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Introduction

The purpose of this thesis is the study of quantum versions of classical compact metric
spaces and isometric quantum group actions on these spaces from different viewpoints.
We will also give a formal definition of these quantum versions and present some new
examples.
Quantum groups have been an object of study for many years now and especially the
C*-algebraic compact quantum groups (CQG) introduced by Woronowicz in [Wor87]
possess a very powerful representation theory. Actions of quantum groups on C*-
algebras dualize the idea of group actions and describe the symmetries of an object in
the non-commutative case; one gets some kind of "quantum symmetry". Wang showed
in [Wan98] that even classical objects can have quantum symmetry unseen by restrict-
ing to classical groups. For example the set of n points gives rise to a commutative
C*-algebra but has genuine quantum symmetry. Its quantum symmetry group is the
famous quantum group S+

n which is not a group for n ≥ 4.
But allowing arbitrary quantum group actions on compact spaces often ignores too
much information of the compact space; since we are working with C*-algebras, only
the topology of the space is taken into consideration. In that sense a square and a
rectangle have the same quantum symmetry group. Alain Connes defined with the
help of spectral triples quantum group actions on Riemannian Manifolds that pre-
serve the differential structure of the manifold, see [Con94]. Generalizing this further,
Goswami([Gos15]), Banica([Ban05]), Bichon and Collins have defined and studied iso-
metric quantum group actions on classical finite and compact metric spaces discovering
for example the non-commutative version of the hyperoctahedral group H+

n in search
for the quantum isometry group of the n-dimensional hypercube in [BBC07]. Rieffel also
introduced the notion of a non-commutative metric space in [Rie99] and Quaegebeur
and Sabbe then defined isometric quantum group actions on such non-commutative
metric spaces in [QS12]. It is not yet clear if the two notions of isometric actions in-
troduced by Goswami and Quaegebeur-Sabbe respectively are equivalent on classical
spaces.
In this thesis we give a new formal framework for the notion of a "non-commutative"
or "quantum" version of a classical compact metric space X ⊂ Rn and their quantum
symmetries. We also present some new examples of quantum versions of some compact
metric spaces and calculate their quantum isometry.
In the first section we recall the definition of a CQG and a compact matrix quantum
group (CMQG). We give some classic examples, show that every compact group is also
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Introduction

a CQG and how to dualize the concept of a group action on a compact space.
In the second section the theory of isometric quantum group actions on classical com-
pact spaces is presented. We see that dualizing an isometric group action gives rise to
an isometric quantum group action. First we deal with the case of a finite metric space
where the notion of an isometric action was defined by Banica in [Ban05]. Then we
pass to arbitrary compact metric spaces. If the compact space is actually a subset of Rn

we present the surprising result of Goswami ([Gos15]) that, as in the classical case, an
isometric quantum group action is automatically affine and orthogonal and hence the
quantum group is a subgroup of the O+

n . This characterization of isometric quantum
group actions is later used to define an isometric quantum group action on the quantum
version of a space. We list some examples of compact metric spaces and their quantum
symmetries.
The third section consists mostly of our own research. We present the definition of a
(maximal) quantum version of a classical compact metric spaces and their quantum
symmetries. The definitions are new although the idea of quantum versions of the
sphere, the hypercube or the torus is well-known to the experts. As a first example
we give the definition of a maximal quantum version of the d-dimensional lemon and
calculate its quantum symmetries. Then we present some other examples and compare
them to the half-classical case.
The fourth and last section gives a brief overview of a different approach to non-
commutative metric spaces, the compact quantum metric spaces (CMQS) as defined
by Rieffel in [Rie99]. We show that every compact metric space is also a CQMS and
motivate the definition of an isometric action on CQMS as given by Quaegebeur and
Sabbe in [QS12].

Notation

The majority of the notation is introduced when needed. The symbol A ⊗ B denotes
the minimal tensor product if A and B are both C*-algebras and the algebraic tensor
product if one of them (or both) is just an algebra. We write C(A,B) for the continuous
functions from A to B and C(A) := C(A,C) for the continuous complex valued functions
on A. By C*(x1, . . . , xn | R) with R being a set of polynomial relations in the elements xi

and xi* we denote the universal C*-algebra with generators xi and relations R (see for
example [Bla85]).
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1 Preliminaries

First we recall some definitions of the theory of compact quantum groups (CQG),
starting with the definition of such a CQG. For more details see for example [Web17],
[Tim08], [NT13] or [MVD98].

1.1 Compact quantum groups

Definition 1.1
A compact quantum group (A,∆) is a unital C*-algebra A together with a comultiplication,
i.e. a unital *-homomorphism

∆ : A −→ A ⊗ A

such that it is coassociative, i.e.

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆

and the sets ∆(A)(1 ⊗ A) and ∆(A)(A ⊗ 1) are linearly dense in A ⊗ A.

Remark 1.2
The continuous functions on any compact group form a CQG. Let G be a compact
group and C(G) the continuous functions on G. We identify C(G) ⊗ C(G) with C(G × G)
by mapping f ⊗ g to (s, t) 7→ f (s)g(t). Then the multiplication on the group G defines a
comultiplication on C(G) by

∆ : C(G) −→ C(G × G)

f 7−→ ∆( f )

where ∆( f )(s, t) := f (st). In this way the associativity of the group multiplication
corresponds to the coassociativity of the comultiplication and the cancellation law of
the group corresponds to the denseness of the span of the sets ∆(A)(1⊗A) and ∆(A)(A⊗1).
So every compact group corresponds to a CQG in a natural way. In this way the algebra
A is of course commutative. On the other hand by the theorem of Gelfand-Naimark we
get that every CQG given by a commutative algebra corresponds to a C(G) for a fitting
compact group G. For this reason we sometimes write C(G) for the non-commutative
algebra of a CQG and call G the CQG even though there is not really a compact group
G underneath the algebra A.
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Preliminaries

We will mostly care about a particular kind of CQGs in this thesis, the compact matrix
quantum groups (CMQG) introduced by Woronowicz in [Wor87]. We will see in the third
section that the restriction to the CMQGs is not really a restriction at all concerning
isometric actions of CQGs.

Definition 1.3
A compact matrix quantum group (A, a,∆) is a unital C*-algebra A together with a matrix
a = (αi j) of elements of A and a ∗−homomorphism ∆ : A→ A ⊗ A such that

1. ∆(αi j) =
∑n

k=1 αik ⊗ αkj

2. the matrices a and at are invertible

3. the elements αi j for i, j = 1, . . . ,n generate A as a C*-algebra.

Remark 1.4

• The comultiplication ∆ is uniquely determined by the first and the third property
of a CMQG. Hence, we can drop the ∆ in the notation of the CMQG and just write
(A, a) with the underlying ∆ being implied.

• Every CMQG is actually a CQG as in Definition 1.1. A proof of that statement can
be found in [NT13].

• Most of the CMQG that are known can be given as universal C*-algebras, with the
matrix entries αi j being the generators subject to some algebraic relations.

Example 1.5
Let us list two famous examples of CMQGs.

• The CMQG O+
n is given by the universal C*-algebra

C(O+
n ) := C∗

ui j, i, j = 1, . . . ,n
∣∣∣∣∣ ui j = u∗i j,

n∑
k=1

uiku jk =

n∑
k=1

ukiukj = δi, j1

 .
This algebra is non-commutative for all n ≥ 2. Note that these relations, together
with commutativity of all the ui j, define the classical function algebra C(On). So
in some sense O+

n is the non-commutative version of On, see [Wan95].
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Compact quantum groups

• The CMQG S+
n is given by the universal C*-algebra

C(S+
n ) := C∗

ui j, i, j = 1, . . . ,n
∣∣∣∣∣ ui j = u∗i j = u2

i j,
n∑

k=1

ukj =

n∑
k=1

uik = 1

 .
Here the classical function algebra C(Sn) is given by the same relations including
the commutativity of the generators and for n ≥ 4 we in fact have C(S+

n ) , C(Sn)
because C(S+

n ) is non-commutative in these cases, see [Wan98].

Remark 1.6
In classical topological group theory it is a well known fact that every compact group
admits a (up to a factor) unique left- (and right-) invariant measure on the group, called
the Haar measure. This translates into our theory to the fact that for each CQG (A,∆)
there is a unique state h on A called the Haar state that is left- and right-invariant on A
in the sense that

(id ⊗ h)∆(a) = (h ⊗ id)∆(a) = h(a) · 1.

If now the GNS-construction of A is done with respect to the Haar state h the resulting
CQG Ar is called the reduced CQG corresponding to A. If the Haar state is even tracial,
i.e. h(ab) = h(ba) for all a, b ∈ A, the CQG is said to be of Kac type.

We will also need occasionally the notion of a Hopf *-algebra, so we briefly give the
definition and some results connecting it to CQGs here without proof.

Definition 1.7
A Hopf *-algebra (A,∆, ε, κ) is a *-algebra A together with a comultiplication ∆ and maps
ε : A→ C and κ : A→ A fulfilling the conditions

(ε ⊗ id) ◦ ∆ = (id ⊗ ε) ◦ ∆ = id

m(κ ⊗ id)∆ = m(id ⊗ κ)∆ = ε · 1.

Here m denotes the map m : A ⊗ A → A induced by the condition m(x ⊗ y) = xy. The
maps ε and κ are called the counit and the antipode respectively.

15



Preliminaries

Remark 1.8
For every CQG (A,∆) there exists a dense *-subalgebra A0 ⊂ A and maps ε and κ such
that (A0,∆

∣∣∣
A0
, ε, κ) is a Hopf *-algebra. In general the counit and antipode on the Hopf

algebra A0 cannot be extended to A. However, it is known that if A is of Kac type then
the antipode κ can be extended in a bounded manner to the reduced CQG Ar with the
property κ2 = id.

Example 1.9
In the case of a CMQG (A, a) it is easy to determine the underlying Hopf algebra. It is
the *-algebra generated by the entries of the matrix a; the counit ε is given by ε(αi j) = δi, j

and the antipode is given by κ(αi j) = α∗ji. In the general case the Hopf algebra can be
defined in a similar way but one has to use all the finite dimensional representations of
a given CQG. For details see [MVD98].

