let f1(d) ·p1+f2(d) ·p2+ ...+fn−1(d) ·pn−1+fn(d) ·pn be a polynomial partition term, where
{f1, f2, ..., fn−1, fn} are polynomials in d, {p1, p2, ..., pn−1, pn} are partitions and n ∈ N. As a data
structure, we write every summand of the term in a list of size two. The polynomial coefficient is
the first element and the respective partition is the second element. Every summand, represented
by a list of size two, is contained in an outer list representing the whole term. As a result, we get
the following structure:

List[List[f1(d), p1], ..., List[fn(d), pn]].

Note that the order of the outer list does not matter, since the addition is commutative. Since
the order of the summands (i.e. the elements in the outer list) does not have to be taken into
account, and each element in the list consists of a list of two entries, it is more efficient to use
a data structure like dictionaries, in order to perform operations on the object. But as already
discussed in Section 2.2.2, we also need unique keys. So initially, we simplify p as described in
Definition 5.6, so that the data structure can easily transformed into a dictionary from partition
part to term part.

Example 5.5.

3 · d · + 4 · d · ∼= [[3 · d, [[1, 2], [1, 1]]], [4 · d, [[1, 1], [1, 2]]]]

By initializing a polynomial partition term, the data structure simplifies the term automatically
regarding zero summands and equal partition sums.

34

5 Algorithm 2: Linear Combinations of Partitions

Example 5.6. The following example shows the simplification of the data structure by initializing
a term.

0 · + 6 · d · + 10 · d 4 · + 5 · d ·

becomes

11 · d · · 10 · d 4 · .

Algorithms

For implementing the addition/subtraction and multiplication as defined above, we can override
the addition and multiplication in Python with the following algorithms.

Algorithm 5.7 (Addition Algorithm). Let p, q be terms, represented by the data structure above.
Initially, we use a dictionary form of the partition term, namely dict term from partition to the
respective polynomial term. In succession, we iterate through every element e1 in the outer list
of q and check, whether the partition part of e1 is in dict term. If this is the case, we add the
polynomial term part of e1 to the value of the partition part of e1 in dict term. If the partition
part of e1 is not in dict term, we add it in dict term with the respective polynomial term part as
value. After this process we can transform dict term back to our data structure and output the
result. This algorithm can be implemented as represented by the following Python pseudo-code

1 def add (s e l f , q) :
2

3 s e l f . s imp l i f y ()
4 d i c t t e rm = dict ()
5 for i in s e l f . pa r t i t i on sum . copy () :
6 d i c t t e rm [i [1]] = i [0]
7

8 for i in q :
9 i f i [1] in d i c t t e rm :

10 add i [0] to d i c t t e rm . get (i [1])
11 else :
12 d i c t t e rm [i [1]] = i [0]
13

14 out = [reversed (l i s t (i)) for i in d i c t t e rm . items ()]
15

16 return Operat ions (out)

Note, that in this codesnipped self represents the term p.

Algorithm 5.8 (Multiplication Algorithm). Let p, q be terms represented by the data structure
above and out be an empty list. Since we need a method to get the loop value for the multiplication,
we first need to modify the composition operation algorithm, introduced in Section 3. In order to
get the loop value for the multiplication algorithm, we add an optional input loop to the composition
algorithm. The loop input is set to false by default. If set to true, the algorithm outputs the
composition result as well as the loop level. We can implement this by iterating over the points
that are merged together in the composition process. If we encounter a point that is not part of
the resulting partition, we can increase the loop level and proceed accordingly. This does not effect
the runtime of the algorithm. Implementation details of this technique can be found in [Vol23].

With the modified composition, we iterate for every element e1 in the outer list of p through
every element e2 of q. In every iteration, we perform a composition of the partition element in
e1 and the partition element in e2, while setting the optional loop input to true. After this step,
we append the multiplication of the coefficient part of e1 and e2 times dloop with the result of the
composition in the list out. The output of the algorithm is the out list as term object. This can
be implemented as follows

1 def mul (s e l f , q) :
2 out = []
3

4 for i in s e l f :

35

5 Algorithm 2: Linear Combinations of Partitions

5 for i i in q :
6 composit ion , loop = i [1] . compos i t ion (i i [1] , True)
7 out += [[expand (i [0] ∗ i i [0] ∗ (d∗∗ loop)) , compos i t ion]]
8

9 return Term(out)

Note that self represents the term p. The expand function is part of the SymPy package as
described in Section 2.2.4.

