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Introduction

In this thesis we deal with a new generalization of graph C∗-algebras: we use hyper-
graphs for this approach.
A graph is a structure that is made up of a set of vertices and edges. By adding a
source and a range map to our structure we obtain directed graphs. Directed graphs
are used to construct graph C∗-algebras. They developed from the Cuntz-Krieger al-
gebras, which were defined in 1980. Graph C∗-algebras have been studied broadly
for the last 40 years. The reason for this is that the graph provides a handy tool for
characterizing and visualizing properties of the associated graph C∗-algebra.

The main goal of this thesis is to generalize said object in the hope to find inter-
esting connections and differences to the well studied graph C∗-algebra. We do so
by transferring the concept of graph C∗-algebras on hypergraphs. Hypergraphs are a
generalization of graphs and therefore, a possible candidate to achieve our goal. The
difference to graphs is that the range and source map of hypergraphs map into the
power set of the vertices. Hence, an edge can join any number of vertices.

After introducing hypergraph C∗-algebras, we examine a collection of different ex-
amples. We were able to find an example that shows, that in contrast to the graph
C∗-algebras, a hypergraph C∗-algebra does not need to be nuclear (see Proposition
3.12). Also we found a hypergraph C∗-algebra that is isomorphic to the well known
Toeplitz algebra (see Proposition 3.10) and one that is isomorphic to the Cuntz algebra
(see Proposition 3.11). This led us to the idea of hyperization. The line of reasoning is
to find a ”hyper version” of a given graph, that delivers us a *-homomorphism between
the graph and the hypergraph C∗-algebra. One ”hyper version” we found provides us
with an injective *-homomorphism.
Keeping in mind, that by the Gelfand-Naimark Theorem every C∗-algebra has a rep-
resentation on a Hilbert space, we went on and investigated some explicit representa-
tions. By representation we mean a *-homomorphism from the C∗-algebra into B(H)
the space of bounded operators on a Hilbert space H.

We now give an outline of the thesis.
In Chapter 1 we provide mathematical basics that are indispensable for the construc-
tion of graph C∗-algebras. We will also present examples of C∗-algebras that will
encounter us throughout this thesis.
Chapter 2 deals with graph C∗-algebras and their best known examples.
Finally, in Chapter 3, we pass to our own work: we introduce and study the case of
hypergraph C∗-algebras. We give a definition and a collection of examples that we
examined. Some examples are completely understood and some only partially. We
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also present examples that are still quite mysterious to us. At the end of the thesis,
we prove the non-triviality of the examples by presenting representations.
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1 Preliminaries

Since we want to study hypergraph C∗-algebras, we need to introduce the concept of
universal C∗-algebras first. To fully grasp the concept, we will show some beautiful
examples of universal C∗-algebras. Before doing so, we will speak about projections
in C∗-algebras, since they will play a major role in this thesis. A standard reference
for the theory of C∗-algebras is Blackadar (2006).

1.1 Projections in C∗-algebras

In this chapter, we provide basic properties about projections.

Definition 1.1. Let A be a C∗-algebra. We call p ∈ A a projection iff the equation
p = p2 = p∗ holds.

Definition 1.2. Let A be a C∗-algebra. We call s ∈ A a partial isometry iff the
equation ss∗s = s holds.

Remark 1.3. Notice that for every partial isometry s in a C∗-algebra A we have
s∗ = s∗ss∗.

The following statements are about orthogonal projections on a closed subspace of
a Hilbert space H. Due to the Gelfand-Naimark Theorem we know that for every
C∗-algebra we have a faithful representation on a Hilbert space. Hence, we can use
the upcoming statements for projections in some C∗-algebra. They are being proven
in Raeburn (2005).

Proposition 1.4. Let P and Q be orthogonal projections on a closed subspace of a
Hilbert space H. The following statements are equivalent:

(a) PH ⊂ QH

(b) QP = P = PQ

(c) Q− P is a projection.

(d) P ≤ Q (meaning 〈Ph, h〉 ≤ 〈Qh, h〉 for all h ∈ H)

Proposition 1.5. Let P and Q be orthogonal projections on a closed subspace of a
Hilbert space H. The following statements are equivalent:

(a) PH⊥QH

(b) QP = 0 = PQ

3



1 Preliminaries

(c) P +Q is a projection.

To show the main statement of this section we need some terminology and properties
of positive elements.

Definition 1.6. In a C∗-algebra A we name an element z ∈ A positive and write 0 ≤ z
iff an element x ∈ A exists with z = x∗x. We write a ≤ z iff 0 ≤ z − a.

Remark 1.7. One can show that a bounded operator T on a Hilbert space H is positive
iff 〈Th, h〉 ≥ 0 for all h ∈ H.

Proposition 1.8. Let A be a C∗-algebra.

(a) Let x ∈ A. If −x∗x ≥ 0, then x = 0.

(b) The relation in Definition 1.6 defines a partial order structure.

(c) The sum of positive elements is again positive.

Proof. (a) see (Web)[Lemma 4.7].

(b) see (Web)[Corollary 4.9].

(c) Follows immediately from (b).

Let’s show the main statement of this section.

Proposition 1.9. Let {pi | 1 ≤ i ≤ n} be projections in a C∗-algebra A. Then we
have that p :=

∑n
i=1 pi is a projection iff pipj = 0 for all i 6= j. In that case we say

that the projections are mutually orthogonal.

Proof. Let the projections {pi | 1 ≤ i ≤ n} be mutually orthogonal. We are going to
prove that p is a projection. It is clear that we have p∗ = p. Furthermore it holds that

p2 =
n∑
j=1

n∑
i=1

pjpi =
n∑
i=1

p2
i =

n∑
i=1

pi = p.

Let’s prove the converse. We are going to use an induction. The case of n = 1 is
trivial. Assume that the converse holds true for n. Let

∑n+1
i=1 pi be a projection.

Since pi = p∗i pi is positive for all i ∈ {1, . . . , n} it follows that
∑n+1

i=1 pi ≥ pn+1. With
Proposition 1.4 we know, that

∑n
i=1 pi =

∑n+1
i=1 pi−pn+1 is a projection. The induction

hypothesis implies that the projections {pi | 1 ≤ i ≤ n} are mutually orthogonal. Using
Proposition 1.5 shows, that pn+1 is orthogonal to

∑n
i=1 pi. For i ≤ n we have

0 ≤ (pipn+1)∗(pipn+1) = pn+1pipn+1 ≤ pn+1(

n∑
j=1

pj)pn+1 = 0

and hence

‖pipn+1‖2 = ‖(pipn+1)∗(pipn+1)‖ = 0.

We conclude pipn+1 = 0 for all i ∈ {1, . . . , n}.
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1 Preliminaries

1.2 Universal C∗-algebras

In this section we construct universal C∗-algebras. They are the fundamental math-
ematical object to define graph C∗-algebras.

Definition 1.10. Let E = {xi | i ∈ I} be a set of elements indexed by a set I.

(a) A noncommutative monomial in E is a word xi1 · · · xim with i1, ..., im ∈ I and
m ∈ N\{0}.

(b) A noncommutative polynomial in E is a complex linear combination of non-
commutative monomials:

∑N
k=1 αkyk with N ∈ N, αk ∈ C and y1, ..., yN being

noncommutative monomials in E.

(c) The concatenation of two words is defined by the following

(xi1 · · · xim) · (xj1 · · · xjn) := xi1 · · · ximxj1 · · · xjn

where xi1 · · · xim and xj1 · · · xjn are two words.

(d) The free algebra on the generator set E is the set of all noncommutative polyno-
mials with the canonical addition and scalar multiplication. The multiplication
of two elements from the free algebra is given by the concatenation.

Note that for every algebra B containing a set of elements {yi | i ∈ I} that is indexed
by the same set I, we will find a homomorphism from the free algebra to the algebra
B sending xi to yi, for all i ∈ I.
Let E = {xi | i ∈ I} be a set of elements. By adding another set E∗ = {x∗i | i ∈ I}
which is disjoint with E and by defining an involution on E ∪ E∗ using the following

(αxε1i1 ...x
εm
im

)∗ := αxεmim ...x
ε1
i1

where α ∈ C, εk ∈ {1, ∗} and εk :=

{
1 εk = ∗
∗ εk = 1

we obtain the free *-algebra P (E) on the generator set E.

Definition 1.11. Let E = {xi | i ∈ I} be a set of elements indexed by a set I.

(a) Let R ⊂ P (E) be a set of polynomials.

(b) Let J(R) ⊂ P (E) be a two-sided ideal generated by R. This means that J(R) is
the smallest two-sided ideal that contains R. The universal *-algebra with gen-
erator E and relations R is defined as the quotient space A(E|R) := P (E)/J(R).

Since J(R) is an ideal, the structure of an algebra is kept. By abuse of notation we

will write xi for
·
xi ∈ A(E|R).

We still miss a C∗-norm. First, we will have a look at C∗-seminorms.

Definition 1.12. Let A be a *-algebra.
A C∗-seminorm on A is a mapping p : A→ [0,∞), such that

5



1 Preliminaries

(a) p(λx) = |λ|p(x) and p(x+ y) ≤ p(x) + p(y) for all x, y ∈ A and λ ∈ C

(b) p(xy) ≤ p(x)p(y) for all x, y ∈ A

(c) p(x∗x) = p(x)2 for all x ∈ A

holds. We are now able to define universal C∗-algebras.

Definition 1.13. Let E be a set of generators and R ⊂ P (E) relations. Define

‖x‖ := sup{p(x) | p is a C∗-seminorm on A(E|R)}.

If ‖x‖ < ∞ for all x ∈ A(E|R) holds, then ‖ · ‖ is a C∗-seminorm. To convince
oneself, one can easily check (a)-(c) from Definition 1.12. Furthermore, note that
{x ∈ A(E|R) | ‖x‖ = 0} is a two-sided ideal: let z ∈ {x ∈ A(E|R) | ‖x‖ = 0} and
y ∈ A(E|R). By using Definition 1.12 (b) we see that

0 ≤ ‖yz‖ ≤ ‖y‖‖z‖ = 0

0 ≤ ‖zy‖ ≤ ‖z‖‖y‖ = 0

applies.
So if ‖x‖ < ∞ holds for all x ∈ A(E|R), we define the universal C∗-algebra C∗(E|R)

as the completion with respect to the norm ‖ ·x‖ := ‖x‖:

C∗(E|R) := A(E|R)/{x ∈ A(E|R) | ‖x‖ = 0}‖·‖

where
·
x ∈ A(E|R)/{x ∈ A(E|R) | ‖x‖ = 0} is the equivalence class of x. Observe that

by taking the quotient space the C∗-seminorm becomes a C∗-norm. The completion
yields a C∗-algebra.

The following lemma will provide a useful tool for proving that a universal C∗-algebra
actually exists.

Lemma 1.14. Let E = {xi | i ∈ I} be a set of generators and R ⊂ P (E) relations.
If a constant C exists such that p(xi) < C holds for all i ∈ I and all C∗-seminorms p
on A(E|R), then it follows that ‖x‖ < ∞ holds for all x ∈ A(E|R). In that case, we
say that the universal C∗-algebra exists in the sense as described above.

Proof. The norm of a monomial of length N is bounded by CN and hence every
polynomial in A(E|R) is bounded.

Before we present some examples, we need some basic statements from functional
calculus.

Definition 1.15. Let A be a C∗-algebra and M ⊂ A a subset of A. By C∗(M) we
define the intersection of all *-subalgebras B ⊂ A with M ⊂ B. Notice that C∗(M) is
the smallest *-subalgebra in A that contains M .
In the case that A is unital and that x ∈ A we define in an analogous way C∗(x, 1).

Perceive that *-homomorphisms are already uniquely defined on the generator set.

6



1 Preliminaries

Lemma 1.16. Let A and B be C∗-algebras and M ⊂ A a subset of A. Let φ, ψ : A→ B
be two *-homomorphisms. If φ(x) = ψ(x) for all x ∈M , then it follows that φ(x) = ψ(x)
for all x ∈ C∗(M).

Proof. Since φ and ψ are *-homomorphisms we obtain byD := {x ∈ A | φ(x) = ψ(x)} ⊂
A a C∗-algebra in A that contains M . Hence we have that C∗(M) ⊂ D.

In the following, we will discuss the so called universal property. Note that our
universal C∗-algebra may exist, but it could still be the case that the algebra is trivial.
The universal property is a tool for obtaining *-homomorphisms between C∗-algebras
and for proving the non-triviality of a universal C∗-algebra.
Let E = {xi | i ∈ I} be a set of generators and R ⊂ P (E) relations. We say that
elements {yi | i ∈ I} in some *-algebra B satisfy the relations R, if every polynomial
p ∈ R vanishes, when we replace xi with yi.

Proposition 1.17. Let E = {xi | i ∈ I} be a generator set and R ⊂ P (E) relations,
such that the universal C∗-algebra C∗(E|R) exists. Let E′ = {yi | i ∈ I} be a subset of
some C∗-algebra B. If the elements in E′ satisfy the relations R, then there exists a
unique *-homomorphism φ : C∗(E|R)→ B, where xi is being sent to yi for all i ∈ I.