1.2 Quantum group actions

Groups are used to encode and analyse the symmetry of spaces: the classical permuta-
tion group Sn is the symmetry group of n points in random positions, On is the symmetry
group of the n-dimensional sphere in Rn and so on. This is made precise by the notion
of group actions. An action of a group G on a space X is a group homomorphism α̃ from
G to the group of automorphisms of the space X. Depending on the structure of the
space X (for example set, topological, metric) the automorphisms can be just bijections,
bijective continuous functions or surjective isometries. If now α̃ is a bijection we say
that G is the symmetry group of X. A group action can also be defined in a different
way, defining the action to be a map

α : X × G −→ X

(x, g) 7−→ gx,

where the gx are defined in such a way that α fulfills conditions making the correspond-
ing α̃ defined by

α̃ : G −→ Aut(X)

g 7−→ α(·, g)
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a well-defined group homomorphism.
Since by Remark 1.2 CQGs are generalizations of classical groups, they should encode
some kind of "quantum symmetry" of topological spaces that is unseen by the classical
group actions. Therefore we dualize the notion of group action to quantum groups
acting on C*-algebras which are, by Gelfand-Naimark, the non-commutative analogues
of classical compact spaces.

Definition 1.10 ([Pod95])
Let (A,∆) be a CQG and B be a unital C*-algebra. A quantum group action α of A on B is
a *-homomorphism α : B→ B ⊗ A fulfilling the conditions

1. (α ⊗ id) ◦ α = (id ⊗ ∆) ◦ α

2. α(B)(1 ⊗ A) is linearly dense in B ⊗ A.

An action is called faithful if there is no subalgebra A′ of A such that (A′,∆) is a CQG
and α is an action of A′ on B.

The proof of the following lemma is clear so we omit it.

Lemma 1.11
Let B have generators x1, . . . , xn and suppose that the quantum group action of a CQG
(A,∆) on B can be written as

α(xi) =

n∑
j=1

x j ⊗ αi j

for some αi j ∈ A. Then the action is faithful if and only if A is generated by the αi j.

Remark 1.12
The classical notion of group actions fits nicely in this framework. Let α : X × G → X
be an action of a compact group G on a compact space X. We identify C(X) ⊗ C(G) with
C(X × G) as before. Then the group action α induces a quantum group action α′ by
putting

α′ : C(X) −→ C(X) ⊗ C(G)

f 7−→ α′( f ) = f ◦ α.

17



Preliminaries

Then α′ is a quantum group action; the two requirements in Definition 1.10 are fulfilled
because of the axioms of the ordinary group action (g(hx) = (gh)x and ex = x).

Remark 1.13
It is clear that instead of looking at a classical case we can also look at "half-classical"
cases, where only one of the C*-algebras is the algebra of continous functions on some
group G or on some compact space X. Then we can either investigate the quantum
symmetries of a classical space or the classical symmetries of a "quantum space". This
will be important in the next section.

Example 1.14
Let X = {1, . . . ,n} be a finite set with n points. The function algebra on X can be written
as a universal C*-algebra as

C(X) = C∗
x1, . . . , xn

∣∣∣∣∣xi = x∗i = x2
i ,

n∑
i=1

xi = 1

 .
Then C(S+

n ) (see Example 1.5) acts on C(X) by putting

α(xi) =

n∑
j=1

x j ⊗ u ji.

Moreover, Wang showed in [Wan98] that S+
n is the biggest CQG acting on X in the sense

that every other CQG action on C(X) factorizes through C(S+
n ).

Remark 1.15
It is shown in [Sol11] that for any action α of a CQG (A,∆) on some C*-algebra B one can
find a *-dense unital subalgebra B0 ⊂ B, called the spectral subalgebra such that α maps
B0 to B0 ⊗ A0, where A0 is the dense Hopf-algebra as in Remark 1.8.
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2 Isometric quantum group actions on classical spaces

In this section we will introduce the notion of an isometric quantum group action on
classical spaces. These actions have been studied to some extent by Connes [Con94],
Banica [Ban05], Goswami [Gos15] and others.
If we allow any kind of quantum group action to be considered as a notion of symmetry,
then the square given by C*(x1, x2 | x1x2 = x2x1, xi = x∗i , x

2
i = 1) has the same quantum

symmetry group as the rectangle given by C*(x1, x2 | x1x2 = x2x1, xi = x∗i , x
2
1 = 1, 2x2

2 = 1)
since the two C*-algebras are clearly isomorphic (the isomorphism is given by x1 7→ x1

and x2 7→
1
√

2
x2) even though intuitively we want to distinguish these spaces regarding

their quantum symmetries. The reason for the same quantum symmetry group is that
by passing to the continuous functions on the respective space we lose the metrical
information and only have the topological information available.
In this section we will introduce a way to let a coaction on the space C(X) still respect
the metrical information of the underlying space X. So in the following we will look at
compact metric spaces (X, d) and the space of continuous functions from X to C, C(X).
The metric on X can be for example (but not necessarily) the euclidean metric on X ⊂ Rn.
We will start with the classical case of a group acting on a finite metric space.

2.1 Finite metric spaces

Definition 2.1
Let X = {1, . . . ,n} be a finite metric space with metric d. We call the matrix defined by
D = (d(i, j)) the distance matrix of (X, d). Since all the metrical information of the space
is included in the matrix D, we will also write (X,D) instead of (X, d) for a finite metric
space.

Let G be a finite group acting isometrically on a finite space (X, d), i.e. d(x, gy) =

d(g−1x, y) for all g ∈ G and x, y ∈ X. How does this translate into the C*-algebraic
setting?
The function algebras on X and G are generated by the point functions δi and δg given
by

δi( j) =

1, i = j

0 else
, δg(h) =

1, g = h

0 else

for all i = 1, . . . ,n and g ∈ G on X and G respectively. The following result is already
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Isometric quantum group actions on classical spaces

stated in [Ban05], for convenience of the reader we give an explicit proof.

Lemma 2.2
Let (X,D) be a finite metric space and G a group acting on X.

i) The coaction α : C(X)→ C(X) ⊗ C(G) of C(G) on C(X) is given by

α(δi) =
∑
j∈X

δ j ⊗
∑

g−1i= j

δg

 .
ii) The action of G on X is isometric if and only if aD = Da holds where D is the

distance matrix of X and a is the matrix defined by a = (αi j) with

αi j :=
∑

g−1i= j

δg.

Proof. As we have seen in Remark 1.12 the coaction α of C(G) on C(X) is given by
f 7→ ((x, g) 7→ f (gx)). So we have

α(δi)( j, h) =

1, h−1i = j

0, else
.

On the other hand we have∑
g∈G

δg−1i ⊗ δg

 ( j, h) =
∑
g∈G

δg−1i( j)δg(h) =

1, h−1i = j

0, else
,

for all h ∈ G and j ∈ X, so the coaction is given by

α(δi) =
∑
g∈G

δg−1i ⊗ δg.

By collecting terms with the same δi we can rearrange the right hand side to

α(δi) =
∑
j∈X

δ j ⊗
∑

g−1i= j

δg


which shows the first part of the lemma.
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Finite metric spaces

For the second part write
αi j =

∑
g−1i= j

δg, a = (αi j).

Now we can multiply this matrix from the left and right by the distance matrix D and
get

(aD)i j =
∑

k

αikd(k, j) =
∑

k

d(k, j)
∑

g−1i=k

δg =
∑
g∈G

d(g−1i, j)δg

and
(Da)i j =

∑
k

d(i, k)αkj =
∑

k

d(i, k)
∑
gj=k

δg =
∑
g∈G

d(i, gj)δg.

By evaluating these functions on all g ∈ G we see that Da = aD is equivalent to
d(i, gj) = d(g−1i, j) which is just the definition of the group action being isometric. �

Since every coaction of a CQG G on a finite space is given by

α(δi) =
∑
j∈X

(
δ j ⊗ αi j

)
for some coefficients αi j ∈ G, Banica gave in [Ban05] the following definition of an
isometric quantum group action on a finite space.

Definition 2.3
Let (X,D) be a finite metric space with n points and G be a CQG acting on C(X) via

α(δi) =
∑
j∈X

(
δ j ⊗ αi j

)
.

Denote by a = (αi j) the coefficient matrix of the action. Then we call the action α isometric
if aD = Da holds.

Proposition 2.4 ([BBC07])
Every action of a CQG on a simplex (i.e. a finite metric space where all points have the
same distance) is isometric.
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Proof. Let (X,D) be a simplex with n points and G be a CQG acting on X via

α(δi) =
∑
j∈X

(
δ j ⊗ αi j

)
.

As before, let a = (αi j) be the matrix of coefficients of the action. As seen in Example
1.14 the action α has to factorize through the quantum group S+

n which means that the
αi j satisfy the relations of the generators of the universal C*-algebra C(S+

n ), i.e.

αi j = α∗i j = α2
i j,

n∑
k=1

αkj =

n∑
k=1

αik = 1. (1)

Now since (X,D) is a simplex its distance matrix is given by D = λ(F − In) where In is
the n× n-identity matrix and F is the matrix with all 1’s. Obviously a commutes with In

so the action is isometric if aF = Fa holds. But every entry in the matrices aF and Fa is
just the sum over a row or column of a so by the relations (1) we see that aF = Fa = F
holds. So the action α is isometric. �

Definition 2.5
Let (X,D) be a finite metric space with n points. The quantum isometry group of (X,D) is
the quotient of C(S+

n ) by the ideal generated by the relations uD = Du.

Example 2.6
The quantum isometry group of the simplex with n points is the quantum group C(S+

n ).
This is just a reformulation of Example 1.14.

Example 2.7
The set of vertices of the n-dimensional hypercube has quantum isometry group O−1

n .
This quantum group is given by the quotient of C(O+

n ) by the relations

uikui j = −ui juik, ukiu ji = −u jiuki, k , j

ui jukl = uklui j, i , k, j , l.

Note that it seems like O−1
n has the "wrong dimension" since the quantum isometry

group of the n-dimensional hypercube is by definition a subgroup of S+
2n . This is a
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Compact metric spaces

consequence of the fact that the hypercube can also be regarded as a Cayley graph of
the group Zn

2 and the action can be defined on the n generators of the group, see [BBC07]
for details. But we will see at the end of this section in Proposition 2.21 that we can
recover the quantum group O−1

n also by looking at the actual metric space.