36

5 Algorithm 2: Linear Combinations of Partitions

5.2 Evaluation

In this section, we first analyse the algorithms in Section 5.1 regarding their time complexity.

Time Complexity

As discussed in Section 5.1, the data structure simplifies the term, when creating an object. For
this purpose, we use a simplify helper method, which iterates through the initial data structure,
in order to check for zero summands and equal partitions.

Theorem 5.9. Let a, b be polynomial terms and p be a partition. Then simplifying a polynomial
partition term regarding zero summands and the distributivity rule

a · p+ b · p = (a+ b) · p

has the time complexity of O(n), where n ∈ N is the number of summands in a term p

Proof. We iterate through the n summands of the input term p and store the already seen partitions
in a dictionary from partition to coefficient. In every new for iteration we check, whether the
partition of the summand is already in our dictionary. If so, we add the respective coefficients,
which we assume to be O(1). Since the access time complexity of a dictionary is in average O(1)
(see Section 2.2.2), we get an overall runtime of O(n).

Theorem 5.10. Let p, q be polynomial partition terms and n ∈ N be the number of summands
in p and m ∈ N be the number of summands in q. The average time complexity of the addition
between p and q is O(n+m).

Proof. We know from Definition 5.9 that simplifying p has a time complexity ofO(n). Transforming
p to a dictionary has also a time complexity of O(n), since we iterate through p and perform in
each iteration a constant time step, i.e. adding an item in a dictionary. The same applies for the
other direction.

The main part of the algorithm consists of iterating through q and checking, whether the
partition part of q is in the dictionary representation of p, followed by adding/overwriting an
element to/in the dictionary representation of p. Accessing and adding an element in and to a
dictionary has an average time complexity of O(1) (see Section 2.2.2). As a result, we get an overall
runtime of O(n+m).

Remark 5.11. Note that the problem of forming a sum of two polynomial partition terms has a
linear lower bound time complexity of Ω(n), since we have to consider at least every element in
the polynomial partition terms.

Theorem 5.12. Let p, q be polynomial partition terms, n ∈ N be the number of summands in p,
m ∈ N be the number of summands in q and k ∈ N be the size of the greatest partition in p and q.
Then the time complexity of the multiplication of p and q is O(nm · k log(k)).

Proof. This follows directly from the fact, that we need to apply distributivity, where we perform
for every pair in p one composition between the partition parts. Note that the runtime of the
composition is O(k log(k)) (see Section 3.2).

5.3 Application with Interval Partitions

In this section, we will apply the techniques introduced in Section 5.1 to a specific problem that
arose in some yet unpublished work by my supervisor Moritz Weber. In the extend of this thesis,
we will only use it as an example application. First, we define interval partitions (see [Web17]).

Definition 5.13 (Interval Partition). Let p ∈ P (0, l) and i, j,m ∈ N. Then p is an interval
partition, if it consists of blocks that satisfy the condition that if the points 1 ≤ i < j ≤ l belong
to a particular block of p, then all points i < m < j are also part of the same block.

Example 5.14.

1.

∈ P (0, 9)

is an interval partition.

37

5 Algorithm 2: Linear Combinations of Partitions

2.

∈ P (0, 9)

is not an interval partition.

Now, we will use our algorithms to analyse the zeros of some polynomial partition terms in con-
nection with interval partitions. We define the problem space as follows:

Let pm be the sum of all interval partitions of size m of the form pm :=
∑

p∈Im
(−1)bp with

b(p) ∈ N the number of blocks in p and Im as the set of all interval partitions of length m. Further,
let Ak,l be a polynomial partition term of the form

k l

... ...

} }
−

k l

... ...

} }

and Bk,l be a polynomial partition term of the form

k l

... ...

} }

−

k l

... ...

} }

−

k l

... ...

} }

+

k l

... ...

} }

where l is the number of tensor products with from the left side and k the number of tensor

products with from the right side of all partitions in Ak,l and Bk,l.
We are interested in computing the zeros of

... ·
n∏

i=1

Si · pm,

where S is a list of combinations of Ak1,l1 and Bk2,l2 of length at most n, with variable values for
k1, l1, k2, l2 for every summand, and m is the number of upper points of the partition parts of the
last element in S.