Proof. Recall the *-homomorphism φ : P (E)→ B, sending xi to yi. Since the elements
yi satisfy the relations R and hence the two-sided ideal P (R), generated by R, vanishes
in B, the *-homomorphism φ induces another *-homomorphism φ0 : A(E|R)→ B. To

prove this, one can consider following definition φ0 : A(E|R) → B,φ0(
·
x) := φ(x),

where
·
x ∈ A(E|R). It is well defined. Let

·
x,
·
z ∈ A(E|R) with

·
x =

·
z and therefore

x− z ∈ R. Then we have

φ0(
·
x)− φ0(

·
z) = φ(x− z) = 0.

Keep in mind that φ0 is sending
·
xi respectively xi to yi.

Define p(
·
x) := ‖φ0(

·
x)‖B for all

·
x ∈ A(E|R). One can show that this a C∗-seminorm

and hence it follows that ‖φ0(
·
x)‖ ≤ ‖ ·x‖ holds. Therefore φ0 is continuous. We may

extend it to a *-homomorphism φ : C∗(E|R) → B, sending xi to yi for all i ∈ I.
Uniqueness is by Lemma 1.16.

The following lemma will show the existence of C∗-algebras, that we will consider
throughout this thesis.

Lemma 1.18. Let A be a universal C∗-algebra that is generated by a partial isometry
x and/or projection y. Then the C∗-algebra A exists.

Proof. Let p be a C∗-seminorm on A. We have

p(y)2 = p(y∗y) = p(y2) = p(y) ∈ {0, 1} and

p(x)4 = p(x∗x)2 = p(x∗xx∗x) = p(x∗x) = p(x)2 ∈ {0, 1}.

By Lemma 1.14 the C∗-algebra A exists.

7



1 Preliminaries

In the last step of this section, we will introduce how to form a product of universal
C∗-algebras. We need this definition in a later part of the thesis.

Definition 1.19. Let A = C∗(E1|R1) and B = C∗(E2|R2) be unital universal C∗-
algebras. We call

A ∗C B := C∗(E1, E2|R1, R2 and 1A = 1B)

the free product of A and B.

1.3 Examples

In the previous chapter we have seen some tools to prove the existence and non-
triviality of universal C∗-algebras. In this chapter we want to actually use them.
The first example we look at is the universal C∗-algebra generated by a unitary. An
element u in a C∗-algebra is a unitary iff it fulfills the following equation u∗u = 1 = uu∗,
where 1 is the unit element of the given C∗-algebra. To characterize this universal C∗-
algebra we need two important theorems from functional calculus. The proofs can be
found in Web[Kapitel 3].

Theorem 1.20 (Stone-Weierstraß). Let X be a compact Hausdorff space and A ⊂ C(X)
a closed, unital *-subalgebra. By C(X) we define the space of all continuous func-
tions from X to C. If there exists a function f ∈ C(X) for all s, t ∈ X, s 6= t with
f(s) 6= f(t), then we have A = C(X).

Theorem 1.21 (Continuous functional calculus). Let A be a unital C∗-algebra and
x ∈ A normal, meaning x∗x = xx∗. Then there exists an isometric isomorphism
φ : C(sp(x))→ C∗(x, 1) ⊂ A with φ(id) = x and φ(1) = 1, where sp(x) is the spectrum
of x.

Let’s have a look at our first example. For our universal C∗-algebra generated by
a unitary we write C∗(u, 1|u∗u = 1 = uu∗). Notice that we will not explicitly write
down the relation of 1 being the unit element. The existence is by Lemma 1.18 since
every unitary is also a partial isometry.

Proposition 1.22. Let A be a unital C∗-algebra and z ∈ A a unitary element with
sp(z) = S1, where S1 := {x ∈ C | |x| = 1}. Then we have C∗(u, 1|u∗u = 1 = uu∗) ∼=
C∗(z) ⊂ A, meaning that C∗(u, 1|u∗u = 1 = uu∗) is isomorphic to C∗(z). Notice that
we write C∗(z) instead of C∗(z, 1) because z is a unitary.

Proof. Define C∗(u) := C∗(u, 1|u∗u = 1 = uu∗). Observe that by the universal prop-
erty 1.17 we obtain a *-homomorphism φ : C∗(u) → C∗(z) that sends u to z. Since
C∗(z) is generated by z we obtain that φ is surjective.
Notice that z is also a normal element. Therefore we can use the continuous func-
tional calculus and we get an isomorphism Ψ1 : C(sp(z))→ C∗(z). Using an argu-
ment by analogy, there exists another isomorphism Ψ2 : C(sp(u)) → C∗(u). For
our next step it is important to know that the spectrum of a unitary element is al-
ways a subset of S1. Let Φ : C(S1) → C(sp(u)) be the restriction mapping defined

8



1 Preliminaries

by f 7→ f |sp(u), f ∈ C(S1). By assumption we have C(sp(z)) = C(S1). We define

ψ : C∗(z)→ C∗(u) by ψ := Ψ2 ◦ Φ ◦Ψ−1
1 . It follows that

ψ(z) = (Ψ2 ◦ Φ ◦Ψ−1
1 )(z) = Ψ2(Φ(Ψ−1

1 (z))) = Ψ2(Φ(id |C(sp(z)))) = Ψ2(id |sp(u)) = u.

Using Lemma 1.16 we see that ψ ◦ φ is already the identity function on C∗(u). One
can conclude immediately, that φ is injective and therefore, the proof is finished.

Corollary 1.23. We have C∗(u, 1|u∗u = 1 = uu∗) ∼= C(S1).

Proof. Consider the identity function z on S1 given by z(t) = t for all t ∈ S1. No-
tice that z ∈ C(S1) and z∗z = 1 = zz∗ holds, where 1 is the constant function
1(t) = t. We have sp(z) = S1. It follows from the fact that λ − t, t ∈ S1 is not
invertible iff λ ∈ S1. Observe that C(S1) is a unital C∗-algebra. Using the previous
proposition, we have C∗(u, 1|u∗u = 1 = uu∗) ∼= C∗(z). By construction we know
that C∗(z) ⊂ C(S1) is a closed unital *-subalgebra. Let s, t ∈ S1, s 6= t. We have
z ∈ C∗(z) with z(s) 6= z(t). By Stone-Weierstraß Theorem we obtain C∗(z) = C(S1)
and therefore, C∗(u, 1|u∗u = 1 = uu∗) ∼= C(S1).

For our next example we consider a universal C∗-algebra generated by an isometry
instead by a unitary.

Definition 1.24 (Toeplitz algebra). The universal C∗-algebra

T := C∗(u, 1|u∗u = 1)

generated by an isometry u, meaning u∗u = 1, is the so called Toeplitz algebra.

Notice that the Toeplitz algebra exists for the same reasons as for the universal
C∗-algebra generated by a unitary element. The Toeplitz algebra is non-trivial. One
can consider the Hilbert space `2(N) of square-summable C-valued sequences. Let
{en | n ∈ N} be the standard orthonormal basis. The unilateral shift S given by
Sen = en+1 is an isometry. With the universal property we have found a representation
of T on `2(N).
The existence of the next universal C∗-algebra follows by the same argument as before.

Definition 1.25 (Cuntz algebra). Let n ∈ N and n ≥ 2. We call the universal
C∗-algebra

On := C∗(S1, . . . , Sn | S∗i Si = 1 for all i = 1, . . . , n;

n∑
i=1

SiS
∗
i = 1)

the Cuntz algebra.

The Cuntz algebra is also non-trivial. We sketch the proof. Consider a separable
Hilbert space H with orthonormal basis (ek)k∈N. Notice that the basis is countable
since we have a separable Hilbert space. Consider injective functions f1, . . . , fn : N→ N
with fi(N) ∩ fj(N) = ∅ for i 6= j and

⋃n
i=1 fi(N) = N. One could for example take

fi(m) := n(m − 1) + i. By Tiek := efi(k) we obtain operators T1, . . . , Tn that fulfill

9



1 Preliminaries

the relations from the Cuntz algebra. Notice that since fi is injective a left inverse gi
exists for all i = 1, . . . , n. We set gi(k) = 0 for every k 6∈ imfi and i = 1, . . . , n. We
also set e0 := 0. One can show that T ∗i is given by T ∗i ek = egi(k).
Let k ∈ N. Then there exists a j ∈ {1, . . . , n} and m ∈ N, such that fj(m) = k and
k 6∈ Im(fi) for all i = 1, . . . , n with i 6= j. So we have

n∑
i=1

Ti(T
∗
i (ek)) =

n∑
i=1

efi(gi(k)) = efj(gj(fj(m))) = efj(m) = ek

Since k was arbitrary, it follows
∑n

i=1 TiT
∗
i = 1.

We now come to a third example. Let MN (C) be the N×N -matrices and Eij ∈MN (C)
the matrix units, meaning that at the i-j-th place there is a 1 and elsewhere a 0.

Proposition 1.26. Let N ∈ N with N ≥ 2. The following C∗-algebras are isomorphic.

(a) MN (C)

(b) C∗(eij ; i, j = 1, . . . , N |e∗ij = eji; eijekl = δjkeil for all i, j, k, l)

Proof. Let A be the universal C∗-algebra in (b). First of all, we prove the existence
of A. Let p be a C∗-seminorm. Then we have p(ejj)

2 = p(e∗jjejj) = p(ejj) ∈ {0, 1}
and hence p(eij)

2 = p(ejieij) = p(ejj) ∈ {0, 1}. By Lemma 1.14 we conclude the
existence of A. The matrix units satisfy the relations of A. Hence there exists a *-
homomorphism φ : A → MN (C), sending eij to Eij . Since the matrix units Eij are
generators of MN (C), we see that φ is surjective. Due to the second relation of A, we
observe that eij , i, j = 1 . . . , N are already all possible monomials and therefore A is
N2-dimensional. The fact that φ is surjective implies that φ is also injective.

Definition 1.27. We name a C∗-algebra A simple, if it has no proper ideal, meaning
for every closed ideal I ⊂ A it immediately follows that either I = {0} or I = A holds.

A common example for a simple C∗-algebra is the space of N ×N -matrices MN (C).
By K(H) we define the space of all compact operators on H, where H is a separable
Hilbert space. What comes next is an infinite version of Proposition 1.26.

Proposition 1.28. The following C∗-algebras are isomorphic.

(a) K(H)

(b) C∗(eij ; i, j ∈ N|e∗ij = eji; eijekl = δjkeil for all i, j, k, l)

Proof. We define A := C∗(eij ; i, j ∈ N|e∗ij = eji; eijekl = δjkeil for all i, j, k, l). The
existence follows in an analogous way as in the proof of Proposition 1.26.
Let 〈·, ·〉 be the scalar product of H and ‖ · ‖ the induced norm. Since H is separable,
we can choose a countable orthonormal basis (en)n∈N in H. For i, j ∈ N we define the
operator fij by fijen := δjnei, where n ∈ N. We have

‖fijen‖ = ‖δjnei‖ = δjn‖ei‖ = δjn‖en‖.

10



1 Preliminaries

Therefore fij is a bounded and hence continuous operator. Furthermore, it follows
that

fijen = δjnei = δjn〈en, en〉ei

applies. Hence fij is an operator with a finite image and that is why fij is a compact
operator. In the next stept we want to prove that fij fulfills the relations of A. Let
k, l ∈ N then we have

fij(fklen) = fij(δlnek) = δlnδjkei = δjkfilen.

Let x, y ∈ H. Due to the orthonormal basis we can rewrite x and y as x =
∑

n∈N〈x, en〉en
and y =

∑
n∈N〈y, en〉en. Using the continuity of fij we conclude

fijx = fij
∑
n∈N
〈x, en〉en =

∑
n∈N
〈x, en〉δjnei = 〈x, ej〉ei

and hence

〈fijx, y〉 = 〈〈x, ej〉ei, y〉

= 〈〈x, ej〉ei,
∑
n∈N
〈y, en〉en〉

= 〈〈x, ej〉ei, 〈y, ei〉ei〉
= 〈x, ej〉〈ei, ei〉〈y, ei〉
= 〈x, ej〉〈ej , ej〉〈y, ei〉
= 〈〈x, ej〉ej , 〈y, ei〉ej〉

= 〈
∑
n∈N
〈x, en〉en, 〈y, ei〉ej〉

= 〈x, fjiy〉.

