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0 Introduction

Frieze patterns have been invented by H.S.M. Coxeter in 1971 [9]. In the 1970s, some

fundamental and attractive properties like periodicity and glide reflection symmetry have

been developed by Conway and Coxeter [7]. The initial approach to frieze patterns is over

natural numbers or positive integers. However, the extensions of frieze patterns over real

numbers or complex numbers are available nowadays.

Frieze pattern is a combinatorial model, which consists of rows of numbers, where the

first 2 rows at top and bottom are 0’s and 1’s and the minor of every adjacent 2×2 entries

is equal to 1. Moreover, if the minor of every adjacent 3× 3 entries is equal to 0, then this

frieze pattern is tame. For example, a tame frieze pattern with width 4 is as follows:

row 0 0 0 0 0 0 0 0 0 0 0 0 0

row 1 1 1 1 1 1 1 1 1 1 1 1

row 2 ... 3 1 2 4 1 2 2 3 1 2 ...

row 3 2 1 7 3 1 3 5 2 1 ...

row 4 ... 3 1 3 5 2 1 7 3 1 3 ...

row 5 1 2 2 3 1 2 4 1 2 ...

row 6 ... 1 1 1 1 1 1 1 1 1 1 ...

row 7 0 0 0 0 0 0 0 0 0 0 0

Notice that each tame frieze pattern satisfies periodicity. We define a finite sequence, which

consists of elements in a period from row 2, as a quiddity cycle. Due to the close connection

to cluster algebras of type A, which was introduced by Fomin and Zelevinsky in 2002 [12],

the combinatorial model of frieze patterns has been endowed with plenty of interesting

statements. For examples: The transformation from frieze patterns and its extension

SL2-tiling over positive integers to polygons with specific triangulations [4, 6], and in

reverse [17, 15]; the generalized frieze patterns over natural numbers [5]; the combinatorial

model of frieze patterns in cluster algebras of other types [13, 2, 1]. In particular, the

elements of frieze patterns in these investigations were always constrained to integers or

natural numbers. The results about integer-valued frieze patterns have been summarized

by Sophie Morier-Genoud [17].

In recent years, the domain of elements in a frieze pattern has been widened to inte-

gers, real numbers and complex numbers by Michael Cuntz [11]. The most significant

conclusions of recent research on frieze pattern lie in two aspects: on the one hand, the
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triangulation methods were improved in integer-valued frieze patterns. As a result of [7],

each positive-integer-valued pattern is in one-to-one correspondence to triangulation of a

convex polygon. However, this case is changed over integers: each triangulation determines

just one frieze pattern, but conversely, a frieze pattern may have several different trian-

gulations [11]. On the other hand, frieze patterns are constructed in another approach by

Michael Cuntz using quiddity cycles. Since there is still no proper noun for this approach,

we call it "Cuntz Frieze Pattern". For a fixed subset of a commutative ring, one can

classify a quiddity cycle of a frieze pattern by reducibility, where a "reducible" quiddity

cycle can be presented as "direct sum" of two other quiddity cycles, but an irreducible

quiddity cycle can not [10].

It is natural to ask whether a quiddity cycle, which can be presented as direct sum of two

other quiddity cycles, can be further presented as direct sum of three or even more frieze

patterns. Moreover, we investigate whether there exists a method, which decomposes each

integer-valued frieze pattern into different irreducible frieze patterns in a unique way.

The main results of my thesis are listed in the following 3 parts. Firstly, in most cases

the operator "direct sum" fulfils neither commutativity nor associativity. But no matter

whether we commute two quiddity cycles, the direct sum of them always builds the same

frieze pattern. The case for associativity is similar.(See Proposition 3.18) Secondly, each

quiddity cycle can be reduced to several irreducible quiddity cycles by using a fixed formula,

which is called "Factorization". Because of non-commutativity, a quiddity cycle may have

some different factorizations.(See Proposition 4.5) Thirdly, we explore an interesting class

of quiddity cycles – simple quiddity cycles, whose subsequences are always not quiddity

cycles any more. Moreover, some useful properties about simple quiddity cycles like the

relationship to reducibility are introduced in Section 4.2.