Remark 5.15. Let k ∈ N be the upper bound for k1, k2 and l ∈ N be the upper bound for l1, l2.
Then, we have

n∑
i=1

2i · ki · li

different possible combinations for ... ·
∏n

i=1 Si · pm.

Remark 5.15 shows how large the different combinations of this problem can be regarding n, k and
l. As a result, it is not possible to calculate the zeros for every polynomial partition term of this
form even for small values for n, k and l. Nevertheless, it is possible to calculate the zeros for a
few terms with the goal of finding a pattern.

Hence, we use a random generator function, which receives n, k and l as input plus a variable
m, standing for the number of terms to generate.
The implementation and the list of results can be found in [Vol23]. The list contains:

10.000 different combinations with the upper bounds n = 10, k = 3, l = 3
100 different combinations with the upper bounds n = 3, k = 5, l = 5
25 different combinations with the upper bounds n = 3, k = 6, l = 6

50 different combinations with the upper bounds n = 3000, k = 4, l = 4

By using the SymPy package introduced in Section 2.2.4, we obtained the following results:
All the factorizations of the resulting polynomial terms have the form

d(d− 2)a(d− 1)b, a, b ∈ N.

As a result, all terms of the list have the zeros {0, 1, 2}. Furthermore, a is always equal to k+ l+1
of S1. It must be emphasized, that this data does not prove any of these properties. However, the
data can be useful to get an idea about possible characteristics.

38

5 Algorithm 2: Linear Combinations of Partitions

Remark 5.16. Note that the runtime complexity of this process is exponential with respect to
the size of k and l, as m of pm has to be of size O(k + l). As a consequence, we need to perform
O(2k+l) compositions, which is the size of the summand pO(k+l).

Theorem 5.17. Let S be a list of combinations of Ak1,l1 and Bk2,l2 of length n with variable
values for k1, l1, k2, l2 for every summand and let pm be the set of all interval partitions of size m
of the form

∑
p∈I(−1)bp with b ∈ N as the number of blocks in p and I as the set of all interval

partitions of length m. Then generating a list of the zeros of u ∈ N different versions of

... ·
n∏

i=1

Si · pm

has a time complexity of O(2m ·n log(n) ·u), with m = O(k+ l) = w, where w is equal to the upper
points of the partition parts of Sn.

Proof. Results from Definition 5.16, Definition 3.16 and the fact that there are 2c combinations
for a binary number of length c.

39

6 Discussion and Outlook

6 Discussion and Outlook

In this section, we bring this thesis to an end by presenting a brief discussion, including the
algorithm’s limitations and potential future research of this kind.
Overall, this thesis comprises the following contents:

1. Algorithms for Operations on Partitions (Section 3)

(a) tensor product

(b) involution

(c) composition

2. Algorithms for Constructing Categories (Section 4)

(a) classical partitions

(b) colored partitions (Section 4.3.1)

(c) spatial partitions (Section 4.3.2)

(d) tracing (Section 4.3.3)

3. Algorithms and Data Structures for Linear Combinations of Partitions (Section 5)

(a) addition

(b) multiplication

(c) application example (Section 5.3)

6.1 Limitations

The main limitation is the runtime of the algorithm for constructing categories, see Item 2. The
origin for this lies in redundant computation, which is difficult to avoid without spending more
resources than the redundancy costs. But because of the fast growth of the number of partitions in
a category, even without redundancy we are not able to allow a significantly higher input partition
size n.

Example 6.1. It would have been interesting to construct ⟨Π3⟩ (see [SR16]), where

Π3 = ∈ P (12).

Even for small partition sizes n, it takes as much computation to construct ⟨Π3⟩ ∩ P (n) as for
n = 12, because we produce all partitions of size ≤ max(n, size(Π3)) = 12.

This limitation becomes even more pronounced for colored partitions, since the coloring leaves
room for more combinations. In the case of spatial partitions, a notable challenge arises as the
generator partitions tend to be larger in size.

In addition, it seems that for spatial partitions, it is more common, that we have to let the
intermediate partitions exceed the max length constraint. As a result, constructing categories for
spatial partitions is much more complex (see Section 4.3).

6.2 Future Work

Potential for future research lies in Item 1c, the composition algorithm.

Proposition 6.2. Let n ∈ N be the number of nodes in a forest F . Then a sequence of n union
or find operations on F has a runtime of O(nα−1(n)). Where α−1(n) is the inverse Ackermann
function.