We see that f∗ij = fji holds. The operators fij satsify the relations of the universal
C∗-algebra A. Hence there exists a *-homomorphism φ : A → K(H), sending eij to
fij for all i, j. In the following we will show that φ is an isomorphism.
The image of φ contains all linear combinations of the operators fij . Remember the
fact that the image of a C∗-algebra under a *-homomorphism is again a C∗-algebra.
Therefore, the image φ(A) contains even all limits of the linear combinations. One can
show that every arbitrary compact operator can be approximated by linear combina-
tions of fij . This shows that φ is surjective.
To show injectivity we regard MN := C∗(eij ; i, j = 1, . . . , N |e∗ij = eji; eijekl = δjkeil for
all i, j, k, l) for N ∈ N. By Proposition 1.26 we have MN

∼= MN (C). Define φN as the
restriction mapping from φ on MN . Since the kernel of the *-homomorphism φN is an
ideal in MN and since MN is isomorphic to MN (C), and hence simple, we have that
φN is injective. Using the property, that a *-homomorphism between two C∗-algebras
is injective iff it is isometric, provides us the fact that φN is also isometric. Therefore,
φ is isometric on the dense subset

⋃
n∈NMN ⊂ A. In turn, it follows that φ is injective

on A.

11
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Let’s come to our last example for this section.

Proposition 1.29. Let N ∈ N. The following C∗-algebras are isomorphic.

(a) CN as C∗-algebra with pointwise operation

(b) C∗(p1, ..., pN , 1 | pi = p∗i = p2
i , i = 1, ..., N ;

∑N
i=1 pi = 1)

Proof. We define AN := C∗(p1, ..., pN , 1 | pi = p∗i = p2
i , i = 1, ..., N ;

∑N
i=1 pi = 1).

Notice that AN is generated by projections. Therefore, the universal C∗-algebra AN
exists by Lemma 1.18. Observe that p̃i := ei = (0, ..., 0, 1, 0, ..., 0), with an 1 at the i-th
place, satisfies the relations of AN . Hence we have a *-homomorphism φ : AN → CN ,
sending pi to p̃i = ei. Since the ei are the basis of CN , we have that φ is surjective. If we
show, that AN is N -dimensional we are done. So we need to prove, that pi, i = 1, ..., N
are already all monomials in AN . We want to show, that pipj = 0 for all i 6= j. Observe

that 1 =
∑N

i=1 pi is a projection. With Proposition 1.9 it follows that pipj = 0 for all
i 6= j.

12



2 Graph C∗-algebras

This chapter deals with the construction of graph C∗-algebras and their most known
examples.

2.1 Definition and properties

After learning about universal C∗-algebras, we are now able to use them to define
graph C∗-algebras. First of all, we need to introduce graphs.

Definition 2.1. A directed finite graph Γ = (V,E, r, s) consists of two finite sets V ,
E and functions r : E → V , s : E → V . The elements of V are called vertices and
the elements of E are called edges. The map r is named range map and the map s
is named source map. Throughout this thesis we will mostly look at directed finite
graphs, therefore we will just say graphs. We say that v ∈ V is a sink iff the set s−1(v)
is empty and we call v a source iff r−1(v) is empty.

In the following we want to define graph C∗-algebras.

Definition 2.2. Let Γ = (V,E, r, s) be a graph. The graph C∗-algebra C∗(Γ) of the
graph Γ is the universal C∗-algebra generated by mutually orthogonal projections pv
for all v ∈ V and partial isometries se for all e ∈ E such that the following relations
hold

(R1) s∗esf = δefpr(e) for all e, f ∈ E

(R2) pv =
∑

e∈E
s(e)=v

ses
∗
e for all v ∈ V , in case that v is not a sink.

Remark 2.3. Every graph C∗-algebra exists by Lemma 1.18.

Remark 2.4. Notice that s∗esf = 0 iff e 6= f and hence ses
∗
esfs

∗
f = 0 for all e, f ∈ E

with e 6= f . So the projections {ses∗e | e ∈ E} are mutually orthogonal.

Remark 2.5. If the graph is infinite, meaning that V and E are infinite but countable
sets, we only consider vertices v ∈ V for (R2) where s−1(v) is non-empty and finite.
Because otherwise we need to consider the infinite sum

∑
e∈E
s(e)=v

ses
∗
e of mutually or-

thogonal projections which does not converge in norm. To see this let 0 < ε < 1 and
assume that the sum converges. Notice that we replace E with N since E is countable.
Since it converges it is also a Cauchy sequence. Hence there exists N ∈ N such that
‖
∑m

i=n sis
∗
i ‖ < ε for n,m ≥ N which implies that ‖sns∗n‖ < ε for n ≥ N . Since ε was

arbitrary we conclude ‖sns∗n‖ = 0 for n ≥ N . This would imply that sns
∗
n = 0 for all

n ≥ N which would be a contradiction. We also add Relation (R3) to our relations:

13
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(R3) ses
∗
e ≤ ps(e) for all e ∈ E.

We need this relation (R3) for vertices where s−1(v) is infinite. If for all v ∈ V the
set s−1(v) is finite or empty one can show that (R2) implies (R3). In that case we call
the graph row-finite. In this thesis we only consider row-finite graphs.

Before we present some examples, we are going to prove a few properties of graph
C∗-algebras. We will need them for the characterization of our examples.

Proposition 2.6. Let Γ = (V,E, r, s) be a graph and C∗(Γ) the graph C∗-algebra.
Then the following equations hold

se = sepr(e) (2.1)

and

se = ps(e)se (2.2)

for all e ∈ E.

Proof. Let e ∈ E. By (R1) and the fact that se is a partial isometry we have
se = ses

∗
ese = sepr(e). We are going to prove Equation 2.2.

Observe that we can write ps(e) =
∑

s(f)=s(e) sfs
∗
f . Consequently it is

ps(e)se =
∑

s(f)=s(e)

sfs
∗
fse

R1
= ses

∗
ese = se.

Proposition 2.7. Let Γ = (V,E, r, s) be a graph and C∗(Γ) the graph C∗-algebra.
Then we have that

∑
v∈V pv is the identity in C∗(Γ) and hence

∑
v∈V pv = 1.

Proof. Let w ∈ V . Since the projections are mutually orthogonal we have

pw
∑
v∈V

pv =
∑
v∈V

pwpv = p2
w = pw = (

∑
v∈V

pv)pw.

Let e ∈ E. Since se is a partial isometry we have by Relation (R1)

se
∑
v∈V

pv = ses
∗
ese

∑
v∈V

pv = sepr(e)
∑
v∈V

pv = sepr(e) = se.

Using Equation 2.2 it follows

(
∑
v∈V

pv)se = (
∑
v∈V

pv)ps(e)se = ps(e)se = se

and hence
∑

v∈V pv = 1.

Proposition 2.8. Let Γ = (V,E, r, s) be a graph and C∗(Γ) the graph C∗-algebra.
Then we have that

14
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(a) the projections {ses∗e | e ∈ E} are mutually orthogonal

(b) and ses
∗
f 6= 0⇒ r(e) = r(f).

Proof. (a) We have (ses
∗
e)
∗ = ses

∗
e and ses

∗
eses

∗
e = ses

∗
e. Therefore ses

∗
e is a projec-

tion. To show orthogonality see Remark 2.4.

(b) It applies that ses
∗
f = sepr(e)pr(f)s

∗
f = 0, if r(e) 6= r(f).

2.2 Examples

Finally, we will study some examples of graph C∗-algebras. The usage of the universal
property 1.17 will be indispensable in the following section.

Proposition 2.9. Let C∗(Γ) be the graph C∗-algebra of the following graph Γ. We have
C∗(Γ) ∼= C(S1), meaning the graph C∗-algebra is isomorphic to the set of continuous
functions on the unit circle.

Figure 2.1: Graph 1

Proof. The relations (R1) and (R2) imply

s∗ese = pv = ses
∗
e.

Using Proposition 2.7 we know that the projection pv has to be the identity in C∗(Γ).
Using the equation from above, this implies that se is a unitary generator of C∗(Γ). The
universal property gives us a *-homomorphism φ1 : C∗(u, 1|u∗u = 1 = uu∗)→ C∗(Γ),
sending u to se and 1 to pv.
By defining s̃e := u and p̃v := 1 we see that s̃e and p̃v satisfy the relations (R1)
and (R2). Note that s̃e is also a partial isometry and p̃v a projection. This is due
to uu∗u = u1 = u and 12 = 1 = 1∗. So there exists another *-homomorphism
φ2 : C∗(Γ) → C∗(u, 1|u∗u = 1 = uu∗), sending se to s̃e = u and pv to p̃v = 1.
Those two homomorphism are inverse to each other. Using Corollary 1.23 we have
C(S1) ∼= C∗(u, 1|u∗u = 1 = uu∗) ∼= C∗(Γ).

Proposition 2.10. Consider the following graph Γ and the associated graph C∗-algebra
C∗(Γ). We have C∗(Γ) ∼= T where T is the Toeplitz algebra from Definition 1.24.

Figure 2.2: Graph 2
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2 Graph C∗-algebras

Proof. Step 1: There is a *-homomorphism φ1 : C∗(u, 1|u∗u = 1)→ C∗(Γ), sending u
to (se + sf ) and 1 to pv + pw. Following from the relations (R1) and (R2) we have

pv = s∗ese

pw = s∗fsf

pv = ses
∗
e + sfs

∗
f .

Using Proposition 2.7 we have that pv + pw is the identity in C∗(Γ). By using (R1)
and Proposition 2.8 it follows that

(se + sf )∗(se + sf ) = s∗ese + s∗esf + s∗fse + s∗fsf = pv + 0 + 0 + pw = pv + pw

(se + sf )(se + sf )∗ = ses
∗
e + ses

∗
f + sfs

∗
e + sfs

∗
f = pv

(se + sf )∗(se + sf )− (se + sf )(se + sf )∗ = pw

(se + sf )pw = sepw + sfpw = ses
∗
fsf + sf = sf

(se + sf )pv = sepv + sfpv = se + sfs
∗
ese = se

holds. Meaning that se + sf is an isometry and it also generates C∗(Γ). We get a
*-homomorphism φ1 : C∗(u, 1|u∗u = 1) → C∗(Γ), sending u to (se + sf ) and 1 to
pv + pw.
Step 2: Consider the definition p̃v := uu∗, p̃w := 1− p̃v, s̃e := up̃v and s̃f := up̃w. There
exists a *-homomorphism φ2 : C∗(Γ) → C∗(u, 1|u∗u = 1), that sends pv to p̃v = uu∗,
pw to p̃w = 1− uu∗, se to s̃e = uuu∗ and sf to s̃f = u(1− uu∗). It is

s̃es̃
∗
e s̃e = uuu∗(uuu∗)∗uuu∗

= uuu∗(uu∗)∗u∗uuu∗

= uuu∗uu∗u∗uuu∗

= uu(u∗u)u∗(u∗u)uu∗

= uu(u∗u)u∗

= uuu∗ = s̃e

and

s̃f s̃
∗
f s̃f = u(1− uu∗)(u(1− uu∗))∗u(1− uu∗)

= u(1− uu∗)(1− uu∗)u∗u(1− uu∗)
= u(1− uu∗)(1− uu∗)(1− uu∗)
= u(1− uu∗)(1− 2uu∗ + uu∗uu∗)

= u(1− uu∗)(1− uu∗)
= u(1− uu∗) = s̃f .

Hence s̃e and s̃f are partial isometries. Further, it holds

p̃2
v = uu∗uu∗ = uu∗ = p̃v = (uu∗)∗ = p̃∗v

p̃2
w = (1− p̃v)2 = 1− 2p̃v + p̃2

v = 1− p̃v = p̃w = (1− p̃v)∗ = p̃∗w

16
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and in addition

p̃vp̃w = p̃v(1− p̃v) = p̃v − p̃2
v = 0.

Meaning that by p̃v and p̃w we defined mutually orthogonal projections. In the follow-
ing, we want to check the relations (R1) and (R2). It applies

s̃∗e s̃e = p̃∗vu
∗up̃v = p̃2

v = p̃v

s̃∗f s̃f = p̃∗wu
∗up̃w = p̃2

w = p̃w

s̃∗e s̃f = p̃∗vu
∗up̃w = 0

s̃es̃
∗
e + s̃f s̃

∗
f = up̃vp̃

∗
vu
∗ + up̃wp̃

∗
wu
∗ = up̃vu

∗ + up̃wu
∗ = up̃vu

∗ + u(1− p̃v)u∗ = uu∗ = p̃v.

We see that s̃e, s̃f , p̃v and p̃w satisfy the relations (R1) and (R2) and hence there exsits
a *-homomorphism φ2 : C∗(Γ) → C∗(u, 1|u∗u = 1), that sends pv to p̃v = uu∗, pw to
p̃w = 1− uu∗, se to s̃e = uuu∗ and sf to s̃f = u(1− uu∗).
Step 3: We have that φ2 ◦φ1 = idC∗(u,1|u∗u=1) and φ1 ◦φ2 = idC∗(Γ). One observe that

φ1(φ2(pv)) = φ1(uu∗) = (se + sf )(se + sf )∗ = pv

φ1(φ2(pw)) = φ1(1− uu∗) = (pv + pw)− pv = pw

φ1(φ2(se)) = φ1(uuu∗) = (se + sf )(se + sf )(se + sf )∗ = (se + sf )pv = se

φ1(φ2(sf )) = φ1(u(1− uu∗)) = (se + sf )pw = sf

φ2(φ1(u)) = φ2(se + sf ) = uuu∗ + u(1− uu∗) = u

φ2(φ1(1)) = φ2(pv + pw) = 1

applies. We conclude by Definition 1.24 that we have T ∼= C∗(Γ).