2.2 Compact metric spaces

Now we turn to arbitrary compact metric spaces, not necessarily finite. Since the
metrical information of the space is not given by a matrix now, we cannot use Definition
2.3 anymore and need a different definition of isometry.
In this section (X, d) will always be a compact metric space. In the following we will often
identify C(X) ⊗ A for some C*-algebra A (usually a CQG) with C(X,A), the continuous
functions from X to A, via

f ⊗ a 7→ (x 7→ f (x)a).

We also restrict ourselves to faithful actions of CQGs. Intuitively that means that there
is no part of the action that is trivial so we cannot factor out a subgroup and still capture
the full symmetry. In search for the "isometry" of a given metric space it thus makes
sense to just look at faithful actions. It is shown in [Hua16] that if a CQG A acts faithfully
on C(X) for a compact Hausdorff space (so in particular for a metric space) then A is of
Kac type, i.e. the bounded antipode κ of the underlying Hopf algebra can be extended
to the reduced CQG Ar in a norm-bounded way. This allowed Goswami in [Gos15] to
define the following.

Definition 2.8
Let (X, d) be a compact metric space and A be a CQG acting on C(X) via the action α.
Let also Ar be the reduced CQG with respect to A with GNS representation πr. Denote
by αr := (id ⊗ πr) ◦ α the reduced action of Ar on C(X). Then we call α isometric if and
only if

αr(dx)(y) = κ(αr(dy)(x)) (2)

for all x, y ∈ X. Here dx(z) := d(x, z) and κ is the extension of the antipode to Ar.

Let us first check that in the classical case this definition coincides with the classical
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definition of an isometric action of a compact group G. This is already noted by Goswami
in [Gos15], we give an explicit proof here.

Proposition 2.9
Let G be a compact group acting on a compact metric space (X, d) and let α be the
corresponding coaction in the sense of Remark 1.12. Then the action of G on X is
isometric if and only if α is isometric in the sense of Definition 2.8.

Proof. Let α be the coaction of C(G) on C(X); it is given by

f 7→ ((x, g) 7→ f (gx)).

The antipode κ on C(G) is given by κ( f )(g) := f (g−1). Then for all x, y ∈ X and g ∈ G

α(dx(y))(g) = d(gx, y), κ(α(dy)(x))(g) = d(g−1y, x) = d(x, g−1y),

so we have α(dx(y)) = κ(α(dy)(x)) for all x, y ∈ X if and only if d(gx, y) = d(x, g−1y) for all
x, y ∈ X and g ∈ G. �

Since all finite metric spaces are especially compact we can compare Definition 2.8
to Definition 2.3. Goswami gave a proof for the following proposition using unitary
representations, we give a more direct proof.

Proposition 2.10
Let (X,D) be a finite metric space and A a CQG acting faithfully on C(X) via the action
α with coefficient matrix a. Then Da = aD if and only if α(dx)(y) = κ(α(dy)(x)) holds for
all x, y ∈ X.

Proof. The action α is given by

α(δi) =

n∑
j=1

(
δ j ⊗ αi j

)
for some coefficients αi j. We write di j := d(i, j) = Di j and with this we can write the
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elements di = d(·, i) ∈ C(X) as

di =

n∑
k=1

dikδk

so the action on the di is given by

α(di) =

n∑
k=1

dikα(δk) =

n∑
k=1

dik

n∑
j=1

δ j ⊗ αkj

=

n∑
j=1

δ j ⊗

 n∑
k=1

dikαkj

 .
Note that α(di) = αr(di) for all i since α(di) ∈ C(X)⊗A0 and the representationπr : A→ Ar

is just the identity on the underlying Hopf algebra A0. Thus on the left hand side of (2)
in Definition 2.8 we have

α(di)( j) =

n∑
k=1

dikαkj

for all i, j ∈ X. The antipode κ on A is given by κ(αi j) = α ji* and since the αi j fulfil the
relations of C(S+

n ), the αi j are selfadjoint and we even have κ(αi j) = α ji. So altogether we
have

κ(α(d j)(i)) = κ

 n∑
k=1

d jkαki

 =

n∑
k=1

d jkαik =

n∑
k=1

αikdkj

using the symmetry of D. Comparing the two terms we established the equivalence of
the definitions. �

2.3 Compact metric spaces with the euclidean metric

The main goal of this section is to show that every isometric action of a CQG on a
compact metric space X ⊂ Rn equipped with the euclidean metric is already affine in
a sense to be defined. This motivates our definition of isometric actions on quantum
versions of metric spaces in the next section. We follow the arguments of Goswami
in [Gos15], reorganising the results to fit our needs and extend some of the proofs for
increased readability. Let us fix some notation first. All our compact metric spaces X
are now subsets of Rn equipped with the euclidean metric. We denote by X1, . . . ,Xn the
restrictions of the coordinate functions of Rn to X. For a point x ∈ X we write xi := Xi(x)
for the i-th component of x.
Let us first establish two preparatory lemmata.
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Lemma 2.11
Let X ⊂ Rn be a compact metric space containing the 0 and suppose that the Xi are
linearly independent. Let A be a C*-algebra and F1, . . .Fn,G1, . . . ,Gn be functions from
X to A such that

n∑
i=1

(Fi(x) − qi)yi =

n∑
i=1

(Gi(y) − q′i )xi

for all x, y ∈ X where qi = Fi(0) and q′i = Gi(0). Then the Fi and Gi are affine, i.e. there
are αi j ∈ A such that Fi(x) = qi +

∑n
j=1 x jα ji, similarly for the Gi.

Proof. By replacing Fi with Fi−qi and Gi with Gi−q′i we can assume that Fi(0) = Gi(0) = 0.
Take a linear combination of elements in X that is 0, i.e.

∑l
k=1 ckx(k) = 0 for some ck ∈ R

and x(k)
∈ X. Then we have for any y ∈ X

l∑
k=1

ck

 n∑
i=1

Fi(x(k))yi

 =

l∑
k=1

ck

 n∑
i=1

Gi(y)x(k)
i

 =

n∑
i=1

Gi(y)
l∑

k=1

ckx(k)
i = 0.

That means that for Qi :=
∑l

k=1 ckFi(x(k)) we have
∑n

i=1 Qiyi = 0 for all y ∈ X. Expressed
in terms of the tensor product C(X) ⊗ A we get

∑n
i=1 Xi ⊗Qi = 0. But since the Xi are

linearly independent, we have Qi = 0 for all i. So for two equal linear combinations of
elements

∑l
k=1 ckx(k) =

∑t
j=1 d jy( j) we have

∑l
k=1 ckFi(x(k)) =

∑t
j=1 d jFi(y( j)). Therefore the

linear extension Fi

(∑l
k=1 ckx(k)

)
:=

∑l
k=1 ckFi(x(k)) is well-defined on the span of the Xi.

So there is a linear extension of Fi to the whole Rn. Putting α ji := Fi(e j), the e j being the
canonical basis vectors of the Rn, we get Fi(x) =

∑n
j=1 x jα ji as desired. By symmetry the

same proof works for the Gi. �

Lemma 2.12
Let X ⊂ Rn be a compact set equipped with the euclidean metric and let Xi be the
restriction of the coordinate functions to X. Then we can find new coordinate functions
Yi such that {Y1, . . .Yk} is linearly independent and d(x, y) =

√∑k
i=1 (Yi(x) − Yi(y))2 for

all x, y ∈ X. Hence we can always assume that the coordinate functions on a metric
space are linearly independent.
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Proof. Let the first k coordinate functions be linearly independent and put

X j =

k∑
i=1

d jiXi

for j = k + 1, . . . ,n.
If we put D = (d jl) we can now write the metric in a matrix way:

d2(x, y) =

n∑
i=1

(Xi(x) − Xi(y))2 =

k∑
i=1

(Xi(x) − Xi(y))2 +

n∑
j=k+1

(X j(x) − X j(y))

=

k∑
i=1

(xi − yi)2 +

n∑
j=k+1

 k∑
i=1

d ji(xi − yi)


2

=

k∑
i=1

(xi − yi)2 +

k∑
i,l=1

(xi − yi)
n∑

j=k+1

d jid jl(xl − yl)


= Zt(Ik + DtD)Z,

where Z is the k-dimensional vector (xi− yi) and Ik is the identity matrix. Since (Ik +DtD)
is symmetric and positive-definite (d2(x, y) ≥ 0 for all x, y in the span of X), there exists
an invertible, symmetric, positive-definite root C :=

√
Ik + DtD = (ci j). So choosing new

coordinate functions Yi :=
∑k

j=1 ci jX j for i = 1, . . . , k we get

k∑
i=1

(Yi(x) − Yi(y))2 =

k∑
i=1

 k∑
j=1

ci j(x j − y j)


2

=

k∑
j,l=1

(x j − y j)
k∑

i=1

ci jcil(xl − yl)


= ZtC2Z = Zt(Ik + DtD)Z = d2(x, y)

for all x, y ∈ X. �

From now on we always assume that the Xi are linearly independent. Also, by
translating the set X, we can assume that 0 ∈ X. Then the linear independence of
{X1, . . . ,Xn} implies the linear independence of {1,X1, . . . ,Xn}.
Now we can show that every isometric action is already affine. In [Gos15] this is done
in the proof of Theorem 4.5.
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Proposition 2.13
Let (X, d) be a compact metric space and α : C(X) → C(X) ⊗ A be a faithful isometric
coaction of a CQG A on C(X). Write Fr

i := αr(Xi) for the reduced action αr. Then the Fr
i

are affine, i.e. there are αi j, qi ∈ A such that

Fr
i =

r∑
j=1

X j ⊗ α ji + 1 ⊗ qi.

Proof. Suppose that the action α is isometric, i.e. αr(dx)(y) = κ(αr(dy)(x)) for all x, y ∈ X.
We can write

d2
x =

n∑
i=1

(xi1 − Xi)2

so we have

n∑
i=1

(xi1 − Fr
i (y))2 = αr(d2

x)(y) = κ(αr(d2
y)(x)) =

n∑
i=1

(κ(Fr
i (x) − yi1))2 (3)

for all x, y ∈ X. Now we define Gi(x) := κ(Fr
i (x)), qi = Fr

i (0) and q′i = Gi(0) = κ(qi). Putting
x = 0 resp. y = 0 in (3) we get

n∑
i=1

Fr
i (y)2 =

n∑
i=1

(q′i − yi1)2,
n∑

i=1

Gr
i (x)2 =

n∑
i=1

(qi − xi1)2

and setting x = 0 = y we get
n∑

i=1

q2
i =

n∑
i=1

q′2i .