This thesis is structured as follows: In Section 1, the basic definitions and properties of

Coxeter frieze patterns and the extension SLk+1 frieze patterns are introduced, followed by

Section 2 the process of triangulation for positive-integer-valued frieze patterns. In Section

3, we introduce the process invented by Michael Cuntz to build frieze patterns by using

quiddity cycles. Actually, "tame Coxeter Frieze Patterns" and "Cuntz Frieze Patterns"

can be shown to be equivalent (See Section 3.3). Furthermore, with the definition of a

"direct sum" of two quiddity cycles, the reducibility is defined in reverse (See Section 3.2).

In Section 4, a new concept "Factorization" is defined as a formula to decompose frieze

patterns until all the factors are irreducible. Moreover, the definitions and properties

about simple quiddity cycles are introduced in Section 4.2. Parts of Section 3 and Section
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4 are my own results.

1 Definition of Frieze Patterns

In this section we introduce some fundamental definitions and properties of Coxeter

frieze patterns (Section 1.1) as well as Coxeter frieze patterns in the ring of positive

integers (Section 1.2). Moreover, we introduce SLk+1 frieze patterns, an extension of

Coxeter frieze patterns (Section 1.3).

1.1 Coxeter Frieze Patterns

The following definition has been given by H.S.M. Coxeter in 1971 [9].

Definition 1.1. (Coxeter frieze patterns)[9] Let m be a natural number and E =

(ei,j)i,j∈Z,i−2≤j≤i+m+1 be an array of numbers. If E satisfies the following conditions, it is

called Coxeter frieze patterns with width m.

1. For all i ∈ Z we have ei,i−2 = ei,i+m+1 = 0.

2. For all i ∈ Z we have ei,i−1 = ei,i+m = 1.

3. Every four adjacent entries a, b, c, d forming a diamond

b

a d

c

satisfy the unimodular rule: ad− bc = 1.

Moreover, if the determinant of every 3× 3 adjacent entries of E equals 0, E is tame.

Example 1.2. (1) Each Coxeter frieze pattern has a general form:



Mang Zhao: Combinatorial Models of Frieze Patterns 4

row 0 0 0 0 0 0 0 0 0 0

row 1 1 1 1 1 1 1 1 1

row 2 ... e1,1 e2,2 e3,3 ... ei,i ...
... ...

. . . . . . . . . . . .

row m ... e1,m−1 e2,m e3,m+1 ei,i+m−2 ...

row m+ 1 ... e1,m e2,m+1 e3,m+2 ei,i+m−1 ...

row m+ 2 1 1 1 1 1 1 1 1

row m+ 3 0 0 0 0 0 0 0 0

(2) If m = 0, we obtain the minimal Coxeter frieze pattern:

row 0 ... 0 0 0 0 0 0 0 0 0 0 0 ...

row 1 ... 1 1 1 1 1 1 1 1 1 1 ...

row 2 ... 1 1 1 1 1 1 1 1 1 1 1 ...

row 3 ... 0 0 0 0 0 0 0 0 0 0 ...

(3) For m = 4, an example is as follows, it is tame:

row 0 0 0 0 0 0 0 0 0 0 0 0 0

row 1 1 1 1 1 1 1 1 1 1 1 1

row 2 ... 3 1 2 4 1 2 2 3 1 2 ...

row 3 2 1 7 3 1 3 5 2 1 ...

row 4 ... 3 1 3 5 2 1 7 3 1 3 ...

row 5 1 2 2 3 1 2 4 1 2 ...

row 6 ... 1 1 1 1 1 1 1 1 1 1 ...

row 7 0 0 0 0 0 0 0 0 0 0 0

Proposition 1.3. (Periodicity) [9] If we have a tame Coxeter frieze pattern with width

m, then n := m+ 3 is the period of this frieze. i.e. ei,j = ei+n,j+n for every i, j ∈ N, with
i ≤ j ≤ i+m− 1.

For example, the frieze with width 4 in Example 1.2(3) has period 7.

Remark 1.4. If a Coxeter frieze is not tame, it may have no periodicity.