Proposition 2.11. Let n ∈ N and let C∗(Γ) be the graph C∗-algebra of the following
graph Γ. It follows C∗(Γ) ∼= Mn(C) where Mn(C) is the set of n× n-matrices.

Figure 2.3: Graph 3

Proof. Step 1: In C∗(Γ) it holds sejsek−1
= δjksejsej−1 for j = 1, . . . , n−1; k = 2, . . . , n

and s∗ej−1
sek−1

= δjkpvj−1 for j, k = 2, . . . , n. From our relations (R1) and (R2) we get

s∗eisei = pvi for all i = 1, . . . , n− 1

and

seis
∗
ei = pvi+1 for all i = 1, . . . , n− 1.

Let j = 1, ..., n− 1 and k = 2, ..., n. With Proposition 2.6 it follows that the relation

sejsek−1
= sejpvjpvksek−1

= δjksejsej−1
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holds and for j, k = 2, . . . , n

s∗ej−1
sek−1

= (pejsej−1)∗peksek−1
= s∗ej−1

pejpeksek−1
= δjks

∗
ej−1

sej−1 = δjkpvj−1 .

Step 2: Define Ẽi,i := pvi for i = 1, . . . , n. For i, j = 1, ..., n with i > j we define
Ẽi,j := sei−1sei−2 . . . sej+1sej and else Ẽi,j := Ẽ∗j,i, where Ẽ(j+1),j := sej . There exists

a *-homomorphism φ1 : Mn(C) → C∗(Γ), sending Ei,j to Ẽi,j = sei−1sei−2 . . . sej+1sej
and Ei,i to Ẽi,i = pvi . Recall Proposition 1.26, which told us thatMn(C) ∼= C∗(eij ; i, j =
1, . . . , n|e∗ij = eji; eijekl = δjkeil for all i, j, k, l). Obviously Ẽi,i satisfy the relations of
the matrix units. Let i > j and k > l, then it is

Ẽi,jẼk,l = sei−1sei−2 . . . sej+1sejsek−1
sek−2

. . . sel+1
sel

= δj,ksei−1sei−2 . . . sej+1sejsei−jsej−2 . . . sel+1
sel = δj,kẼi,l.

For the next case let j > i, k > l and with no loss of generality i < l. The remaining
cases can be treated analogously. Then by using Equation 2.2

Ẽi,jẼk,l = Ẽ∗j,iẼk,l = s∗eis
∗
ei+1

. . . s∗ej−2
s∗ej−1

sek−1
sek−2

. . . sel+1
sel

= δj,ks
∗
eis
∗
ei+1

. . . s∗ej−2
s∗ej−1

sej−1sej−2 . . . sel+1
sel

= δj,ks
∗
eis
∗
ei+1

. . . s∗ej−2
pvj−1sej−2 . . . sel+1

sel

= δj,ks
∗
eis
∗
ei+1

. . . s∗ej−2
sej−2 . . . sel+1

sel

= . . .

= δj,ksei−1sei−2 . . . sel+1
sel

= δj,kẼi,l

holds. In addition to that we have

Ẽ∗i,j = Ẽj,i for i > j

Ẽ∗i,j = (Ẽ∗j,i)
∗ = Ẽj,i else.

Hence there exists a *-homomorphism φ1 : Mn(C)→ C∗(Γ), sending Ei,j to Ẽi,j
= sei−1sei−2 . . . sej+1sej and Ei,i to Ẽi,i = pvi .
Step 3: Define p̃vi := Ei,i and s̃ei := Ei+1,i. There is a *-homomorphism φ2 : C∗(Γ)→Mn(C),
that sends pvi to p̃vi = Ei,i and sei to s̃ei = Ei+1,i. We see that p̃vi is a projection, s̃ei
is a partial isometry and that they fulfill the relations (R1) and (R2), since we have

Ei+1,iE
∗
i+1,iEi+1,i = Ei+1,i+1Ei+1,i = Ei+1,i

E2
i,i = Ei,i = E∗i,i

E∗i+1,iEj+1,j = δijEi,i

Ei+1,iE
∗
i+1,i = Ei+1,i+1.

We can conclude that there exists another *-homomorphism φ2 : C∗(Γ) → Mn(C),
that sends pvi to p̃vi = Ei,i and sei to s̃ei = Ei+1,i.
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2 Graph C∗-algebras

Step 4: It is φ2 ◦ φ1 = idMn(C) and φ1 ◦ φ2 = idC∗(Γ). We have

φ1(φ2(sei)) = φ1(Ei+1,i) = sei

φ1(φ2(pvi)) = φ1(Ei,i) = pvi

φ2(φ1(Ei,j)) = φ2(sei−1sei−2 . . . sej+1sej ) = Ei,i−1Ei−1,i−2 . . . Ej+2,j+1Ej+1,j = Ei,j

φ2(φ1(Ei,i)) = φ2(pvi) = Ei,i.

The *-homomorphisms are inverse to each other and one can conclude that C∗(Γ) ∼=
Mn(C).

For our next example we want to study an infinite version of Proposition 2.11.

Proposition 2.12. We consider the next graph Γ and the associated graph C∗-algebra
C∗(Γ). It follows C∗(Γ) ∼= K(H) where K(H) is the set of compact operators on a
Hilbert space H.

Figure 2.4: Graph 4

Proof. Keep in mind that we need to use the relations from Remark 2.5. Observe that
Γ is a row-finite graph. Hence, it follows for all i ∈ N

s∗eisei = pvi

seis
∗
ei = pvi+1 .

By taking an analogue approach as in Example 2.11 one can find an isomorphism to
C∗(eij ; i, j ∈ N|e∗ij = eji; eijekl = δjkeil for all i, j, k, l). With Proposition 1.28 we have
C∗(Γ) ∼= K(H).

Proposition 2.13. Let n ∈ N and n ≥ 2. Consider to the next graph Γ the associated
graph C∗-algebra C∗(Γ). It follows C∗(Γ) ∼= On where On is the Cuntz algebra from
Definition 1.25. The figure shown below is taken from (Eifler, 2016)[p.30].
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2 Graph C∗-algebras

Figure 2.5: Graph 5

Proof. It holds s∗eisei = pv for all i = 1, . . . , n and
∑n

i=1 seis
∗
ei = pv. With Proposition

2.7 the projection pv is the identity in C∗(Γ) and therefore, sei is an isometry for all
i = 1, . . . , n. Also {sei |i = 1, ..., n} is the generator of C∗(Γ). Recall Definition 1.25
and the universal C∗-algebra On = C∗(S1, . . . , Sn | S∗i Si = 1 for all i = 1, . . . , n;∑n

i=1 SiS
∗
i = 1). We obtain a surjective *-homomorphism φ1 : On → C∗(Γ), sending

Si to sei .
On the other hand with s̃ei := Si and p̃v :=

∑n
i=1 SiS

∗
i we see that s̃ei and p̃v satisfy

the relations of the graph C∗-algebra C∗(Γ). Nevertheless, we check that s̃∗ei s̃ej = 0 for
i 6= j. By Proposition 1.9 we have that {SiS∗i | i = 1, ..., n} are mutually orthogonal
and hence for i 6= j

s̃∗ei s̃ej = S∗i Sj

= S∗i SiS
∗
i SjS

∗
jSj

= S∗i 0Sj = 0.

The resulting *-homomorphism φ2 : C∗(Γ) → On sends sei to s̃ei = Si. Observe that
φ1 and φ2 are inverse to each other. We have C∗(Γ) ∼= On.
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We now come to the main section of this thesis, where we introduce the so called
hypergraph C∗-algebras. They are new mathematical objects. The definition of hy-
pergraph C∗-algebras was conveyed to us by Simon Schmidt and Moritz Weber. We
then enriched the theory with the remaining results of this section. First, we will define
directed hypergraphs.

3.1 Definition and properties

Definition 3.1. A directed finite hypergraph HΓ = (V,E, r, s) consists of two finite sets
V,E and two mappings r, s : E → P(V )\{∅}. The set V contains vertices, while the set
E contains hyperedges. The difference to a directed finite graph, as in Definition 2.1,
is that the hyperedges can join any number of vertices whereas for graphs, we always
have |r(e)| = 1 = |s(e)| for all e ∈ E. Therefore, the range map r and the source map
s map to the power set P(V ) of V rather than to V . We only study directed finite
hypergraphs. We write hypergraph instead of directed finite hypergraph.

For a better understanding, we take a look at an example of a hypergraph.

Example 3.2. Consider the following hypergraph HΓ.

Figure 3.1: Hypergraph 1

We have V = {v1, v2, v3} and E = {e1, e2}. For the image of our range and source
map we have

r(e1) = {v2}, s(e1) = {v1, v3}
r(e2) = {v1, v3}, s(e2) = {v2, v3}.
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3 Hypergraph C∗-algebras

Throughout this thesis we display hypergraphs like the example above. There are
several different ways to display hypergraphs but for our following examples this way
of representing them is just fine. For more complicated cases one might consider to
draw circles around the vertices instead of connecting them with arrows. I should
notice that we did all the drawings of graphs by ourselves except the drawing from
Proposition 2.13.

Remark 3.3. Notice that every graph Γ = (V,E, r, s) is also a hypergraph HΓ = (V,E, r′, s′)
by defining r′ : E → P(V ), e 7→ {r(e)} and s′ : E → P(V ), e 7→ {s(e)}.

Similar as in the Definition 2.2 for constructing graph C∗-algebras, we will define
hypergraph C∗-algebras.

Definition 3.4. Let HΓ = (V,E, r, s) be a hypergraph. The hypergraph C∗-algebra
C∗(HΓ) of the hypergraph HΓ is the universal C∗-algebra generated by mutually
orthogonal projections pv for all v ∈ V and partial isometries se for all e ∈ E such that
the following relations hold

(HR1) s∗esf = δef
∑

v∈r(e) pv for all e, f ∈ E

(HR2) ses
∗
e ≤

∑
v∈s(e) pv for all e ∈ E

(HR3) pw ≤
∑

e∈E
w∈s(e)

ses
∗
e if s−1(w) 6= ∅ for w ∈ V .

Remark 3.5. Every hypergraph C∗-algebra exists by Lemma 1.18.

Keep in mind that with Proposition 1.4, we have for every projection p and q in
some C∗-algebra A the equivalence p ≤ q ⇔ pq = p = qp.

Lemma 3.6. Let p and q be projections in some C∗-algebra A. If p ≤ q and q ≤ p
applies, then we have p = q.

Proof. It follows

p = pq = q.

Lemma 3.7. Let p1, p2, q be projections in some C*-algebra A. If pi ≤ q for i = 1, 2
and q ≤ p1 + p2 applies, then we have q = p1 + p2.

Proof. It follows

q = q(p1 + p2) = qp1 + qp2 = p1 + p2.

We are still left with the question whether the hypergraph C∗-algebra C∗(HΓ) of
an arbitrary hypergraph HΓ is trivial or not. The following statement shows that the
class of hypergraph C∗-algebras contains the class of graph C∗-algebras and therefore,
our definition of hypergraph C∗-algebras is a generalization as wished. We know that
every graph C∗-algebra is non-trivial (see (Raeburn, 2005)) and therefore, we found
a class of non-trivial hypergraph C∗-algebras. The proposition also shows that the
Relations (HR2) and (HR3) are the corresponding relations to Relation (R2).
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3 Hypergraph C∗-algebras

Proposition 3.8. Consider a graph Γ = (V,E, r, s) and interpret it as a hypergraph
HΓ = (V,E, r′, s′) in the sense of Remark 3.3. For our graph C∗-algebra we write

C∗(Γ) = C∗(s̃e, e ∈ E; p̃v, v ∈ V | p̃vp̃w = 0, v 6= w; s̃∗e s̃f = δef p̃r(e);
∑
e∈E

s(e)=w

s̃es̃
∗
e = p̃w)

where s̃e is a partial isometry for all e ∈ E and p̃v is a projection for all v ∈ V . Then
we have C∗(Γ) ∼= C∗(HΓ).

Proof. First, we check that the generators of C∗(Γ) fulfill the relations of C∗(HΓ).
Since the only element in the set r′(e) is the vertex r(e) we have

s̃∗e s̃f = δef p̃r(e) = δef
∑
v∈V
v∈r′(e)

p̃v.

We see that Relation (HR1) is fulfilled. For the same reasons it follows for w ∈ V with
s−1(w) 6= ∅ that

p̃w =
∑
e∈E

w=s(e)

s̃es̃
∗
e =

∑
e∈E

w∈s′(e)

s̃es̃
∗
e

applies and hence

p̃w = p̃wp̃w =
∑
e∈E

w∈s′(e)

s̃es̃
∗
ep̃w = p̃w

∑
e∈E

w∈s′(e)

s̃es̃
∗
e.