Proof. See [Fis72].

40

6 Discussion and Outlook

Since the inverse Ackermann function grows slower than the logarithm function, O(nα−1(n)) is
less complex as O(n log(n)).

The improved runtime is achieved through the implementation of path compression and a
technique known as union by rank (see [Fis72]). An integration of this technique in our composition
algorithm could result in a runtime improvement for the whole algorithm. But note that, the
construction algorithm would hardly benefit from it, since we are not dealing with partitions of a
large size.

Additionally, with the algorithm presented in Section 4 and implemented in [Vol23], it would
be interesting to investigate and potentially extend Theorem 5.8. in [CW16].

Theorem 6.3 (Theorem 5.8. from [CW16]). The following subcategories of P
(2)
2 are all distinct:

⟨⟩, ⟨ (2)⟩, [P2]
(2), ⟨ ⟩, ⟨ ⟩, ⟨ , ⟩, ⟨ ⟩, ⟨ , ⟩, P (2)

2 , C1 × C2 with Ci = {NC2, ⟨ ⟩, P2}

In a broader context, tracing could be utilized to demonstrate that various sets of generator
partitions representing a given category are not minimal.

Furthermore, it would be beneficial to create a program that visualizes a trace, with the aim
of improving readability, as done in Example 4.19.2.

41

References

References

[BBC07] Teodor Banica, Julien Bichon, and Benoit Collins. The hyperoctahedral quantum group.
J. Ramanujan Math. Soc., 22(4):345–384, 2007.

[BCS09] Teodor Banica, Stephen Curran, and Roland Speicher. Classification results for easy
quantum groups. Pacific J. Math, 247:1–26, 2009.

[BS09] Teodor Banica and Roland Speicher. Liberation of orthogonal lie groups. Advances in
Mathematics, 222(4):1461–1501, 2009.

[CW16] Guillaume Cébron and Moritz Weber. Quantum groups based on spatial partitions.
Annales de la Faculté des Sciences de Toulouse, 2016.

[Deo12] Narsingh Deo. Graph Theory with Applications to Engineering and Computer Science.
PHI Learning, New Delhi, [reprint.] edition, 2012. Print Book.

[Far22] Nicolas Faroß. Spatial pair partitions and applications to finite quantum spaces. Saar-
land University - Department of Mathematics and Computer Science - Master’s thesis,
2022.

[Fis72] Michael J. Fischer. Efficiency of Equivalence Algorithms, pages 153–167. Springer US,
Boston, MA, 1972.

[GW19] Daniel Gromada and Moritz Weber. Intertwiner spaces of quantum group subrepresen-
tations. Communications in Mathematical Physics, 376(1):81–115, may 2019.

[GW21] Daniel Gromada and Moritz Weber. Generating linear categories of partitions. Kyoto
J. Math., 62(4):865–909, 2021.

[MSP+17] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B.
Kirpichev, Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj
Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J.
Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing in Python. PeerJ
Computer Science, 3:e103, January 2017.

[MST20] Aye Aye Moe, Tin Tin Soe, and Moe Moe Thein. Review and comparison for collision
resolution in a hash table. International Journal of Research Publications, 49, 2020.

[MW19] Alexander Mang and Moritz Weber. Non-hyperoctahedral categories of two-colored
partitions, part i: New categories. Journal of Algebraic Combinatorics, 54:475–513,
2019.

[OEI] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. Published elec-
tronically at http://oeis.org.

[SR16] Moritz Weber Sven Raum. The full classification of orthogonal easy quantum groups.
Communications in Mathematical Physics, 341:751–779, 2016.

[Sta99] Richard P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press,
1999.

[Sta15] Richard P. Stanley. Catalan Numbers. Cambridge University Press, 2015.

[Tar79] Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM,
26(4):690–715, oct 1979.

[TW15a] Pierre Tarrago and Moritz Weber. The classification of tensor categories of two-colored
noncrossing partitions. J. Comb. Theory, Ser. A, 154:464–506, 2015.

[TW15b] Pierre Tarrago and Moritz Weber. Unitary easy quantum groups: the free case and the
group case. International Mathematics Research Notices, 2017(18):5710–5750, 2015.

42

References

[Vol23] Sebastian Volz. Github repository. https://github.com/sebvz777/Bachelorthesis,
2023.