So, if we expand (3) we get

n∑
i=1

(xi1 − Fr
i (y))2 =

n∑
i=1

(κ(Fr
i (x) − yi1))2

⇔

n∑
i=1

x2
i +

n∑
i=1

Fr
i (y)2

− 2
n∑

i=1

xi1Fr
i (y) =

n∑
i=1

y2
i +

n∑
i=1

Gi(x)2
− 2

n∑
i=1

yi1Gi(x)

⇔

n∑
i=1

x2
i +

n∑
i=1

(q′i − yi1)2
− 2

n∑
i=1

xi1Fr
i (y) =

n∑
i=1

y2
i +

n∑
i=1

(qi − xi1)2
− 2

n∑
i=1

yi1Gi(x)
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⇔− 2
n∑

i=1

(q′i yi1) − 2
n∑

i=1

xi1Fr
i (y) = −2

n∑
i=1

(qixi1) − 2
n∑

i=1

yi1Gi(x)

⇔

n∑
i=1

xi1(Fr
i (y) − qi) =

n∑
i=1

yi1(Gi(x) − q′i ).

So an application of Lemma 2.11 gives the result. �

Before we come to the main theorem of this section we need one more technical
lemma which we do not prove here. A proof is given in [Gos15, Theorem 4.5]

Lemma 2.14
Let (X, d) be a compact metric space and α : C(X) → C(X) ⊗ A be a faithful coaction of
a CQG A on C(X). Write as before Fi := α(Xi) and Fr

i := αr(Xi) for the corresponding
reduced action. Denote by C0 the spectral subalgebra of C(X) and by A0 the Hopf
algebra associated to A (See Remarks 1.15 and 1.8). Then the following are equivalent:

i) The action α is isometric.

ii) We have Fi ∈ C0 ⊗ A0 and

n∑
i=1

(xi1 − Fi(y))2 =

n∑
i=1

(κ(Fi(x) − yi1))2

for all x, y ∈ X.

iii) We have Fi ∈ C0 ⊗ A0 and

n∑
i=1

(Fi(x)2 + Fi(y)2
− 2Fi(x)Fi(y)) = d2(x, y)1

for all x, y ∈ X.

iv) We have Fi ∈ C0 ⊗ A0 and

n∑
i=1

(Fi(x) − Fi(y))2 = d2(x, y)1

for all x, y ∈ X.

In particular, Xi ∈ C0, αi j ∈ A0 and Fi = Fr
i holds for all i and j.
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Proof. See Theorem 4.5 in [Gos15]. �

We can now prove the main result of this section, namely that an isometric quan-
tum group action on a compact space in euclidean space is automatically affine and
orthogonal.

Theorem 2.15 ([Gos15, Corollary 4.6])
Let as before (X, d) be a compact metric space (containing the 0) with the euclidean
metric and A a CQG acting faithfully on C(X) via the action α. Then α is isometric if
and only if the following conditions hold:

i) For all i we have

Fi := α(Xi) =

n∑
j=1

X j ⊗ α ji + 1 ⊗ ζi

for some self-adjoint αi j, ζi ∈ A0.

ii) The matrix a = (αi j) is orthogonal.

iii) There are real numbers ci such that

ζi = ci1 −
∑

j

c jα ji,

i.e.
α(Xi − ci) =

∑
j

(X j − c j) ⊗ α ji.

iv) (A, a) is a quantum subgroup of O+
n , i.e. there is a surjective morphism from C(O+

n )
to A sending the generators ui j of O+

n to αi j.

Proof. Let us first check the isometry of the action if the conditions i) - iv) are fulfilled.
This follows directly from the calculation

n∑
i=1

(Fi(x) − Fi(y))2 =

n∑
i=1

 n∑
j=1

α ji(x j − y j)


2

=

n∑
j,l=1

(x j − y j)(xl − yl)
n∑

i=1

α jiαli

=

n∑
j=1

(x j − y j)2 = d2(x, y),
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which is exactly condition iv) in Lemma 2.14.
Now let the action α be isometric. Statement i) we already established in Proposition
2.13 for the reduced action Fr

i and Lemma 2.14 gives the result for the Fi. Let us prove
statement iii) next. We have to find numbers ci such that ζi = ci1 −

∑
j c jα ji holds for

all i. Take any faithful state φ on C(X), let h be the Haar state of A and consider the
state φ̃ := (φ ⊗ h) ◦ α on C(X). Remember that h is α-invariant, i.e. (id ⊗ h) ◦ ∆(a) =

(h ⊗ id) ◦ ∆(a) = h(a)1. Then also φ̃ is α-invariant in the sense that (φ̃ ⊗ id) ◦ α = φ̃1.
Indeed,

(φ̃ ⊗ id) ◦ α = ((φ ⊗ h) ◦ α ⊗ id) ◦ α

= (φ ⊗ h ⊗ id) ◦ (α ⊗ id) ◦ α

= (φ ⊗ h ⊗ id) ◦ (id ⊗ ∆) ◦ α

= (φ ⊗ (h ⊗ id ◦ ∆)) ◦ α

= (φ ⊗ h1) ◦ α = φ̃1,

where we used the α-invariance of h and the associativity of α. So defining ci := φ̃(Xi)
we get

ci1 = (φ̃ ⊗ id) ◦ α(Xi) = (φ̃ ⊗ id)(
n∑

j=1

X j ⊗ α ji + 1 ⊗ ζi) =

n∑
j=1

c jα ji + ζi

or equivalently

ζi = ci1 −
n∑

j=1

c jα ji

as desired.
Now let us check statement ii). We take again iv) of Lemma 2.14 with y = 0 to get

n∑
i=1

(Fi(x) − Fi(y))2 =

n∑
i=1

 n∑
j=1

α jix j


2

=

n∑
i=1

x2
i 1. (4)

If we expand condition iii) of Lemma 2.14 we get

n∑
i=1

(Fi(x)2 + Fi(y)2
− 2Fi(x)Fi(y)) =

 n∑
i=1

x2
i +

n∑
i=1

y2
i − 2

n∑
i=1

xiyi

 1.

Now expanding the left hand side using the fact that the Fi are affine and using (4) we
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get after some rearranging

n∑
j=1

(x j − y j)

 n∑
i=1

(ζiα ji − α jiζi)

 − 2
n∑

j,k=1

x jyk

 n∑
i=1

α jiαki

 = −2

 n∑
j=1

x jy j

 1 (5)

for all x, y ∈ X. Putting again y = 0 we have

n∑
j=1

x j

 n∑
i=1

(ζiα ji − α jiζi)

 = 0

and since the coordinate functions Xi are linearly independent we can conclude as in
the proof of Lemma 2.11 that

∑n
i=1(ζiα ji − α jiζi) = 0 for all j. This means that (5) is now

n∑
j,k=1

x jyk

 n∑
i=1

α jiαki

 =

 n∑
j=1

x jy j

 1.

But using the linear independence of the Xi again for fixed y ∈ X this means that

n∑
k=1

yk

 n∑
i=1

α jiαki

 = y j1

for all y ∈ X. Now, using the linear independence of the Xi a third time we get n∑
i=1

α jiαki

 = δ jk1, (6)

which is the first part of the orthogonality of the matrix (αi j). But statement iii) now
shows thatα acts linearly on the shifted space generated by Y1 := X1−c1, . . . ,Yn = Xn−cn

and thus induces a non-degenerate finite dimensional representation with invertible
matrix (α ji). (See [Gos15]). But (6) shows that (α ji)t is a one-sided inverse, so it has to be
the two-sided inverse, too. That means that also n∑

i=1

αi jαik

 = δ jk1

holds.
Finally, statement iv) follows directly from the universality of C(O+

n ). �
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Remark 2.16
Goswami showed that the numbers ci do not depend on the action α or even the CQG
A but only on the metric space (X, d).

Intuitively we would expect the CQG A to be a compact matrix quantum group as it
acts affine on C(X) and is a subgroup of the O+

n . The next lemma, which we could not
find in the literature, shows that this is actually the case.

Lemma 2.17
Let (A,∆) be a CQG acting faithfully on a C*-algebra B via the action α given by

α(Xi) =

n∑
j=1

X j ⊗ α ji

for some finitely many linear independent generators Xi of B. Furthermore, let the
matrix (αi j) be orthogonal. Then (A,∆) is a CQMG and especially a quantum subgroup
of O+

n .

Proof. Since the αi j satisfy the orthogonality relations and generate A as a C*-algebra we
only have to check that

∆(αi j) =

n∑
k=1

αik ⊗ αkj.

But using the coassociativity we get

0 = ((α ⊗ id) ◦ α)(xi) − ((id ⊗ ∆) ◦ α)(Xi)

= (α ⊗ id)(
n∑

j=1

X j ⊗ α ji) − (id ⊗ ∆)(
n∑

k=1

Xk ⊗ αki)

=

n∑
j,k=1

Xk ⊗ αkj ⊗ α ji −

n∑
k=1

Xk ⊗ ∆(αki)

=

n∑
k=1

Xk ⊗

 n∑
j=1

αkj ⊗ α ji − ∆(αki)

 .
Since {X1, . . . ,Xn} is linearly independent, we get

∑n
j=1 αkj⊗α ji = ∆(αki) for all i = 1, . . .n,
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so (A,∆) is CMQG. The existence of the surjective morphism from C(O+
n ) to A follows

from the universality of C(O+
n ). �

Remark 2.18
Note that the characterization of isometry in Theorem 2.15 also holds for metric spaces
X ⊂ Rn that do not contain the 0. We can simply shift one point of the metric space into
the origin, use Theorem 2.15 there and shift it back. This will still result in an affine
action.

Definition 2.19
Let (X, d) be a compact metric space. The quantum isometry group of (X, d) is a CQG (A,∆)
that acts isometrically on C(X) with the action α and fulfils the following universal
property: If there is any CQG (B,∆′) acting isometrically on C(X) via the action β there is
a morphism of quantum groups φ : A→ B such that β = (id⊗φ)◦α, i.e. every isometric
quantum group action factorizes through A.