Therefore, Relation (HR3) p̃w ≤
∑

e∈E
w∈s′(e)

s̃es̃
∗
e is fulfilled. Let’s check Relation (HR2).

By Equation 2.2 we have s̃e = p̃s(e)s̃e. So it follows

s̃es̃
∗
e = p̃s(e)s̃es̃

∗
e = s̃es̃

∗
ep̃
∗
s(e) = s̃es̃

∗
ep̃s(e)

and hence

s̃es̃
∗
e ≤ p̃s(e) =

∑
v∈V
v=s(e)

p̃v =
∑
v∈V
v∈s′(e)

p̃v.

By the universal property we obtain a *-homomorphism φ1 : C∗(HΓ)→ C∗(Γ), send-
ing se to s̃e and pv to p̃v. To obtain a *-homomorphism that is inverse to φ1, we are
going to prove that the generators of C∗(HΓ) satisfy the Relations (R1) and (R2) of
C∗(Γ). Using the same argument as in the above direction, we have

s∗esf = δef
∑
v∈V
v∈r′(e)

pv = δefpr(e).
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3 Hypergraph C∗-algebras

We see that Relation (R1) is satisfied. To show that (R2) is fulfilled we need Relations
(HR2) and (HR3). Let w ∈ V with s−1(w) 6= ∅ and hence there exists at least one
f ∈ E with s(f) = w. With (HR2) it follows

ses
∗
e ≤

∑
v∈V
v∈s′(e)

pv = ps(e)

and using Relation (HR3) we have

pw = ps(f) ≤
∑
e∈E

s(f)∈s′(e)

ses
∗
e =

∑
e∈E

s(f)=s(e)

ses
∗
e.

By Lemma 3.7 we conclude

pw =
∑
e∈E

w=s(e)

ses
∗
e.

Therefore, a *-homomorphism φ2 : C∗(Γ)→ C∗(HΓ), that sends s̃e to se and p̃v to pv,
exists. Notice that φ1 and φ2 are inverse to each other.

In the following, we will present a useful statement that will accompany us through
the remaining parts of this thesis. It says that the projections sum up to the identity.
We know that it holds of every graph C∗-algebra (see Proposition 2.7). It’s nice to
notice that although we generalize graph C∗-algebras we are able to show that this
statement still holds.

Theorem 3.9. For every hypergraph HΓ = (V,E, r, s) and hypergraph C*-algebra
C∗(HΓ) we have that

∑
v∈V pv is the unit element in C∗(HΓ) and therefore,

∑
v∈V pv =

1.

Proof. Using Relation (HR1), we have

se
∑
v∈V

pv = ses
∗
ese

∑
v∈V

pv

= se
∑
v∈r(e)

pv
∑
v∈V

pv

= se
∑
v∈r(e)

pv

= se.

It follows with Relation (HR2)

(
∑
v∈V

pv)se = (
∑
v∈V

pv)ses
∗
ese

= (
∑
v∈V

pv)(
∑
v∈s(e)

pv)ses
∗
ese

= (
∑
v∈s(e)

pv)ses
∗
ese

= se.
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3 Hypergraph C∗-algebras

Notice that we have ∑
v∈V

pvpw = pw = pw
∑
v∈V

pv for all w ∈ V and

(
∑
v∈V

pv)
2 =

∑
v∈V

pv = (
∑
v∈V

pv)
∗.

We conclude that
∑

v∈V pv is the unit element in C∗(HΓ).

3.2 Examples

In this chapter we will present some interesting hypergraphs. One should recall The-
orem 3.9, since it will be of great benefit.

3.2.1 Toeplitz algebra

The first examples we present are interesting cases since we found isomorphisms from
the hypergraph C∗-algebras to some well known universal C∗-algebras. Therefore, we
fully understand these examples.

Proposition 3.10. Consider the hypergraph HΓ with vertices {v1, v2} and edges {e1}.
The image of the range and source map looks as follows r(e1) = {v1, v2}, s(e1) = {v1}.
We have C∗(HΓ) ∼= T where T is the Toeplitz algebra from Definition 1.24.

Figure 3.2: Hypergraph 2

Proof. Step 1: There exists a *-homomorphism φ1 : T = C∗(u, 1|u∗u = 1)→ C∗(HΓ),
sending u to se1 and 1 to pv1 + pv2 = s∗e1se1 . We are going to examine the associated
hypergraph C∗-algebra C∗(HΓ). Using the Relation (HR1) we get s∗e1se1 = pv1 + pv2 .
Therefore, we have s∗e1se1 = 1 by Theorem 3.9. The remaining Relations (HR2) and
(HR3) imply se1s

∗
e1 ≤ pv1 and se1s

∗
e1 ≥ pv1 . Hence se1s

∗
e1 = pv1 by Lemma 3.6. Since

s∗e1se1 is the unit, we know that se1 is an isometry. We obtain a *-homomorphism
φ1 : T = C∗(u, 1|u∗u = 1)→ C∗(HΓ), sending u to se1 and 1 to pv1 + pv2 = s∗e1se1 .
Step 2: Define s̃e1 := u, p̃v1 := uu∗ and p̃v2 := 1 − uu∗. There is a *-homomorphism
φ2 : C∗(HΓ)→ T , that sends se1 to s̃e1 = u, pv1 to p̃v1 = uu∗ and pv2 to p̃v2 = (1−uu∗).
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3 Hypergraph C∗-algebras

We see that s̃e1 is a partial isometry and that p̃v1 and p̃v2 define projections:

s̃e1 s̃
∗
e1 s̃e1 = uu∗u = u1 = u = s̃e1

p̃∗v1 = (uu∗)∗ = uu∗ = p̃v1

p̃2
v1 = uu∗uu∗ = u1u∗ = uu∗ = p̃v1

p̃∗v2 = (1− uu∗)∗ = 1∗ − uu∗ = 1− uu∗ = p̃v2

p̃2
v2 = (1− uu∗)2 = 1− 2uu∗ + uu∗uu∗ = 1− uu∗ = p̃v2 .

We check the relations of C∗(HΓ) and we start with Relation (HR1). We have

s̃∗e1 s̃e1 = u∗u = 1 = uu∗ + (1− uu∗) = p̃v1 + p̃v2 .

Therefore, Relation (HR1) is fulfilled. Furthermore, it is

s̃e1 s̃
∗
e1 = uu∗ = p̃v1

and we see that Relations (HR2) and (HR3) are satisfied. Hence s̃e1 , p̃v1 and p̃v2 fulfill
the relations of C∗(HΓ). Hence, there exists a *-homomorphism φ2 : C∗(HΓ) → T ,
that sends se1 to s̃e1 = u, pv1 to p̃v1 = uu∗ and pv2 to p̃v2 = (1− uu∗).
Step 3: It is φ2 ◦ φ1 = idC∗(HΓ) and φ1 ◦ φ2 = idT . We have

φ1(φ2(se1)) = φ1(u) = se1

φ1(φ2(pv1)) = φ1(uu∗) = se1s
∗
e1 = pv1

φ1(φ2(pv2)) = φ1(1− uu∗) = pv1 + pv2 − pv1 = pv2

φ2(φ1(u)) = φ2(se1) = u

φ2(φ1(1)) = φ2(pv1 + pv2) = uu∗ + 1− uu∗ = 1.

The *-homomorphisms are inverse to each other and therefore, we have T ∼= C∗(HΓ).

3.2.2 Cuntz algebra

Proposition 3.11. Let n ∈ N and n ≥ 2. Consider the hypergraph HΓ with vertices
{v1, ..., vn} and edges {e1, ..., en}. The range and source map are defined as follows
r(ei) = {v1, ..., vn}, s(ei) = {vi} for all i = 1, ..., n. It is C∗(HΓ) ∼= On where On is
the Cuntz algebra from Definition 1.25.

Proof. By the relations of the hypergraph C∗-algebra C∗(HΓ) we have

s∗eisej = δi,j

n∑
j=1

pvj for all i, j = 1, ..., n

seis
∗
ei ≤ pvi for all i = 1, ..., n

seis
∗
ei ≥ pvi for all i = 1, ..., n.
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3 Hypergraph C∗-algebras

Notice that s∗eisei = 1 for all i = 1, . . . , n by Theorem 3.9. With the last two re-
lations we obtain seis

∗
ei = pvi for all i = 1, ..., n by Lemma 3.6. It follows that

1 = s∗eisei = (
∑n

j=1 pvj ) =
∑n

j=1 sejs
∗
ej holds and that {sei | i = 1, . . . , n} are generat-

ors of C∗(HΓ). We obtain a *-homomorphism φ1 : On = C∗(S1, . . . , Sn | S∗i Si = 1 for
all i = 1, . . . , n;

∑n
i=1 SiS

∗
i = 1)→ C∗(HΓ), that sends Si to sei .

By s̃ei := Si we define a family {s̃ei | i = 1, . . . , n} that satisfies the relations of
the hypergraph C∗-algebra C∗(HΓ). To see that s̃∗ei s̃ej = 0 for i 6= j one can use
the same argument as in Proposition 2.13. Therefore, we obtain a *-homomorphism
φ2 : C∗(HΓ)→ On, that is inverse to φ1 and hence On ∼= C∗(HΓ).

3.2.3 Free products of C(S1) resp. Om with Cn

The next example will show that the class of hypergraph C∗-algebras is strictly lar-
ger than the class of graph C∗-algebras. One should recall the Definition 1.19 of
free products: When we have two unital universal C∗-algebras A = C∗(E1|R1) and
B = C∗(E2|R2), we call

A ∗C B := C∗(E1, E2|R1, R2 and 1A = 1B)

the free product of A and B.

Proposition 3.12. Let n ∈ N and consider the hypergraph HΓ with vertices {v1, . . . , vn},
edges {e1} and the mappings defined as r(e1) = {v1, . . . , vn}, s(e1) = {v1, . . . , vn}. We
have C∗(HΓ) ∼= C(S1) ∗C Cn.

Figure 3.3: Hypergraph 3

Proof. For the hypergraph C∗-algebra C∗(HΓ) we obtain s∗e1se1 =
∑n

i=1 pvi by Re-
lation (HR1). Once again s∗e1se1 is the unit by Theorem 3.9. Further, by Relations
(HR2) and (HR3) we have se1s

∗
e1 ≤

∑n
i=1 pvi and se1s

∗
e1 ≥ pvi for all i = 1, ..., n. This

implies se1s
∗
e1 =

∑n
i=1 pvi by Lemma 3.7 and also se1s

∗
e1 = 1 by Theorem 3.9. Hence

we have se1s
∗
e1 = 1 = s∗e1se1 .

Consider the universal C*-algebras C(S1) ∼= C∗(u, 1|uu∗ = 1 = u∗u) and Cn ∼= C∗(pi, i
= 1, ..., n|p∗i = pi = p2

i ;
∑n

i=1 pi = 1) ∼= Cn. We will show that we have C(S1) ∗C Cn ∼=
C∗(HΓ). With the considerations above, we know that se1 satisfies the relations of
C(S1) and that {pvi | i = 1, . . . , n} satisfy the relations of Cn. With s∗e1se1 = 1 =

∑n
i=1 pvi

we obtain a *-homomorphism φ1 : C(S1) ∗C Cn → C∗(HΓ), sending u to se1 and pi to
pvi for all i = 1, . . . , n.
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3 Hypergraph C∗-algebras

Conversely, with s̃e1 := u and p̃vi := pi, we have that s̃e1 is a partial isometry,
s̃e1 s̃

∗
e1 and s̃∗e1 s̃e1 are the unit element, p̃vi are projections and especially we have

s̃∗e1 s̃e1 = 1C(S1) = 1Cn =
∑n

i=1 p̃vi in C(S1) ∗C Cn.
The last two relations of our hypergraph C*-algebra s̃e1 s̃

∗
e1 ≤

∑n
i=1 p̃vi and s̃e1 s̃

∗
e1 ≥ p̃vi

for all i = 1, ..., n are implied by the following

s̃e1 s̃
∗
e1

n∑
i=1

p̃vi = 1C(S1)1Cn = 1C(S1) = s̃e1 s̃
∗
e1 = (

n∑
i=1

p̃vi)s̃e1 s̃
∗
e1

s̃e1 s̃
∗
e1 p̃vi = 1C(S1)p̃vi = p̃vi = p̃vi1C(S1) = p̃vi s̃e1 s̃

∗
e1 .

We obtain a *-homomorphism φ2 that is inverse to φ1. Hence we have C(S1) ∗CCn ∼=
C∗(HΓ).

Remark 3.13. One can define the term ”nuclear” C∗-algebra. In (Raeburn, 2005)[p.34
Remark 4.3] it is stated that every graph C∗-algebra is nuclear. This is interesting due
to the fact that one can show that the hypergraph C∗-algebra C∗(HΓ) from Theorem
3.12 is not nuclear. In Proposition 3.8 it is shown that every graph C∗-algebra is a
hypergraph C∗-algebra. Now we see that the class of hypergraph C∗-algebras is in fact
strictly larger than the class of graph C∗-algebras. Since the theory of the term ”nuc-
lear” goes beyond the scope of this thesis, we present a sketch of the proof which was
provided to us by Moritz Weber.