[Web13] Moritz Weber. On the classification of easy quantum groups. Advances in Mathematics,
245:500–533, 2013.

[Web17] Moritz Weber. Partition C∗-algebras. https://arxiv.org/abs/1710.06199, 2017.

43

A Overview Categories

A Overview Categories

44

A Overview Categories
C
at
eg
or
y

Q
u
an

tu
m

G
ro
u
p

ge
n
er
at
o
rs

D
es
cr
ip
ti
on

L
aw

S
iz
es

O
E
IS

o
f

th
e

fi
rs
t

8
n
u
m
b
er
s

([
O
E
I]
)

P
S
n

,
al
l
p
ar
ti
ti
o
n
s

P
o
is
so
n

1,
1
,
2,

5
,
15

,
52

,
20

3
,
8
7
7,

4
14

0
B
el
l

o
r

ex
p
on

en
ti
al

n
u
m
b
er
s

(A
0
00

11
0)

P
2

O
n

p
ar
ti
ti
o
n
s
w
it
h
b
lo
ck
si
ze

2
G
a
u
ss
ia
n

1,
0,

1
,
0
,
3
,
0,

1
5,

0,
1
05

,
0
,
94

5
a
(n
)
=

(n
−

1
)
·a

(n
−

2
),
a
(0
)
=

1,
a
(1
)
=

0
(A

12
30

23
)

P
1
,2

B
n

,
p
ar
ti
ti
o
n
s
w
it
h
b
lo
ck
si
ze

1
a
n
d

2
sh
if
te
d

re
a
l

G
a
u
ss
ia
n

1,
1
,
2
,
4,

10
,
26

,
7
6,

23
2
,
7
6
4

N
u
m
b
er

of
se
lf
-i
n
ve
rs
e
p
er
m
u
ta
-

ti
o
n
s
o
n
n
le
tt
er
s
(A

00
00

85
)

P
1
,2

e
v
e
n

B
′ n

,
ev
en

p
ar
t

o
f

p
a
rt
it
io
n
s

w
it
h

b
lo
ck
si
ze
s
1
o
r
2

sy
m
m
et
ry

sh
if
te
d

re
a
l

G
a
u
ss
ia
n

1,
0,

2,
0,

10
,
0
,
7
6,

0,
7
64

N
u
m
b
er

of
se
lf
-i
n
ve
rs
e
p
er
m
u
ta
-

ti
o
n
s
on

n
le
tt
er
s
(A

0
00

08
5)

fo
r

ev
en

n
,
el
se

0
P
e
v
e
n

B
S

H
n

,
p
ar
ti
ti
o
n
s
w
it
h
ev
en

b
lo
ck
si
ze

2
-B

es
se
l

1,
0,

1
,
0
,
4
,
0,

3
1,

0,
3
79

N
u
m
b
er

of
p
ar
ti
ti
o
n
s
o
f
a
2n

-s
et

in
to

ev
en

b
lo
ck
s
(A

0
05

0
46

)
w
it
h

0
if
o
d
d

N
C

2
O

+ n
-

n
on

-c
ro
ss
in
g

p
a
rt
it
io
n
s

w
it
h

b
lo
ck
si
ze

2
S
em

ic
ir
cl
e

1,
0
,
1
,
0
,
2
,
0
,
5
,
0
,

14
,
0,

42
C
a
ta
la
n

n
u
m
b
er
s
(A

0
00

10
8)

in
-

te
rp
ol
a
te
d
w
it
h
0’
s

P
e
v
e
n

S
′ n

,
,

ev
en

p
ar
t
o
f
a
ll
p
a
rt
it
io
n
s

sy
m
m
et
ry

P
o
is
so
n

1,
0
,
2
,
0,

15
,
0,

20
3,

0,
4
14

0
B
el
l

o
r

ex
p
on

en
ti
al

n
u
m
b
er
s

(A
0
00

11
0)

if
ev
en

,
el
se

0
N
C

S
+ n

n
on

-c
ro
ss
in
g
p
a
rt
it
io
n
s

fr
ee

P
o
is
so
n

1,
1
,
2,

5
,
14

,
42

,
13

2
,
4
2
9,

1
43

0
C
a
ta
la
n
n
u
m
b
er
s
(A

00
01

08
)