As an example let us look at the finite space given by the vertices of the d-dimensional
hypercube and see if we get the same quantum isometry group O−1

d as Banica, Bichon
and Collins in [BBC07] (Proposition 2.9 tells us that this should be the case.)

Definition 2.20
The d-dimensional hypercube X ⊂ Rn is given by all the points x ∈ Rn with entries xi = 0
or xi = 1 for all i. With that choice, C(X) = C*(X1, . . . ,Xd|XiX j = X jXi,X∗i = Xi,X2

i = Xi).
Note that in this way the centre of symmetry is not the origin.

1

1

Figure 1: The 2-dimensional hypercube: the square
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Proposition 2.21
The CMQG O−1

d is the quantum isometry group of the d-dimensional hypercube X via
the action

α(Xi) =

d∑
j=1

X j ⊗ α ji + 1 ⊗ ζi

with ζi := 1
2 −

∑d
j=1

1
2α ji.

Proof. Let α be the action of a CQG A acting isometrically on X. By Theorem 2.15 there
are selfadjoint coefficients αi j ∈ A and ζi ∈ A such that

α(Xi) =

d∑
j=1

X j ⊗ α ji + 1 ⊗ ζi

for all i. Note that the coordinate functions Xi of X fulfil the relations X2
i = Xi and

XiX j = X jXi. So α(Xi) = α(Xi)2 has to hold, i.e.

d∑
j=1

X j ⊗ α ji + 1 ⊗ ζi =

d∑
j,k=1

X jXk ⊗ α jiαki +

d∑
j=1

X j ⊗ (α jiζi + ζiα ji) + 1 ⊗ ζ2
i . (7)

Using XiX j = X jXi and X2
i = Xi we can transform the right hand side to

d∑
j<k

X jXk ⊗ (α jiαki + αkiα ji) +

d∑
j=1

X j ⊗ (α jiζi + ζiα ji + α2
ji) + 1 ⊗ ζ2

i . (8)

The set {X jXk, Xk, 1 | j < k = 1, . . . , d} is linearly independent: Let
∑

j<k λ jkX jXk +∑d
k=1 λkXk + λ = 0 for some λi ∈ R. Plugging in the point 0 ∈ Rd gives λ = 0 and

the canonical basis vectors ek ∈ X provide λk = 0. Finally plugging in the point x with
xk = x j = 1 and xi = 0 otherwise, we get λ jk = 0. So comparing (8) with the left hand
side of (7) we get the relations

α jiαki + αkiα ji = 0, ∀i, j , k (9)

α jiζi + ζiα ji + α2
ji = α ji, ∀i, j (10)

ζ2
i = ζi, ∀i. (11)
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Now looking at the commutativity relations we have

α(XiX j) = α(Xi)α(X j)

=

d∑
k,l

XkXl ⊗ αkiαl j +

d∑
k=1

Xk ⊗ αkiζ j +

d∑
l=1

Xl ⊗ ζiαl j + 1 ⊗ ζiζ j

=
∑
k<l

XkXl ⊗ (αkiαl j + αliαkj) +
∑

l

Xl ⊗ (αliζ j + ζiαl j + αliαl j) + 1 ⊗ ζiζ j.

Now using XiX j = X jXi and again the linear independence of {X jXk, Xk, 1 | j < k =

1, . . . , d}we get for i , j the relation

αkiαl j + αliαkj = αkjαli + αl jαki, ∀k < l (12)

but since the expression is symmetric in k, l it is true for all k , l as well. The antipode
on the dense Hopf-Algebra of the CMQG acting on the lemon is given by κ(αi j) = α ji

and is antimultiplicative. Using the antipode on (12) gives

α jlαik + α jkαil = αilα jk + αikα jl, ∀k , l, i , j (13)

Interchanging k and i, resp. l and j in (13) we get

αl jαki + αliαkj = αkjαli + αkiαl j

and subtracting this from (12) gives

αkiαl j − αl jαki = αl jαki − αkiαl j = −(αkiαl j − αl jαki) = 0, ∀i , j, k , l, (14)

so together with relation (9) the αi j fulfil the relations of C(O−1
d ) and thus the CQG acting

on X is a quantum subgroup of O−1
d .

An isometric action of O−1
d on X is given by

α(Xi) =

d∑
j=1

X j ⊗ α ji + 1 ⊗ ζi,

so we have to find matching elements ζi ∈ C(O−1
d ) or, equivalently, by the third isometry

condition in Theorem 2.15, find numbers ci such that with ζi := ci1 −
∑

j c jα ji an action
can be defined.
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Compact metric spaces with the euclidean metric

Let us look at relation (10) and let us compute the term α jiζi + ζiα ji. We get

α jiζi + ζiα ji = ciα ji −

d∑
k=1

ckα jiαki + ciα ji −

d∑
k=1

ckαkiα ji

= 2ciα ji − 2c jα
2
ji −

d∑
k, j

ckα jiαki − ckαkiα ji

= 2ciα ji − 2c jα
2
ji,

where we used α jiαki + αkiα ji = 0 for k , j in the last step. So now we have the relation
2ciα ji − 2c jα2

ji +α2
ji = α ji which can be fulfilled by putting ci = 1

2 for all i. With this choice
we also have ζi = ζ2

i , so we have an action of O−1
d on the d-dimensional hypercube which

finishes the proof. �

Another example of a quantum isometry group on a classical metric space was cal-
culated by Goswami. We only present the result here, for the proof we refer to [Gos15].

Example 2.22
Let Td ⊂ Rd be the metric space given by gluing d-copies of the intervall [−1, 1] together
at the origin. The quantum isometry group of Td is the hyperoctahedral quantum group
H+

d which is given by the universal C*-algebra

C(H+
d ) := C∗

(
αi j, 1 ≤ i, j ≤ d

∣∣∣αi j = α∗i j, (αi j) is orthogonal, αi jαik = α jiαki = 0, k , j
)

as defined in [BBC07].

(−1, 0) (1, 0)

(0,−1)

(0, 1)

(−1, 0, 0) (1, 0, 0)

(0,−1, 0)

(0, 1, 0)

(0, 0, 1)

(0, 0,−1)

Figure 2: The metric spaces T2 and T3
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Isometric quantum group actions on classical spaces

Remark 2.23
Note that Td and the d-dimensional hypercube have the same isometry group Hd but
different quantum isometry groups.
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3 Quantum versions of classical spaces and their
symmetries

We now switch our focus to quantum actions on non-commutative C*-algebras. Instead
of defining the notion of an arbitrary quantum metric space (that is the focus of the next
section) we start with a classical metric space X ⊂ Rn and define the quantum version
of this space. In that way we still have the geometric intuition of the classical space
to work with. The definition of quantum versions of metric spaces we give is new
although the idea of dropping commutativity from the relations on the functions of a
classical space is well-known. We give a formal framework to work with these kind of
spaces and to calculate their symmetries. With Goswami’s characterization of Theorem
2.15 of an isometric quantum action we define what an isometric quantum action on
such a quantum version of a metric space should be. Then we calculate the quantum
isometry group of some (old and new) quantum versions of classical spaces.

3.1 Quantum versions of metric spaces

Definition 3.1
Let X ⊂ Rn be a compact metric space in an n-dimensional space (equipped with the
euclidean metric) defined by some algebraic relations R on the coordinate functions not
explicitly imposing commutativity. Then we call the universal C*-algebra

C(X+) := C∗(1, x1, x2, . . . , xn|xi = x∗i ,R)

a quantum version of the metric space X (if it exists). It is called genuine quantum if C(X+)
is not a commutative algebra.
We call a quantum version C(X+) maximal if the set of relationsR is minimal in the sense
that any subset of relations R′ * R defines a different metric space than C(X).

Remark 3.2

• There may exist different quantum versions of the same metric space since the set
of relations R on the coordinate functions is not uniquely defined.

• It might happen that all quantum versions of a classical space are already commu-
tative, i.e. C(X+) = C(X), independent of the choice of the relationsR (for example
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Quantum versions of classical spaces and their symmetries

in the 1-dimensional case).

• Since the quantum versions of metric spaces are given by universal C*-algebras
the existence of the quantum version might by unclear. But for a given space there
always exists at least one universal C*-algebra with the given relations: Since X is
a compact metric space, there exists a constant C ∈ R such that xi < C holds for
all coordinate functions xi. If we add the relations xi < C to the set of relations R
then the norms of the generators xi are bounded by C and the universal C*-algebra
with generators xi exists (of course it may still be commutative).

• Intuitively we want to consider maximal quantum versions so we do not assume
"unnecessary" relations on the generators and get the largest quantum isometry
group of a non-commutative version of a space.

Remark 3.3
In Lemma 2.12 we showed that for a compact metric space the coordinate functions can
always be chosen linearly independent. Thus also in the quantum version of the metric
space we can assume that the set {1, x1, . . . , xn} is linearly independent.

Example 3.4
The functions on the d-dimensional real sphere Sd−1 are given by the universal C*-algebra

C(Sd−1) = C∗
x1, . . . , xd

∣∣∣ xi = x∗i , xix j = x jxi,
d∑

i=1

x2
i = 1

 .
The free d-dimensional sphere Sd−1

+ is given by the universal C*-algebra

C(Sd−1
+ ) = C∗

x1, . . . , xd

∣∣∣ xi = x∗i ,
d∑

i=1

x2
i = 1


and the half-liberated d-dimensional sphere Sd−1

∗ is given by the universal C*-algebra

C(Sd−1
∗ ) = C∗

x1, . . . , xd

∣∣∣ xi = x∗i , xix jxk = xkx jxi,
d∑

i=1

x2
i = 1

 .
Both were defined by Banica and Goswami in [BG10] and are quantum versions of
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the classical d-dimensional sphere in the sense of Definition 3.1, Sd−1
+ being a maximal

quantum version.

3.2 Isometric actions on quantum versions

Now we want to define an isometric action on such a quantum version of a classical
compact space. Since we are not defining some kind of metric on the space (see the
next section for this approach) we use Goswami’s characterization of Theorem 2.15 of
isometric quantum group actions from the previous section to define isometric actions
on quantum versions.

Definition 3.5
Let C(X+) be a quantum version of a compact space X. We call an action α of a CQG A
on C(X+) affine isometric, if the following conditions hold:

1. α(xi) =
∑

j x j ⊗ α ji + 1 ⊗ ζi for some (necessarily selfadjoint) αi j, ζi ∈ A.