Proof. In Proposition 3.12 we proved that C∗(HΓ) is isomorphic to the free product
C(S1) ∗C Cn. This free product is not nuclear and therefore, C∗(HΓ) is not nuc-
lear. To see this, notice that the set of integers Z and the cyclic group of order n,
Z/nZ form discrete groups and therefore, we are able to define the group C∗-algebras
C∗(Z) and C∗(Z/nZ). It is C(S1) ∼= C∗(Z) and Cn ∼= C∗(Z/nZ). In group C∗-
algebra theory one can show that for two groups G1,G2 and their free product G1 ∗G2

we have following isomorphism C∗(G1) ∗C C∗(G2) ∼= C∗(G1 ∗ G2). Hence we have
C(S1)∗CCn ∼= C∗(Z∗(Z/nZ)). Since F2 ⊂ Z∗(Z/nZ) holds, it follows that Z∗(Z/nZ)
is not amenable which is equivalent to C∗(Z ∗ (Z/nZ)) not being nuclear. Hence we
are done.

What happens to Proposition 3.12, when we take m ≥ 2 edges instead of 1 edge?
Looking back at the proposition before, one would expect to meet the Cuntz algebra.
Let’s show that we can confirm our expectations.

Proposition 3.14. Let n,m ∈ N with m ≥ 2. Consider the hypergraph HΓ with the
following properties: vertices {v1, ..., vn}, edges {e1, ..., em} and r(ei) = {v1, ..., vn}, s(ei)
= {v1, ..., vn} for all i = 1, ...,m. We have C∗(HΓ) ∼= Om ∗C Cn.
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3 Hypergraph C∗-algebras

Proof. Using the relations of the associated hypergraph C∗-algebra C∗(HΓ), we obtain

s∗eisej = δi,j

n∑
k=1

pvk for all i, j = 1, ...,m

seis
∗
ei ≤

n∑
j=1

pvj for all i = 1, ...,m

pvi ≤
m∑
j=1

sejs
∗
ej for all i = 1, ..., n.

With Theorem 3.9 we know that s∗eisei =
∑n

j=1 pvj = 1 for all i = 1, ...,m. Further-
more, we have with Relation (HR2) and (HR3)

1 =

n∑
i=1

pvi =

n∑
i=1

(pvi

m∑
j=1

sejs
∗
ej )

=

m∑
j=1

(
n∑
i=1

pvi)sejs
∗
ej

=
m∑
j=1

sejs
∗
ej .

Recall Om = C∗(S1, . . . , Sm | S∗i Si = 1 for all i = 1, . . . ,m;
∑m

i=1 SiS
∗
i = 1) and

Cn ∼= C∗(pi, i = 1, ..., n|p∗i = pi = p2
i ;
∑n

i=1 pi = 1). Hence we have a *-homomorphism
φ1 : Om ∗C Cn → C∗(HΓ) that sends Si to sei for all i = 1, ...,m and pi to pvi for all
i = 1, ..., n.
Let i = 1, ...,m. Conversely, we have S∗i Si =

∑m
j=1 SjS

∗
j = 1 =

∑n
j=1 pj in the free

product. With Si we also defined partial isometries for all i = 1, ...,m. Hence, the
Relations (HR1)-(HR3) are satisfied in Om ∗C Cn. We obtain a *-homomorphism φ2

that is inverse to φ1.

3.2.4 Two mysterious examples

In the following example we were able to show that the partial isometry and their
conjugated form add up to a unitary.

Proposition 3.15. Define the hypergraph HΓ with vertices {v1, v2, v3, v4} and edges
{e1}. The image of the range and source map is defined like this
r(e1) = {v1, v2} and s(e1) = {v3, v4}.
There exists a *-homomorphism φ : C(S1)→ C∗(HΓ), sending the identity function z
on S1 to se1 + s∗e1.
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3 Hypergraph C∗-algebras

Figure 3.4: Hypergraph 6

Proof. Step 1: We have s∗e1se1 = pv1 + pv2 and se1s
∗
e1 = pv3 + pv4 . By the relations of

C∗(HΓ) we have

s∗e1se1 = pv1 + pv2

se1s
∗
e1 ≤ pv3 + pv4

pv3 respectively pv4 ≤ se1s∗e1 .

Using Lemma 3.7 implies

se1s
∗
e1 = pv3 + pv4 .

Step 2: We have s∗e1se1 + se1s
∗
e1 = 1. Using Theorem 3.9 we conclude from Step 1 that

s∗e1se1 + se1s
∗
e1 =

4∑
j=1

pvj = 1.

Step 3: We have that se1 + s∗e1 is a unitary. First, we show that s2
e1 = 0. It is

s2
e1 = se1s

∗
e1se1se1s

∗
e1se1 = se1(pv1 + pv2)(pv3 + pv4)se1 = 0

and therefore,

(se1 + s∗e1)(se1 + s∗e1)∗ = se1s
∗
e1 + s2

e1 + (s∗e1)2 + s∗e1se1 = 1 = (se1 + s∗e1)∗(se1 + s∗e1).

Step 4: We have a *-homomorphism φ : C(S1) → C∗(HΓ). By the universal prop-
erty we have a *-homomorphism φ1 : C∗(u, 1 | uu∗ = 1 = u∗u)→ C∗(HΓ) sending u to
se1+s∗e1 . From Corollary 1.23 we have a *-isomomorphism Φ : C(S1)→ C∗(u, 1 | uu∗ =
1 = u∗u) that sends the identity function z on S1 to u. Hence we have *-homomorphism
φ : C(S1)→ C∗(HΓ) sending z to se1 + s∗e1 .

The next example is of great interest since we do not fully understand it. We found a
non-surjective *-homomorphism from a universal C∗-algebra into the hypergraph C∗-
algebra. The said universal C∗-algebra is an interesting mathematical object which
makes this example worth for further studies. To see this, we need a lemma beforehand.

Lemma 3.16. The following universal C∗-algebras are isomorphic.
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3 Hypergraph C∗-algebras

(a) A := C∗(s1, s2, 1 | s1s
∗
1 = s∗2s2; s2s

∗
2 = s∗1s1; s∗1s1 + s∗2s2 = 1) where s1 and s2 are

partial isometries and

(b) B := C∗(u, p | up = (1− p)u) where u is a unitary and p a projection

Proof. Step 1: Define s̃1 := up and s̃2 := u(1 − p). There exists a *-homomorphism
φ1 : A → B sending s1 to s̃1 = up and s2 to s̃2 = u(1 − p). Let’s check that s̃1 = up
and s̃2 = u(1− p) are partial isometries. It is

(up)(up)∗(up) = upp∗u∗up = up21p = upp = up

and

u(1− p)(u(1− p))∗u(1− p) = u(1− p)(1− p)∗u∗u(1− p)
= u(1− p)(1− p)1(1− p)
= u(1− p+ p− p)(1− p)
= u(1− p).

We prove that s̃∗1s̃1 + s̃∗2s̃2 = 1 holds:

(up)∗up+ (u(1− p))∗u(1− p) = p∗u∗up+ (1− p)u∗u(1− p) = p+ (1− p) = 1.

Let’s show that s̃1s̃
∗
1 = s̃∗2s̃2 and s̃2s̃

∗
2 = s̃∗1s̃1 holds. The relation up = (1 − p)u from

B implies upu∗ = (1− p). Hence

s̃1s̃
∗
1 = (up)(up)∗ = upu∗ = 1− p = (1− p)u∗u(1− p) = (u(1− p))∗u(1− p) = s̃∗2s̃2

and

s̃2s̃
∗
2 = u(1− p)(u(1− p))∗ = u(1− p)u∗ = 1− upu∗ = 1− (1− p) = p = (up)∗up = s̃∗1s̃1.

We obtain a *-homomorphism φ1 : A→ B sending s1 to s̃1 = up and s2 to s̃2 = u(1−p).
Step 2: Define ũ := s1+s2, p̃ := s∗1s1. There is a *-homomorphism φ2 : B → A, sending
u to ũ = s1 +s2 and p to p̃ = s∗1s1. Notice that by Proposition 1.9 the projections s∗1s1

and s∗2s2 are mutually orthogonal and hence

s1s
∗
2 = s1s

∗
1s1s

∗
2s2s

∗
2 = 0 = s2s

∗
1.

We see that that ũ is an isometry and p̃ a projection:

(s1 + s2)(s1 + s2)∗ = s1s
∗
1 + s1s

∗
2 + s2s

∗
1 + s2s

∗
2 = 1 = (s1 + s2)∗(s1 + s2)

and

p̃2 = s∗1s1s
∗
1s1 = s∗1s1 = p̃ = (s∗1s1)∗ = p̃∗.
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3 Hypergraph C∗-algebras

By using the relations from A we have

(1− p̃)ũ = (1− s∗1s1)(s1 + s2)

= s1 + s2 − s∗1s1s1 − s∗1s1s2

= s1 + s2 − s∗1s1s1 − s2s
∗
2s2

= s1 − s∗1s1s1

= s1 − s∗1s1s1s
∗
1s1

= s1 − s∗1s1s
∗
2s2s1

= s1 − 0s1

= s1

= (s1 + s2)s∗1s1 = ũp̃.

Hence, we obtain a *-homomorphism φ2 : B → A, sending u to ũ = s1 + s2 and p to
p̃ = s∗1s1.
Step 3: We show that φ1 and φ2 are inverse to each other:

φ1(φ2(u)) = φ1(s1 + s2) = up+ u(1− p) = u

φ1(φ2(p)) = φ1(s∗1s1) = (up)∗up = p

φ2(φ1(s1)) = φ2(up) = (s1 + s2)s∗1s1 = s1

φ2(φ1(s2)) = φ2(u(1− p)) = (s1 + s2)(1− s∗1s1) = s1 + s2 − s1s
∗
1s1 − s2s

∗
1s1 = s2.

Therefore, we have A ∼= B.

Proposition 3.17. Let B := C∗(u, p | up = (1−p)u) be the universal C∗-algebra from
Lemma 3.16 where u is a unitary and p a projection. We define the hypergraph HΓ
with vertices {v1, v2, v3, v4}, edges {e1, e2} and range and source map r(e1) = {v3, v4},
r(e2) = {v1, v2}, s(e1) = {v1, v2}, s(e2) = {v3, v4}. We have a *-homomorphism
B → C∗(HΓ),sending u 7→ se1 + se2 and p 7→ s∗e1se1.

Figure 3.5: Hypergraph 4
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3 Hypergraph C∗-algebras

Proof. We show that the partial isometries fulfill the relations from the universal C∗-
algebra A := C∗(s1, s2, 1 | s1s

∗
1 = s∗2s2; s2s

∗
2 = s∗1s1; s∗1s1 + s∗2s2 = 1) which we defined

in Lemma 3.16. From the relations of the hypergraph C∗-algebra C∗(HΓ) we have

s∗e1se1 = pv3 + pv4

s∗e2se2 = pv1 + pv2

and

se1s
∗
e1 ≤ pv1 + pv2

se2s
∗
e2 ≤ pv3 + pv4

se1s
∗
e1 ≥ pv1 respectively pv2

se2s
∗
e2 ≥ pv3 respectively pv4 .

Using Lemma 3.7 it follows

se1s
∗
e1 = (pv1 + pv2) = s∗e2se2

and in an analogous way se2s
∗
e2 = s∗e1se1 . With Theorem 3.9 we conclude

se2s
∗
e2 + se1s

∗
e1 = s∗e1se1 + s∗e2se2 =

4∑
i=1

pvi = 1.

We see that se1 and se2 satisfy the relations from the universal C∗-algebra A from
Lemma 3.16 which is isomorphic to B. The *-isomorphism φ2 : B → A from Lemma
3.16 sends u to ũ = s1 + s2 and p to p̃ = s∗1s1. By the universal property we obtain a
*-homomorphism φ : B → C∗(HΓ) that maps u to se1 + se2 and p to s∗e1se1 .

Remark 3.18. It is possible to show that the universal C∗-algebra B from Lemma
3.16 is isomorphic to the ”cross-product” C∗(Z/2Z) oα Z where α is an isomorphism
α : C∗(Z/2Z) → C∗(Z/2Z) sending p to (1 − p) (see (Weber, 2007)). This makes
the example above interesting. Sadly, we only found a non-surjective *-homomorphism
since we only mapped to se1 + se2 and s∗e1se1 of C∗(HΓ). To fully understand this hy-
pergraph C*-algebra we need to find a way how to deal with the projections in C∗(HΓ).
A possible approach would be to look at similar hypergraphs. One defines the vertices
{v1, v2, v3, v4}, edges {e1, e2} and the source map s(e1) = {v1, v2}, s(e2) = {v3, v4}.
Then one considers all possible ways of defining the range map r. In Proposition 3.21
we investigated such an example but with a less interesting outcome.