N
C

e
v
e
n

B
S

H
+ n

n
on

-c
ro
ss
in
g

p
a
rt
it
io
n
s

w
it
h

ev
en

b
lo
ck
si
ze

fr
ee

B
es
se
l

1,
0,

1
,
0
,
3
,
0,

1
2,

0,
5
5,

0,
2
73

a
(n
)
=

b
in

o
m

ia
l(
3
n
,n

)
2
n
+
1

if
n
is
ev
en

,
el
se

0
(A

0
01

7
64

)
N
C

1
,2

B
+ n

n
on

-c
ro
ss
in
g

p
a
rt
it
io
n
s

w
it
h

b
lo
ck
si
ze

1
a
n
d
2

sh
if
te
d
S
em

i-
ci
rc
le

1,
1,

2,
4,

9,
2
1
,
5
1,

12
7
,
3
2
3

M
ot
zk
in

n
u
m
b
er
s
(A

00
10

06
)

N
C

e
v
e
n

S
′+ n

,
ev
en

p
ar
t
o
f
n
o
n
-c
ro
ss
in
g
p
a
rt
i-

ti
on

s
sy
m
m
et
ry

fr
ee

P
o
is
so
n

1,
0
,
2
,
0,

14
,
0,

13
2,

0,
1
43

0
C
a
ta
la
n

n
u
m
b
er
s

(A
0
00

10
8)

if
ev
en

el
se

0
N
C

1
,2

e
v
e
n

B
′+ n

ev
en

p
ar
t
o
f
n
o
n
-c
ro
ss
in
g
p
a
rt
i-

ti
on

s
w
it
h
b
lo
ck
si
ze

1
a
n
d
2

sy
m
m
et
ry

sh
if
te
d
S
em

i-
ci
rc
le

1,
0,

2
,
0
,
9
,
0,

5
1,

0,
3
23

,
0
,
21

88
M
ot
zk
in

n
u
m
b
er
s
(A

0
01

00
6
)
if

ev
en

el
se

0

N
C
B

e
v
e
n

B
#
+

n
n
on

-c
ro
ss
in
g

p
a
rt
it
io
n
s

w
it
h

b
al
a
n
ce
d

p
a
ir
s
a
n
d

ev
en

n
u
m
-

b
er

of
si
n
gl
et
o
n
s

sq
u
ee
ze
d

sh
if
te
d

C
ir
-

cl
e

1,
0,

2
,
0
,
7
,
0,

3
0,

0,
1
43

,
0
,
72

8
a
(n
)

=
b
in

o
m

ia
l(
3
n
+
1
,n

)
n
+
1

(A
00

60
13

)

B
2

O
n
∗

b
al
a
n
ce
d
p
a
rt
it
io
n
s
w
it
h
b
lo
ck
-

si
ze

2
sq
u
ee
ze
d

co
m
p
le
x

G
a
u
ss
ia
n

1,
0
,
1
,
0
,
2
,
0
,
6
,
0
,

24
,
0,

12
0

T
h
e

ae
ra
te
d

fa
ct
o
ri
al

n
u
m
b
er
s

(A
3
61

52
2)

B
H

n
∗

,
b
al
a
n
ce
d
p
a
rt
it
io
n
s

∞
-B

es
se
l

la
w

1,
0,

1
,
0
,
3
,
0,

1
6,

0,
1
31

,
0
,
14

96
N
u
m
b
er

o
f
b
lo
ck

p
er
m
u
ta
ti
on

s
on

a
n

n
-s
et

w
h
ic
h

a
re

u
n
if
o
rm

(A
0
23

99
8)

fo
r
ev
en

an
d
0
fo
r
o
d
d

B
1
,2

e
v
e
n

B
n
∗

,
al
l
b
al
a
n
ce
d
p
a
rt
it
io
n
s
o
f
b
lo
ck

si
ze

on
e

a
n
d

tw
o

w
it
h

ev
en

n
u
m
b
er

o
f
si
n
g
le
to
n
s

sq
u
ee
ze
d

sh
if
te
d

co
m
p
le
x

G
a
u
ss
ia
n

1,
0,

2
,
0
,
7
,
0,

3
4,

0,
2
09

,
0
,
15

46
n
u
m
b
er

o
f
n
×
n
b
in
a
ry

m
at
ri
ce
s

w
it
h
at

m
o
st

o
n
e
1
in

ea
ch

ro
w

a
n
d

co
lu
m
n
(A

00
27

2
0)

fo
r
ev
en

el
se

0

45