2. The matrix a = (αi j) is orthogonal.

3. There are real numbers ci such that

ζi = ci1 −
∑

j

c jα ji

i.e.
α(xi − ci1) =

∑
j

(x j − c j1) ⊗ α ji.

Remark 3.6
The first property basically fixes a coordinate system for the non-commutative space
while the second property ensures that the action is isometric. Because of the ζi the
action can be affine so the centre of the coordinate system can be chosen freely.

Remark 3.7
By Lemma 2.17 we know that if α is a faithful action, then A is actually a CMQG.
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3.3 Examples of quantum versions of metric spaces

Now we want to calculate the quantum isometry group of quantum versions of some
classical compact spaces. Preferably these are objects which are already given by some
algebraic relations on the coordinates of the space. The definition of a quantum isometry
group is the same as in Definition 2.19. Our first example is new and is the d-dimensional
lemon in Rd. It is given by the equation

d−1∑
i=1

x2
i = x3

d(1 − xd)3.

With this relation the restrictions of the coordinate functions on the lemon are linearly
independent. In this coordinate system the lemon is not centred at the origin but one
of the cusps of the lemon is located at the origin. Note that the set of relations defining
the space is of course minimal.

Figure 3: The lemons of dimension 2 and 3

Remark 3.8
The isometry group of the classical d-dimensional lemon is given by Od−1 ×Z2 (rotation
around the xd axis and flipping in the middle).
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Lemma 3.9
The universal C*-algebra

C(X+) := C∗
x1, x2, . . . , xd|xi = x∗i ,

d−1∑
i=1

x2
i = x3

d(1 − xd)3


exists and is a maximal quantum version of the classical d-dimensional lemon.

Proof. We have to show that semi-norms on the free algebra on d generators subject to
the relation

d−1∑
i=1

x2
i = x3

d(1 − xd)3

are bounded on the generators. On the left-hand side we are adding d − 1 positive
operators so the right-hand side is positive, too. Therefore

xd(1 − xd) ≥ 0⇒ xd ≥ x2
d ≥ 0

and with xd and xd(1− xd) being positive we see that 1− xd is positive as well. So ‖xd‖ is
bounded by 1 and with 1 ≥ 1 − xd ≥ 0 the norm of 1 − xd is bounded by 1 as well. So

‖x j‖
2 = ‖x2

j ‖ ≤

∥∥∥∥∥∥∥
d−1∑
i=1

x2
j

∥∥∥∥∥∥∥ = ‖(xd(1 − xd))3
‖ ≤ ‖xd(1 − xd)‖3 ≤ 1

and the semi-norms are bounded (and by looking at the classical metric space we see
that ‖xi‖ = 1 for all i.) Since the set of relations is minimal (it only consists of one relation)
C(X+) is a maximal quantum version of the d-dimensional lemon. �

Proposition 3.10
The quantum isometry group (A,∆) of C(X+) is a quantum subgroup of the CMQG
O+

d−1 ∗ Z2, i.e. there is a surjective morphism of quantum groups from
C(O+

d−1) ∗ C(Z2) to A.

Before proving the theorem we will recall the definition (or rather an equivalent
description) of the free product of CQG given by universal C*-algebras. For details see
[Wan95].
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Definition 3.11
Let A = C∗

(
αi j, i, j = 1, . . . ,n

∣∣∣R) and A′ = C∗
(
βi j, i, j = 1, . . . ,m

∣∣∣R′) be two unital CQGs
given by universal C*-algebras. Then the free product A ∗ A′ is given by the universal
C*-algebra

A ∗ A′ = C∗
(
αi j, βkl i, j = 1, . . . ,n, k, l = 1, . . . ,m

∣∣∣R, R′, 1A = 1A′
)

and also has the structure of a CQG. If (A, (αi j) =: u) and (A′, (βi j) =: u′) are CMQGs,
then A ∗ A′ is also a CMQG with matrixu 0

0 u′

 .

Now let us prove Proposition 3.10. The proof uses the diamond lemma of ring theory
by Bergman [Ber78]. The diamond lemma provides a way to construct a basis for
the universal algebra generated by finitely many generators subject to some algebraic
relations. This is done by defining a partial order on the monomials and using the
given relations to reduce all monomials to a minimal form. The in this sense irreducible
monomials then form a basis of the algebra. We will not include the explicit calculations.
For details on the diamond lemma and further applicatons see [Ber78].

Proof. Let (A,∆) be a quantum group acting faithfully affine isometric on C(X+). Then
by Lemma 2.17 we see that (A,∆) is a CMQG with matrix (αi j) and the action is given
by

α(xi) =

d∑
j=1

x j ⊗ α ji + 1 ⊗ ζi

for some ζi in A.
The defining relation of the lemon gives that under the action

α(
d−1∑
i=1

x2
i ) =

d−1∑
i=1

α(xi)2 =
∑

j,k

x jxk ⊗

d−1∑
i=1

αi jαik

+
∑

l

xl ⊗

d−1∑
i=1

(αilζi + ζiαil) + 1 ⊗
d−1∑
i=1

ζ2
i
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has to be equal to

α(xd)3α(1 − xd)3 = −

d∑
i=1

x6
i ⊗ α

6
di +

∑
j∈J

z j ⊗ β j

where the z j , x6
i for all i, j are monomials in the xi of degree ≤ 6 and the β j are some

elements of A. Using the relation −x6
d =

∑d−1
i=1 x2

i −3x5
d + 3x4

d−x3
d and the diamond lemma

of Bergman [Ber78] we can even get

α(xd)3α(1 − xd)3 = −

d−1∑
i=1

x6
i ⊗ α

6
di +

∑
j∈J

z j ⊗ β j

for some new z j and β j and an index set J chosen such that the set {x6
i , z j |1 ≤ i ≤ d−1, j ∈ J}

is linearly independent. So if we look at the x6
i summand for i , d, we can see that α6

di
has to be 0. Since the αi j are all self-adjoint we get αdi = 0 for i , d. Because of the
orthogonality of the matrix a we get α2

dd = 1 and therefore αid = 0 for all i , d. So the
coefficients in the upperleft matrix a′ = (αi j) for 1 ≤ i, j ≤ d − 1 fulfil the relations of
C(O+

d−1) and αdd is a reflection. By the definition of the free product of quantum groups
we get a surjective morphism

C(O+
d−1) ∗ C(Z2)→ A

So every CQG that acts faithfully affine isometric on C(X+) is a quantum subgroup of
O+

d−1 ∗ Z2. �

Before we show that O+
d−1 ∗ Z2 acts on C(X+), we will establish two preparatory (and

quite technical) lemmas.

Lemma 3.12
Let a = (αi j) be the canonical generating matrix of the CMQG O+

d−1. Then the set
{1, α1l, . . . , α(d−1)l} is linearly independent for all l = 1, . . . , (d − 1).

Proof. Take a linear combination of the elements that is equal to 0, i.e.
∑d−1

i=1 λiαil + λd =

0. By the surjective morphism C(O+
d−1) → C(Od−1), this relation also holds for the

coefficients of all matrices in the classical matrix group Od−1. But since there is an
orthogonal matrix with the ei unit vector as the l-th column for all i = 1, . . . , d − 1, we
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get that λi = 0 for all i = 1, . . . , d − 1 and so λd = 0 as well. �

Lemma 3.13
Let A = (C(O+

d−1) ∗ C(Z2), (αi j)) be acting isometrically on the quantum version of the
d-dimensional lemon C(X+) via

α(xi) =
∑

j

x j ⊗ α ji + 1 ⊗ ζi

and a = (αi j) being the matrix for the free product as defined in Definition 3.11. Then
we have for the action α the equations

α

d−1∑
i=1

x2
i

 = (−x6
d + 3x5

d − 3x4
d + x3

d) ⊗ 1 +
∑

l

xl ⊗

d−1∑
i=1

(αilζi + ζiαil) + 1 ⊗
d−1∑
i=1

ζ2
i (15)

and

α(xd)3α(1 − xd)3 = − x6
d ⊗ 1 + x5

d ⊗ 3r̂d − x4
d ⊗ 3r̂2

d + x4
d ⊗ 3r̃

+ x3
d ⊗ r̂3

d − x2
d ⊗ 3r̃2 + x2

d ⊗ 3r̂2
dr̃ + xd ⊗ 3r̂dr̃2 + 1 ⊗ r̃3 (16)

with r̃ := ζd(1 − ζd) and r̂d := αdd(1 − ζd) − ζdαdd. Furthermore (15) and (16) are equal.

Proof. The equality of the terms of course follows from the defining relation of C(X+).
Let us look at (15) first. By expanding we get

α

d−1∑
i=1

x2
i

 =
∑

j,k

x jxk ⊗

d−1∑
i=1

αi jαik +
∑

l

xl ⊗

d−1∑
i=1

(αilζi + ζiαil) + 1 ⊗
d−1∑
i=1

ζ2
i .

Now the upper left (d−1)×(d−1) block in a is an orthogonal matrix, so
∑d−1

i=1 αi jαik = δ jk1.
The first term therefore collapses to

∑d−1
j=1 x2

j ⊗ 1 and using
∑d−1

j=1 x2
j = −x6

d + 3x5
d − 3x4

d + x3
d

we get (15).
For equation (16) first notice that αdi = αid = 0 for all i , d. So the action on xd is given
by

α(xd) = xd ⊗ αdd + 1 ⊗ ζd, α(1 − xd) = −xd ⊗ αdd + 1 ⊗ (1 − ζd).

Now multiplying α(xd)3α(1 − xd)3 out (we spare the details), using α2
dd = 1 and setting

r̃ := ζd(1 − ζd) and r̂d := αdd(1 − ζd) − ζdαdd we get (16). �
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Proposition 3.14
The CMQG O+

d−1 ∗ Z2 acts affine isometrically on C(X+).