3.2.5 Further Examples

What comes next is a collection of examples that one might title as uninteresting. We
were not able to find any outstanding relations in them. This should not stop us from
presenting them. As a matter of fact, we show some representations on those examples
in the next section. Therefore, one might have a look at them.
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3 Hypergraph C∗-algebras

Lemma 3.19. Consider the hypergraph C∗(HΓ) consisting of vertices {v1, v2, v3, v4},
edges {e1, e2, e3, e4} and the following images of the range and source map
r(e1) = {v1, v2} and s(e1) = {v1}
r(e2) = {v2, v3} and s(e2) = {v2}
r(e3) = {v3, v4} and s(e3) = {v3}
r(e4) = {v4, v1} and s(e4) = {v4}.
We have

(a) s∗eisei = pvi + pvi+1 for all i = 1, ..., 3

(b) s∗e4se4 = pv4 + pv1

(c) seis
∗
ei = pvi for all i = 1, ..., 4

(d) 1 =
∑4

j=1 sejs
∗
ej = s∗e1se1 + s∗e3se3 = s∗e2se2 + s∗e4se4

(e) C∗(HΓ) is generated by {sei |i = 1, ..., 4}.

Figure 3.6: Hypergraph 5

Proof. By the relations of the associated hypergraph C∗-algebra and Lemma 3.6 we
have

s∗eisei = pvi + pvi+1 for all i = 1, ..., 3 and

s∗e4se4 = pv4 + pv1 and

seis
∗
ei = pvi for all i = 1, ..., 4.

Using again Theorem 3.9 we have

1 =

4∑
j=1

sejs
∗
ej =

4∑
j=1

pvj = s∗e1se1 + s∗e3se3 = s∗e2se2 + s∗e4se4 .

We also see that the partial isometries sei already generate the hypergraph C∗-algebra
C∗(HΓ), since seis

∗
ei = pvi holds for all i = 1, ..., 4.

Lemma 3.20. Consider the hypergraph HΓ with vertices {v1, v2, v3}, edges {e1} and
range and source map defined like this
r(e1) = {v1, v2} and s(e1) = {v1, v3}.
We have
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3 Hypergraph C∗-algebras

(a) s∗e1se1 = pv1 + pv2

(b) se1s
∗
e1 = pv1 + pv3

(c) C∗(HΓ) is generated by se1.

Figure 3.7: Hypergraph 7

Proof. The relations of the hypergraph C∗-algebra and Lemma 3.7 immediately imply

s∗e1se1 = pv1 + pv2

se1s
∗
e1 = pv1 + pv3 .

We have

s∗e1se1se1s
∗
e1 = pv1

s∗e1se1 − s
∗
e1se1se1s

∗
e1 = pv2

se1s
∗
e1 − s

∗
e1se1se1s

∗
e1 = pv3

and therefore, we see that C∗(HΓ) is already generated by the partial isometry se1 .

Lemma 3.21. Consider the hypergraph HΓ with vertices {v1, v2, v3, v4} and edges
{e1, e2}. The image of the range and source map are defined like this
r(e1) = {v1, v3} and s(e1) = {v1, v2}
r(e2) = {v2, v4} and s(e2) = {v3, v4}.
It follows

(a) s∗e1se1 = pv1 + pv3

(b) s∗e2se2 = pv2 + pv4

(c) se1s
∗
e1 = pv1 + pv2

(d) se2s
∗
e2 = pv3 + pv4

(e) C∗(HΓ) is generated by se1 and se2.
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3 Hypergraph C∗-algebras

Figure 3.8: Hypergraph 8

Proof. Using the relations from C∗(HΓ) and Lemma 3.7, we have

s∗e1se1 = pv1 + pv3

s∗e2se2 = pv2 + pv4

se1s
∗
e1 = pv1 + pv2

se2s
∗
e2 = pv3 + pv4 .

Furthermore, we have

s∗e1se1se2s
∗
e2 = pv3

s∗e2se2se1s
∗
e1 = pv2

s∗e2se2se2s
∗
e2 = pv4

s∗e1se1se1s
∗
e1 = pv1 .

Hence the hypergraph C∗-algebra is generated by the partial isometries.

Lemma 3.22. Consider the hypergraph HΓ with vertices {v1, v2, v3, v4}, edges {e1, e2}
and range and source map defined like the following
r(e1) = {v1, v2, v3} and s(e1) = {v1, v2}
r(e2) = {v3, v4, v1} and s(e2) = {v3, v4}.
We have

(a) s∗e1se1 = pv1 + pv2 + pv3

(b) s∗e2se2 = pv3 + pv4 + pv1

(c) se1s
∗
e1 = pv1 + pv2

(d) se2s
∗
e2 = pv3 + pv4

(e) C∗(HΓ) is generated by se1 and se2.
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3 Hypergraph C∗-algebras

Figure 3.9: Hypergraph 9

Proof. The relations of C∗(HΓ) and Lemma 3.7 imply

s∗e1se1 = pv1 + pv2 + pv3

s∗e2se2 = pv3 + pv4 + pv1

se1s
∗
e1 = pv1 + pv2

se2s
∗
e2 = pv3 + pv4 .

It holds that

s∗e1se1 − se1s
∗
e1 = pv3

s∗e2se2 − se2s
∗
e2 = pv1

s∗e1se1 − (s∗e1se1 − se1s
∗
e1)− (s∗e2se2 − se2s

∗
e2) = pv2

s∗e2se2 − (s∗e1se1 − se1s
∗
e1)− (s∗e2se2 − se2s

∗
e2) = pv4 .

Hence the hypergraph C∗-algebra C∗(HΓ) is generated by the partial isometry se1 and
se2 .

Lemma 3.23. Consider the hypergraph HΓ with vertices {v1, ..., v6} and edges {e1, e2, e3}.
We define the range and source map:
r(e1) = {v1, v2, v3} and s(e1) = {v1, v2}
r(e2) = {v3, v4, v5} and s(e2) = {v3, v4}
r(e3) = {v5, v6, v1} and s(e1) = {v5, v6}.
It follows

(a) s∗e1se1 = pv1 + pv2 + pv3

(b) s∗e2se2 = pv3 + pv4 + pv5

(c) s∗e3se3 = pv5 + pv6 + pv1

(d) se1s
∗
e1 = pv1 + pv2

(e) se2s
∗
e2 = pv3 + pv4
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3 Hypergraph C∗-algebras

(f) se3s
∗
e3 = pv5 + pv6

(g) C∗(HΓ) is generated by the partial isometries.

Figure 3.10: Hypergraph 10

Proof. By the relations of the hypergraph C∗-algebra and Lemma 3.7 we obtain

s∗e1se1 = pv1 + pv2 + pv3

s∗e2se2 = pv3 + pv4 + pv5

s∗e3se3 = pv5 + pv6 + pv1

se1s
∗
e1 = pv1 + pv2

se2s
∗
e2 = pv3 + pv4

se3s
∗
e3 = pv5 + pv6 .

We have

s∗e1se1s
∗
e2se2 = pv3

s∗e1se1s
∗
e3se3 = pv1

s∗e1se1 − (s∗e1se1s
∗
e2se2 + s∗e1se1s

∗
e3se3) = pv2

s∗e2se2s
∗
e3se3 = pv5

se3s
∗
e3 − s

∗
e2se2s

∗
e3se3 = pv6

se2s
∗
e2 − s

∗
e1se1s

∗
e2se2 = pv4 .

So all projections, and therefore C∗(HΓ), are already generated by the partial isomet-
ries.
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3 Hypergraph C∗-algebras

Lemma 3.24. Consider the hypergraph HΓ given by vertices {v1, ..., v6}, edges {e1, e2, e3}
and following images of the range and source map
r(e1) = {v1, v2, v3} and s(e1) = {v1, v2}
r(e2) = {v4, v5, v6} and s(e2) = {v5, v6}
r(e3) = {v3, v4} and s(e3) = {v3, v4}.
We have

(a) s∗e1se1 + s∗e2se2 = 1

(b) se1s
∗
e1 + se2s

∗
e2 + se3s

∗
e3 = 1

(c) se3s
∗
e3 = s∗e3se3.

Figure 3.11: Hypergraph 11

Proof. Using the relations of the hypergraph C∗-algebra C∗(HΓ) and Lemma 3.7 yields

s∗e1se1 = pv1 + pv2 + pv3

s∗e2se2 = pv4 + pv5 + pv6

s∗e3se3 = pv3 + pv4

se1s
∗
e1 = pv1 + pv2

se2s
∗
e2 = pv5 + pv6

se3s
∗
e3 = pv3 + pv4 .

Theorem 3.9 shows
∑6

i=1 pvi = 1.

Lemma 3.25. With vertices {v1, ..., v5}, edges {e1, e2} and the following image of the
range and source map
r(e1) = {v1, v3, v5} and s(e1) = {v1, v2}
r(e2) = {v2, v4} and s(e2) = {v3}
we define the hypergraph HΓ. We have

(a) s∗e1se1 = pv1 + pv3 + pv5

(b) s∗e2se2 = pv2 + pv4
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3 Hypergraph C∗-algebras

(c) se1s
∗
e1 = pv1 + pv2

(d) se2s
∗
e2 = pv3

(e) the partial isometries generate C∗(HΓ).

Figure 3.12: Hypergraph 12

Proof. The relations of the hypergraph C∗-algebra C∗(HΓ) and Lemma 3.6 and Lemma
3.7 imply following equations

s∗e1se1 = pv1 + pv3 + pv5

s∗e2se2 = pv2 + pv4

se1s
∗
e1 = pv1 + pv2

se2s
∗
e2 = pv3 .

It applies

s∗e1se1se1s
∗
e1 = pv1

s∗e2se2se1s
∗
e1 = pv2

s∗e1se1 − (s∗e1se1se1s
∗
e1 + se2s

∗
e2) = pv5

s∗e2se2 − s
∗
e2se2se1s

∗
e1 = pv4 .

The projections and therefore, the hypergraph C∗-algebra C∗(HΓ) are generated by
the partial isometries.

3.2.6 Hyperization

In the subsection before we found isomomorphisms from hypergraph C∗-algebras to
some well known universal C∗-algebras. From Section 2 we know graphs that generate a
graph C∗-algebra that is isomorphic to these universal C∗-algebra. We asked ourselves
whether it is possible or not to define a ”hyper” version of a given graph such that the
hypergraph is not actually a graph, like we did in Remark 3.3, and that the generated
graph and hypergraph C∗-algebras are isomorphic to each other. We were able to
find a ”hyper” version that produces an injective homomorphism to the given graph
C∗-algebra.
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3 Hypergraph C∗-algebras

Proposition 3.26. Let Γ = (V,E, r, s) be a graph. For our graph C∗-algebra we write

C∗(Γ) = C∗(s̃e, e ∈ E; p̃v, v ∈ V | p̃vp̃w = 0, v 6= w; s̃∗e s̃f = δef p̃r(e);
∑
e∈E

s(e)=w

s̃es̃
∗
e = p̃w)

where s̃e is a partial isometry for all e ∈ E and p̃v is a projection for all v ∈ V .

Consider the hypergraph HΓ = (
·
V ,E,

·
r,
·
s) consisting of

·
V = {v, v′} for all v ∈ V
·
r(e) = {r(e), r(e)′} for all e ∈ E
·
s(e) = {s(e), s(e)′} for all e ∈ E.

We have an injective *-homomorphism φ : C∗(Γ) → C∗(HΓ), sending s̃e to se and
p̃v to pv + pv′. We also have a surjective *-homomorphism α : C∗(HΓ)→ C∗(Γ) that
sends se to s̃e, pv to p̃v and pv′ to 0.

Proof. Step 1: There exists a *-homomorphism φ : C∗(Γ) → C∗(HΓ), sending s̃e to
se and p̃v to pv + pv′ . We check that the partial isometries {se|e ∈ E} and projections
{pv + pv′ |v ∈ V } from the hypergraph C∗-algebra C∗(HΓ) satisfy the relations of the
graph C∗-algebra C∗(Γ). Using Relations (HR1)-(HR3) we obtain

s∗esf = δef
∑
v∈
·
V

v∈ ·r(e)

pv = δef (pr(e) + pr(e)′)

ses
∗
e ≤

∑
v∈
·
V

v∈ ·s(e)

pv = ps(e) + ps(e)′

pv ≤
∑
f∈E
v∈ ·s(f)

sfs
∗
f =

∑
f∈E
v=s(f)

sfs
∗
f

pv′ ≤
∑
f∈E
v′∈ ·s(f)

sfs
∗
f =

∑
f∈E
v∈ ·s(f)

sfs
∗
f =

∑
f∈E
v=s(f)

sfs
∗
f .

Notice that the first Relation (R1) of our graph C∗-algebra C∗(HΓ) is fulfilled. For

the second and last Relation (R2) we let be v ∈
·
V that is not a sink. Then there exists

at least one e ∈ E such that s(e) = v and hence v ∈ ·s(e). Observe that v′ ∈ ·s(e). By
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3 Hypergraph C∗-algebras

the last 3 relations from above we have for that v ∈
·
V

pv + pv′ = ps(e) + ps(e)′

= (ps(e) + ps(e)′)
∑
f∈E

s(e)∈ ·s(f)

sfsf
∗

=
∑
f∈E

s(e)∈ ·s(f)

(ps(e) + ps(e)′)sfsf
∗

=
∑
f∈E

s(e)=s(f)

(ps(e) + ps(e)′)sfs
∗
f

(HR2)
=

∑
f∈E

s(e)∈ ·s(f)

sfsf
∗.

Hence we obtain a *-homomorphism φ : C∗(Γ)→ C∗(HΓ), sending s̃e to se and p̃v to
pv + pv′ .
Step 2: We show that φ is injective. Define α : C∗(HΓ)→ C∗(Γ) with

α(se) = s̃e

α(pv) = p̃v

α(pv′) = 0

and observe that

α(φ(s̃e)) = α(se) = s̃e

α(φ(p̃v)) = α(pv + pv′) = p̃v.

So α is the left inverse to φ and therefore, the *-homomorphism φ is injective. Notice
that α is by definition a surjective *-homomorphism.

Remark 3.27. Notice that there are other ways to define a ”hyper” version of a given
graph. One could also consider taking two 2 edges on top of taking 2 vertices as in our
version. Since we found an injective *-homomorphism for the version above, this is
the one we present.

3.3 Representations

Recall that we showed non-triviality of hypergraph C∗-algebras for a certain class of
hypergraphs (see Proposition 3.8). Since we did not find a general way of proving
non-triviality we investigated the graphs from Section 3.2 and found representations
of them. Notice that we do not explicitly write down the representations. We present
the operators that are needed to obtain the representations.
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3 Hypergraph C∗-algebras

3.3.1 Representations on `2(Z2)

Remark 3.28. Notice that the cardinal number of the image of the range map r is 2
throughout the sections 3.3.1 and 3.3.2. As soon as we use |r(e)| = 3 for e ∈ E we
need to switch from representations on `2(Z2) to representations on `2(Z3). One might
investigate this observation.

One consider the Hilbert space H := `2(Z2) with orthonormal basis e(x,y) where
x, y ∈ Z. We define the following closed subspaces of H with decomposition H :=
H1 ⊕H2 ⊕H3 ⊕H4

H1 := 〈e(x,y) | x ≥ 0, y ≥ 0〉
H2 := 〈e(x,y) | x < 0, y ≥ 0〉
H3 := 〈e(x,y) | x < 0, y < 0〉
H4 := 〈e(x,y) | x ≥ 0, y < 0〉.

Let Pi ∈ B(H) be the corresponding projection on Hi for all i = 1, ..., 4. Furthermore,
let

f : Z→ N0

g : Z→ Z\N0

h : N→ Z\N0

be bijections.

(a) Recall the hypergraphHΓ from Proposition 3.15. It is given by vertices {v1, v2, v3, v4},
edges {e1} and the following images of the range and source map
r(e1) = {v1, v2} and s(e1) = {v3, v4}.

Figure 3.13: Hypergraph 6

We define by S1 a partial isometry that fulfills the relations of the hypergraph
C∗-algebra

S1(e(x,y)) :=

{
e(x,h(y)) y ≥ 0

e(x,h(−y)) sonst
; S∗1S1 = P1 + P2; S1S

∗
1 = P3 + P4.
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(b) Recall the hypergraphHΓ from Lemma 3.19. It is given by vertices {v1, v2, v3, v4},
edges {e1, e2, e3, e4} and the following images of the range and source map
r(e1) = {v1, v2} and s(e1) = {v1}
r(e2) = {v2, v3} and s(e2) = {v2}
r(e3) = {v3, v4} and s(e3) = {v3}
r(e4) = {v4, v1} and s(e4) = {v4}.

Figure 3.14: Hypergraph 5

We define by Si partial isometries for all i = 1, ..., 4 that satisfy the relations of
the hypergraph C∗-algebra C∗(HΓ)

S1(e(x,y)) := δy≥0e(f(x),y) S∗1S1 = P1 + P2; S1S
∗
1 = P1

S2(e(x,y)) := δx<0e(x,f(y)) S∗2S2 = P2 + P3; S2S
∗
2 = P2

S3(e(x,y)) := δy<0e(g(x),y) S∗3S3 = P3 + P4; S3S
∗
3 = P3

S4(e(x,y)) := δx≥0e(x,g(y)) S∗4S4 = P4 + P1; S4S
∗
4 = P4.

3.3.2 Further representations on `2(Z2)

It was not possible to use the decomposition from Section 3.3.1 for the next examples.
Hence we used a different one.
One consider the Hilbert space H := `2(Z2) with orthonormal basis e(x,y) where
x, y ∈ Z. We define the following closed subspaces of H with decomposition H :=
H1 ⊕H2 ⊕H3 ⊕H4

H1 := 〈e(x,y) | x ≥ 0, y ≥ 0〉
H2 := 〈e(x,y) | x < 0, y ≥ 0〉
H3 := 〈e(x,y) | x ≥ 0, y < 0〉
H4 := 〈e(x,y) | x < 0, y < 0〉.

Let Pi ∈ B(H) be the corresponding projection on Hi for all i = 1, ..., 4. Furthermore,
let

f : Z→ N0

g : N0 → Z
h : Z\N0 → Z
j : Z→ Z\N0
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be bijections.

(a) Recall the hypergraph HΓ from Lemma 3.20. It is given by vertices {v1, v2, v3},
edges {e1} and the following images of the range and source map
r(e1) = {v1, v2} and s(e1) = {v1, v3}.

Figure 3.15: Hypergraph 7

We define by S1 a partial isometry that satisfies the relations of the hypergraph
C∗-algebra C∗(HΓ)

S1(e(x,y)) :=

{
e(f(x),g(y)) y ≥ 0

e(f(x),g(−y)) sonst
; S∗1S1 = P1 + P2; S1S

∗
1 = P1 + P3.

(b) Recall the hypergraphHΓ from Lemma 3.21. It is given by vertices {v1, v2, v3, v4},
edges {e1, e2} and the following images of the range and source map
r(e1) = {v1, v3} and s(e1) = {v1, v2}
r(e2) = {v2, v4} and s(e2) = {v3, v4}.

Figure 3.16: Hypergraph 8

We define by S1 and S2 partial isometries that fulfill the relations of the hyper-
graph C*-algebra C∗(HΓ)

S1(e(x,y)) :=

{
e(g(x),f(y)) x ≥ 0

e(g(−x),f(y)) sonst
; S∗1S1 = P1 + P3; S1S

∗
1 = P1 + P2

S2(e(x,y)) :=

{
e(h(x),j(y)) x < 0

e(h(−x),j(y)) sonst
; S∗2S2 = P2 + P4 S2S

∗
2 = P3 + P4.
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3 Hypergraph C∗-algebras

3.3.3 Representations on `2(Z3)

As we discussed earlier we need to switch to representations on `2(Z3) since we start
to investigate hypergraphs with |r(e)| = 3 for e ∈ E.
One consider the Hilbert space `2(Z3) with orthonormal basis e(x,y,z) where x, y, z ∈ Z.
We define the following closed subspaces ofH with decompositionH := H1⊕H2⊕· · ·⊕H8

H1 := 〈e(x,y,z) | x ≥ 0, y ≥ 0, z ≥ 0〉
H2 := 〈e(x,y,z) | x ≥ 0, y ≥ 0, z < 0〉
H3 := 〈e(x,y,z) | x ≥ 0, y < 0, z ≥ 0〉
H4 := 〈e(x,y,z) | x ≥ 0, y < 0, z < 0〉
H5 := 〈e(x,y,z) | x < 0, y ≥ 0, z ≥ 0〉
H6 := 〈e(x,y,z) | x < 0, y ≥ 0, z < 0〉
H7 := 〈e(x,y,z) | x < 0, y < 0, z ≥ 0〉
H8 := 〈e(x,y,z) | x < 0, y < 0, z < 0〉.

Let Pi ∈ B(H) be the corresponding projections on Hi for all i = 1, ..., 8. Furthermore,
let

f : Z→ N0

g : Z→ Z\N0

h : N0 → Z
i : Z\N0 → N0

be bijections.
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3 Hypergraph C∗-algebras

(a) Recall the hypergraphHΓ from Lemma 3.22. It is given by vertices {v1, v2, v3, v4},
edges {e1, e2} and the following images of the range and source map
r(e1) = {v1, v2, v3} and s(e1) = {v1, v2}
r(e2) = {v3, v4, v1} and s(e2) = {v3, v4}.

Figure 3.17: Hypergraph 9

We define by S1 and S2 partial isometries that satisfy the relations of the hyper-
graph C∗-algebra C∗(HΓ)

S1(e(x,y,z)) := δ x≥0
y≥0;z≥0
y<0;z≥0
y≥0;z<0

e(x,f(y),z) S∗1S1 = P1 + P2 + P3; S1S
∗
1 = P1 + P2

S2(e(x,y,z)) := δ x≥0
y≥0;z≥0
y<0;z≥0
y<0;z<0

e(x,g(y),z) S∗2S2 = P3 + P4 + P1 S2S
∗
2 = P3 + P4.
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3 Hypergraph C∗-algebras

(b) Recall the hypergraph HΓ from Lemma 3.23. It is given by vertices {v1, ..., v6},
edges {e1, e2, e3} and the following images of the range and source map
r(e1) = {v1, v2, v3} and s(e1) = {v1, v2}
r(e2) = {v3, v4, v5} and s(e2) = {v3, v4}
r(e3) = {v5, v6, v1} and s(e1) = {v5, v6}.

Figure 3.18: Hypergraph 10

We define by Si partial isometries that satisfy the relations of the hypergraph
C∗-algebra HΓ

S1(e(x,y,z)) = δ x≥0
y≥0;z≥0
y<0;z≥0
y≥0;z<0

e(x,f(y),z) S∗1S1 = P1 + P2 + P3; S1S
∗
1 = P1 + P2

S2(e(x,y,z)) := δx≥0;y<0;z≥0
x≥0;y<0;z<0
x<0;y≥0;z≥0

e(f(x),y,z) S∗2S2 = P3 + P4 + P5; S2S
∗
2 = P3 + P4

S3(e(x,y,z)) := δ y≥0
x≥0;z≥0
x<0;z≥0
x<0;z<0

e(g(x),y,z) S∗3S3 = P5 + P6 + P1; S3S
∗
3 = P5 + P6.

48



3 Hypergraph C∗-algebras

(c) Recall the hypergraph HΓ from Lemma 3.24. It is given by vertices {v1, ..., v6},
edges {e1, e2, e3} and the following images of the range and source map
r(e1) = {v1, v2, v3} and s(e1) = {v1, v2}
r(e2) = {v4, v5, v6} and s(e2) = {v5, v6}
r(e3) = {v3, v4} and s(e3) = {v3, v4}.

Figure 3.19: Hypergraph 11

We define by Si partial isometries that fulfill the relations of the hypergraph
C∗-algebra HΓ

S1(e(x,y,z)) := δ x≥0
y≥0;z≥0
y<0;z≥0
y≥0;z<0

e(x,f(y),z) S∗1S1 = P1 + P2 + P3; S1S
∗
1 = P1 + P2

S2(e(x,y,z)) := δx≥0;y<0;z<0
x<0;y≥0;z≥0
x<0;y≥0;z<0

e(g(x),y,z) S∗2S2 = P4 + P5 + P6; S2S
∗
2 = P5 + P6

S3(e(x,y,z)) := δx≥0;y<0 e(x,y,z) S∗3S3 = P3 + P4; S3S
∗
3 = P3 + P4.
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3 Hypergraph C∗-algebras

(d) Recall the hypergraph HΓ from Lemma 3.25. It is given by vertices {v1, ..., v5},
edges {e1, e2} and the following images of the range and source map
r(e1) = {v1, v3, v5} and s(e1) = {v1, v2}
r(e2) = {v2, v4} and s(e2) = {v3}.

Figure 3.20: Hypergraph 12

We define by S1 and S2 partial isometries that fulfill the relations of the hyper-
graph C∗-algebra C∗(HΓ)

S1(e(x,y,z)) := δx≥0;y≥0;z≥0
x≥0;y≥0;z<0
x≥0;y<0;z≥0
x<0;y≥0;z≥0

{
e(f(x),f(y),h(z)) z ≥ 0

e(f(x),f(y),h(−z)) sonst
; S∗1S1 = P1 + P3 + P5;

S1S
∗
1 = P1 + P2

S2(e(x,y,z)) := δx≥0

{
e(x,g(y),i(z)) z < 0

e(x,g(y),i(−z)) sonst
; S∗2S2 = P2 + P4; S2S

∗
2 = P3.
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