Proof. To show that O+
d−1 ∗ Z2 acts affine isometrically on C(X+) we have to find ζi such

that

C(X+)→ C(X+) ⊗
(
C(O+

d−1) ∗ C(Z2)
)

xi 7→
∑

j

x j ⊗ α ji + 1 ⊗ ζi

is an action, the αi j fulfilling again the relations that in the matrix a = (αi j) the upper left
(d − 1) × (d − 1) block (denoted by a′) is precisely the matrix of O+

d−1 and the αdd entry is
a reflection, i.e. α2

dd = 1. By the third isometry condition we can set

ζi = ci1 −
d∑

j=1

c jα ji,

so we have to find matching numbers ci.
Step 1: Calculating cd.
We calculated the action in Lemma 3.13. By subtracting the equations (15) and (16) we
get

0 =3x5
d ⊗ (1 − r̂d) − 3x4

d ⊗ (1 − (r̂2
d − r̃)) + x3

d ⊗ (1 − r̂3
d) + 3x2

d ⊗ (r̃2
− r̂2

dr̃) (17)

+

d−1∑
l=1

xl ⊗

d−1∑
i=1

(αilζi + ζiαil) − xd ⊗ 3r̂dr̃2 + 1 ⊗

d−1∑
i=1

ζ2
i − r̃3

 .
Since all the xk

i that are left are linearly independent (again by the diamond lemma) all
the second components of the tensors have to be equal to zero. The x5

d-term then gives

1 = r̂d = αdd(1 − ζd) − ζdαdd

and by using ζd = cd1 − cdαdd we get

1 = αdd − 2αddcd + 2α2
ddcd = αdd(1 − 2cd) + 2cd

⇒ 1 − 2cd = αdd(1 − 2cd)
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and since add , 1 we need to have cd = 1
2 and thus

ζd =
1
2
−

1
2
αdd.

Step 2: Calculating the other ci.
One can check that now r̂d = 1 and r̃ = 0 holds so every summand in equation (17) with
a xd-component is equal to 0. Now looking at the xl-terms we can compute

d−1∑
i=1

(αilζi + ζiαil) =

d−1∑
i=1

αilζi +

d−1∑
i=1

ζiαil

=

d−1∑
i=1

(αilci −

d−1∑
j=1

c jαilαi j) +

d−1∑
i=1

(αilci −

d−1∑
j=1

c jαi jαil)

=

d−1∑
i=1

αilci −

d−1∑
i, j=1

c jαilαi j +

d−1∑
i=1

αilci −

d−1∑
i, j=1

c jαi jαil.

Using the orthogonality of the matrix a′ we get

d−1∑
i=1

αilci −

d−1∑
i, j=1

c jαilαi j +

d−1∑
i=1

αilci −

d−1∑
i, j=1

c jαi jαil

=

d−1∑
i=1

αilci −

d−1∑
j=1

c jδ jl +

d−1∑
i=1

αilci −

d−1∑
j=1

c jδ jl

=

d−1∑
i=1

αilci − cl +

d−1∑
i=1

αilci − cl = 2

d−1∑
i=1

αilci − cl


Since the set {1, α1l, . . . , α(d−1)l} is linearly independent for all 1 ≤ l ≤ d − 1 by Lemma
3.12, we see that ci = 0 for all 1 ≤ i ≤ d − 1. To summarize we have

ζi =


1
2 −

1
2αdd, i = d

0, else
,

which corresponds to a translation of 1
2 along the xd-axis. With this choice of the ci we

get an action of O+
d−1 ∗ Z2 on C(X+). �

But with a view to section 2 we can ask if even the classical d-dimensional lemon has
some genuine quantum symmetry. We will see that the commutativity of C(X) already
implies that a quantum group acting faithfully and isometric on the commutative lemon
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is already commutative, i.e. a subgroup of Od−1 × Z2.

Theorem 3.15

a) The quantum isometry group of the maximal quantum version C(X+) of the d-
dimensional lemon is O+

d−1 ∗ Z2.

b) The quantum isometry group of the classical d-dimensional lemon is Od−1 × Z.

In particular, the quantum version C(X+) of the d-dimensional lemon is genuine quan-
tum.

Proof. The proof of a) is just Proposition 3.10 and Proposition 3.14 combined. So it only
remains to prove part b).
The same arguments as before give that the quantum isometry group is a subgroup of
the O+

d−1 ∗ Z2. It remains to prove the commutativity of the algebra. We have

α(xix j) = α(xi)α(x j)

=

d∑
k,l

xkxl ⊗ αkiαl j +

d∑
k=1

xk ⊗ αkiζ j +

d∑
l=1

xl ⊗ ζiαl j + 1 ⊗ ζiζ j

=
∑

k

x2
k ⊗ αkiαkj +

∑
k<l

xkxl ⊗ (αkiαl j + αliαkj) +
∑

l

xl ⊗ (αliζ j + ζiαl j) + 1 ⊗ ζiζ j

Hence applying the commutativity relations xix j = x jxi gives on the αi j the relations

αkiαkj = αkjαki, ∀i, j, k (18)

αkiαl j + αliαkj = αkjαli + αl jαki, ∀i, j, k < l (19)

but since the expression is symmetric in k, l it is true for all k, l as well. Here we used
the linear independence of the set {1, x j, xix j | i ≤ j}, which is another application of the
diamond lemma. Now the commutativity of the algebra follows in the exact same way
as in Proposition 2.21. The ci can be chosen in the same way as in Proposition 3.14 to
get an affine action. �

Remark 3.16
Goswami showed in [GJ18] that for a compact metric space, that is either a connected

49



Quantum versions of classical spaces and their symmetries

smooth manifold or has nonempty interior in Rn, any CQG that acts faithfully and
isometric on C(X) is already commutative. The result was not applicable here because
the d-dimensional lemon as singularities at the cusps. But notice that in the proof of
part b) of Theorem 3.15 the exact relations on the xi were not important: the linear inde-
pendence of {1, x j, xix j | i ≤ j}was the only condition needed to show the commutativity
of the algebra. So if we have a classical compact space where the set {1, x j, xix j | i ≤ j}
is linearly independent, we can expect the quantum isometry group to be classical as
well.

As our next example let us look at a quantum version of the d-dimensional hypercube
Kd given in Definition 2.20.

Definition 3.17
A quantum version of the d-dimensional hypercube Kd is given by the universal C*-
algebra

C(K+
d ) := C∗

(
x1, . . . , xd | x∗i = xi, x2

i = xi

)
.

The existence of the C*-algebra C(K+
d ) is clear since the relations x∗i = xi and x2

i = xi

imply ‖xi‖ = 1.

Proposition 3.18
The quantum isometry group of K+

d is the non-commutative hyperoctahedral group H+
n .

Proof. Let (A, a) be the quantum isometry group of K+
d with action α defined by

α(xi) =

d∑
j=1

x j ⊗ α ji + 1 ⊗ ζi.

With the relation x2
i = xi we get α(xi)2 = α(xi) and thus

d∑
j=1

x j ⊗ α ji + 1 ⊗ ζi =

d∑
j,k=1

x jxk ⊗ α jiαki +

d∑
j=1

x j ⊗ (α jiζi + ζiα ji) + 1 ⊗ ζ2
i .
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Using the relation x2
i = xi in the first sum on the left hand side and using bilinearity of

the tensor product we get the equation

d∑
j=1

x j ⊗ α ji + 1 ⊗ ζi =

d∑
j,k

x jxk ⊗ α jiαki +

d∑
j=1

x j ⊗ (α jiζi + ζiα ji + α2
ji) + 1 ⊗ ζ2

i .

Using the diamond lemma we can conclude that the set {1, xi, xix j | 1 ≤ i , j ≤ d} is
linearly independent, so we get the relation

α jiαki = 0, ∀i, k , j.

By universality of C(H+
d ) we get a surjective morphism C(H+

d )→ A so (A, a) is a quantum
subgroup of H+

d . On the other hand, choosing ζi := 1
2 −

∑d
j=1

1
2α ji we get as in Proposition

2.21 an affine action of H+
d on C(K+

d ). So H+
d is the quantum isometry group of K+

d . �

Example 3.19
The quantum isometry groups of the free sphere Sd−1

+ is the CQG O+
d and the quantum

isometry group of the half-liberated sphere Sd−1
∗ is the half-liberated orthogonal group

O∗d given by the universal C*-algebra

C(O∗d) := C∗
ui j, i, j = 1, . . . , d

∣∣∣∣∣ ui j = u∗i j,
n∑

k=1

uiku jk =

n∑
k=1

ukiukj = δi, j1,ui juklust = ustuklui j


constructed in [BS09].

We will not give the explicit calculation here, it uses similar arguments as the cal-
culations before. But note that the same result was proven by Banica and Goswami
in [BG10] where the isometry group was defined in terms of the spectral triples in the
sense of the non-commutative geometry established by Connes.

This finishes our discussion of quantum versions of metric spaces in the sense of
Definition 3.1. In the following last section of this thesis we briefly want to look at
another approach to non-commutative metric spaces.
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4 Compact quantum metric spaces

In this last section we want to take a brief look at the concept of arbitrary compact
quantum metric spaces (CQMS) as defined by Rieffel in [Rie99]. CQMS do not originate
in a classical metric space as the quantum versions we looked at in the last section and
are therefore further generalizations of metric spaces. But it is not yet clear how to
define a quantum version of a compact metric space that is also a CQMS. The results
of this section can also be found in [Rie99] and [QS12]; we added left out proofs or
extended existing ones for better readability.

4.1 Compact quantum metric spaces

The concept of a CQMS was defined by Rieffel in the more general setting of order-unit
spaces. We restrict ourselves to the C*-algebra case.

Definition 4.1
Let A be a unital C*-Algebra. A Lipnorm on A is a seminorm L : A→ [0,∞] such that

• L(a) = L(a∗) for all a ∈ A

• L(a) = 0⇔ a ∈ C1

• L is lower semicontinuous with respect to the C*-norm on A

• the topology on the state space S(A) given by the metric

ρl(µ, ν) := sup
{
|µ(a) − ν(a)|

∣∣∣ a ∈ A,L(a) ≤ 1
}

for all µ, ν ∈ S(A) coincides with the weak *-topology on S(A).

The pair (A,L) is then called a compact quantum metric space or short CQMS.

Again, to motivate this definition we will look at the classical case first. Let (X, d) be
a compact metric space and put A = C(X). On A we can define a seminorm by putting

Ld( f ) := sup
{
| f (x) − f (y)|

d(x, y)

∣∣∣∣∣ x, y ∈ X, x , y
}

for a function f ∈ C(X); this seminorm is called the Lipschitz seminorm. The next result
is stated in [QS12] but not proved there.
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Proposition 4.2
Let (X, d) be a compact metric space and put A = C(X). Then A together with the
Lipschitz seminorm Ld on A is a CQMS.

Proof. The first two properties of a Lipnorm are easily verified.
Step 1: Lower semicontinuity. We have to show that

lim inf
g→ f

Ld(g) = lim
n→∞

inf
{

Ld(g)
∣∣∣ ‖ f − g‖∞ <

1
n

}
≥ Ld( f )

for all f ∈ C(X). Note that, for any function g ∈ C(X), Ld(g) is the smallest Lipschitz
constant or∞ if g is not Lipschitz-continuous. Let f ∈ C(X) be any continuous function
on X.
First suppose that Ld( f ) = ∞ and take any sequence ( fn) converging to f in the supremum
norm. So for all M > 0 there exists a pair of points x, y such that | f (x) − f (y)| >
Md(x, y). For N big enough we see that also | fn(x) − fn(y)| > Md(x, y) for all n > N, so
limn→∞ Ld( fn) = ∞.
Now suppose Ld( f ) is finite and thus f is Lipschitz with smallest Lipschitz constant
Ld( f ). Set

K := lim inf
g→ f

Ld(g)

and take any ε > 0. For each n ∈ N there is a function gn with ‖gn − f ‖ < 1
n and

Ld(gn) < K + ε.

So we have gn
‖·‖∞
−→ f and

|gn(x) − gn(y)| < (K + ε)d(x, y)

for all x, y ∈ X. Now we have

| f (x) − f (y)| ≤ | f (x) − gn(x)| + |gn(x) − gn(y)| + |gn(y) − f (y)|

≤ 2‖ f − gn‖∞ + |gn(x) − gn(y)|

<
2
n

+ (K + ε)d(x, y)

for all x, y ∈ X.

54



Compact quantum metric spaces

Letting ε→ 0 and n→∞we get

| f (x) − f (y)| ≤ Kd(x, y) = lim inf
g→ f

Ld(g)d(x, y)

and therefore lim inf
g→ f

Ld(g) is a Lipschitz constant for f . So we have lim inf
g→ f

Ld(g) ≥ Ld( f )

and hence Ld is lower semicontinuous.
Step 2: Weak *-topology. We now have to show that the weak *-topology defined on the
state space S(A) is the same as the topology defined by the metric

ρ(µ, ν) := sup
{
|µ( f ) − ν( f )|

∣∣∣ f ∈ A,Ld( f ) ≤ 1
}
.

We will call this topology the ρ-topology. Remember that the weak *-topology on the
state space is given by a neighbourhood basis defined by the sets

{
ν ∈ S(A) | |µ( fi) − ν( fi)| < ε, fi ∈ A, i = 1, . . . ,n

}
for all µ ∈ S(A).
It is easy to see that the ρ-topology is finer than the weak *-topology: Let µn be a
sequence in S(A) converging in ρ-topology to µ ∈ S(A). We see that the supremum of
all |µn( f ) − µ( f )| for Ld( f ) ≤ 1 tends to zero, so µn( f ) converges to µ( f ) for all f with
Ld( f ) ≤ 1. But this means, by homogeneity, that µn( f ) converges to µ( f ) or all f ∈ A, so
µn converges to µ in the weak *-topology.
For the other direction we have to show that every open ball around µ in the ρ-topology
contains a weak *-neighbourhood of µ. So let B(µ, ε) be such a ball and suppose first
that the image of L1 := { f ∈ A |Ld( f ) ≤ 1} in the quotient A/(C1) is relatively compact.
Then there are finitely many elements g j such that Ld(g j) ≤ 1 and the balls of radius ε

3

around the g j in A/(C1) cover the whole space. We claim that

U :=
{
ν ∈ S(A) | |µ(gi) − ν(gi)| <

ε
3
, i = 1, . . . ,n

}
is the desired neighbourhood of µ. Let f ∈ L1 be arbitrary, then there exist a constant
function c and a j such that

‖ f − g j − c‖ <
ε
3
.
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So for any ν ∈ U we have

|µ( f ) − ν( f )| ≤ |µ( f ) − µ(g j + c)| + |µ(g j + c) − ν(g j + c)| + |ν(g j + c) − ν( f )|

= |µ( f − g j − c)| + |µ(g j) + µ(c) − ν(g j) − ν(c)| + |ν( f − g j − c)|

<
ε
3

+ |µ(g j) − ν(g j)| +
ε
3
< ε,

so ρ(µ, ν) < ε and U ⊂ B(µ, ε) as claimed.
We still have to prove that the image of L1 in A/(C1) is relatively compact. Let f ∈ L1 be
arbitrary. Since f is bounded we can find a constant function c such that f̃ := f + c has a
zero x0. Let y ∈ X be a point with f̃ (y) = ‖ f̃ ‖ (this is possible since X is compact). Then

‖ f̃ ‖ = | f̃ (y) − f̃ (x0)| = | f (y) − f (x0)| ≤ d(y, x0) ≤ C

for some constant C ∈ R since the metric d is bounded. So the images of L1 and the set
{ f ∈ L1 | ‖ f ‖ ≤ C} in the quotient space coincide. But by the theorem of Arzelà-Ascoli
the second set is relatively compact and, since projections are continuous, its image is
relatively compact, too. �

Remark 4.3
One can recover the original metric on X by identifying every point in X with the state
that is given by the evaluation at that point, i.e. µx( f ) = f (x), and then restricting the
metric ρ to the set of this evaluations. The metric given by

ρ′(x, y) := ρ(µx, µy)

is then equal to the original metric d.
Even more, if we start with a commutative CQMS (A,L), we can find a compact set X
such that A = C(X). Then we can define as above a metric d on X and Rieffel has shown
in [Rie99] that in that case L = Ld.

Remark 4.4
There may exist various Lipnorms on a given C*-algebra that turn it into a CQMS.
Rieffel provides a lot of examples in [Rie99] for constructions for special C*-algebras,
for example using spectral triples, actions of compact groups or graphs interpreted as
circuits. If we have a metric ρ on the state space S(A) for some C*-algebra A that gives

56



Isometric actions on CQMS

the weak *-topology on this space we can define a Lipnorm on A by putting

L(a) := sup
{
|µ(a) − ν(a)|
ρ(µ, ν)

∣∣∣∣∣µ , ν} .
None of these approaches seem to work for our definition of quantum versions of metric
spaces which is why we did not turn them into CQMS.

4.2 Isometric actions on CQMS

The question now is: If we have a CQG acting on a C*-algebra that also has the structure
of a CQMS, when should we call the action isometric? We will motivate the definition
again by looking at the classical case first.

Proposition 4.5
Let (X, d) be a compact metric space, Ld the corresponding Lipschitz seminorm and G a
compact group acting on X. Let α : C(X)→ C(X ×G) be the coaction as in Remark 1.12.
Then the action is isometric if and only if

Ld(α( f )(·, g)) = Ld( f )

for all f ∈ C(X) and g ∈ G.

Proof. Let the action of G on X be isometric. Write fg for the function α( f )(·, g) which is
given by fg(x) = f (gx). Then

Ld( fg) = sup
{
| f (gx) − f (gy)|

d(x, y)

∣∣∣∣∣ x, y ∈ X, x , y
}

= sup
{
| f (gx) − f (gy)|

d(gx, gy)

∣∣∣∣∣ x, y ∈ X, x , y
}

= sup
{
| f (x) − f (y)|

d(x, y)

∣∣∣∣∣ x, y ∈ X, x , y
}

= Ld( f ),

where the second equality uses the isometry of the action and the third equality the fact
that multiplication with any g is a bijection on X.
Now let Ld( f ) = Ld( fg) for all f ∈ C(X) and g ∈ G. We will use the metric on the state
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space of Remark 4.3. Then we have for all x, y ∈ X

d(gx, gy) = ρ(µgx, µgy) = sup{ f (gx) − f (gy) |Ld( f ) ≤ 1}

= sup{ fg(x) − fg(y) |Ld( f ) ≤ 1} = ρ(µx, µy) = d(x, y),

since f 7→ fg is a bijection that is isometric with respect to Ld. �

Now we will pass to the half-classical case and use the previous proposition to
motivate the following definition.

Definition 4.6 ([QS12])
Let B be a CQMS and let G be a compact group acting on B in the sense that there is a
coaction

α :B −→ B ⊗ C(G) � C(G,B),

where the isomorphism B ⊗ C(G) � C(G,B) is given by b ⊗ f 7→ (g 7→ f (g)b). Then we
call α isometric if

L(α(b)(g)) = L(b). (20)

for all b ∈ B and g ∈ G.

Remark 4.7
We have seen in Proposition 4.5 that this notion of isometry coincides with the classical
one in the case that B = C(X) for some compact metric space X.

Now we want to generalize this further to a CQG acting on the CQMS B. We will
follow the arguments of [QS12]. Note that we can write condition (20) also as

L((id ⊗ µg)α(b)) = L(b)

for all b ∈ B and g ∈ G, where µg ∈ S(C(G)) is mapping a function to its evaluation at g.
These states, called pure states, have by the theorem of Krein-Milman the property that
their convex hull is weak *-dense in S(C(G)). Suppose we have a state µ that is a convex
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combination of pure states µi, i.e. µ =
∑n

i=1 λiµi with
∑n

i=1 λi = 1. Then we have

L((id ⊗ µ)α(b)) ≤
n∑

i=1

λiL((id ⊗ µi)α(b)) = L(b).

Now, using the lower-semicontinuouity of the Lip-norm L, one can show that

L((id ⊗ µ)α(b)) ≤ L(b)

holds for all states µ ∈ S(C(G)). This led Quaegebeur and Sabbe in [QS12] to the
following definition.

Definition 4.8
Let A be a CQG, (B,L) a CQMS and α a coaction of A on B. Then α is called 1-isometric if

L((id ⊗ µ)α(b)) ≤ L(b)

for all states µ ∈ S(A) and b ∈ B.

Remark 4.9
Chirvasitu showed in [Chi15] that for the half classical case of a CQG acting on a C(X)
for some compact space X, Goswami’s definition of isometric quantum group action
implies that of Definition 4.8. It is conjectured that they are even equivalent but there is
no proof yet.
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