In the following example, the numbers in row 2 fulfil:

ei,i =

{
3× 2

i
2
−3, i even

2
5−i
2 , i odd

when i even and i→∞, ei,i →∞, so it has no periodicity.
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row 0 0 0 0 0 0 0 0 0 0 0 0 0

row 1 1 1 1 1 1 1 1 1 1 1 1

row 2 ... 4 3
4 2 3

2 1 3 1
2 6 1

4 12 ...

row 3 ... 1
2 2 1

2 2 1
2 2 1

2 2 1
2 2 1

2 ...

row 4 ... 0 0 0 0 0 0 0 0 0 0 ...

row 5 ... −2 −1
2 −2 −1

2 −2 −1
2 −2 −1

2 −2 −1
2 −2 ...

row 6 1 1 1 1 1 1 1 1 1 1

row 7 0 0 0 0 0 0 0 0 0 0 0

The following result may be found in [9], but we give an alternative proof.

Proposition 1.5. (Linear recurrence relations) [9] Let E = (ei,j)i,j∈Z be a tame

Coxeter frieze with width m. For any fixed i, if we denote Vj := ei,j, and aj := ej,j with

i, j ∈ Z, i+ 1 ≤ j ≤ i+m+ 1, then we obtain the linear recurrence relations:

Vj = ajVj−1 − Vj−2

Proof. Since E is a tame Coxeter frieze, for all i, j ∈ Z with i + 1 ≤ j ≤ i +m + 1 the

determinant of every 3×3 adjacent entries equals 0.

ei+2,j−2

ei+1,j−2 ei+2,j−1

ei,j−2 ei+1,j−1 ei+2,j

ei,j−1 ei+1,j

ei,j

(∗)

So, for every 3× 3 entries having above form, we have:

0 =

∣∣∣∣∣∣∣∣
ei,j−2 ei+1,j−2 ei+2,j−2

ei,j−1 ei+1,j−1 ei+2,j−1

ei,j ei+1,j ei+2,j

∣∣∣∣∣∣∣∣
= ei,j−2

∣∣∣∣∣ ei+1,j−1 ei+2,j−1

ei+1,j ei+2,j

∣∣∣∣∣− ei,j−1
∣∣∣∣∣ ei+1,j−2 ei+2,j−2

ei+1,j ei+2,j

∣∣∣∣∣+ ei,j

∣∣∣∣∣ ei+1,j−2 ei+2,j−2

ei+1,j−1 ei+2,j−1

∣∣∣∣∣
= ei,j−2 − ei,j−1

∣∣∣∣∣ ei+1,j−2 ei+2,j−2

ei+1,j ei+2,j

∣∣∣∣∣+ ei,j

That means, for t :=

∣∣∣∣∣ ei+1,j−2 ei+2,j−2

ei+1,j ei+2,j

∣∣∣∣∣ = ei+1,j−2ei+2,j − ei+2,j−2ei+1,j ∈ C we have

ei,j = tei,j−1 − ei,j−2. Moreover:
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1 =

∣∣∣∣∣ ei,j−2 ei+1,j−2

ei,j−1 ei+1,j−1

∣∣∣∣∣ = ei,j−2ei+1,j−1 − ei,j−1ei+1,j−2 (1.1)

1 =

∣∣∣∣∣ ei,j−1 ei+1,j−1

ei,j ei+1,j

∣∣∣∣∣ = ei,j−1ei+1,j − ei,jei+1,j−1 (1.2)

That means:

ei,j−2ei+1,j−1 − ei,j−1ei+1,j−2 = ei,j−1ei+1,j − ei,jei+1,j−1

⇔ ei+1,j−1(ei,j−2 + ei,j) = ei,j−1(ei+1,j−2 + ei+1,j)

Case 1: If ei,j−1 6= 0 and ei+1,j−1 6= 0, we have ei+1,j−2+ei+1,j

ei+1,j−1
=

ei,j−2+ei,j
ei,j−1

= t and

therefore ei+1,j = tei+1,j−1 − ei+1,j−2.

Case 2: If ei,j−1 = 0 and ei+1,j−1 = 0, similar to (1.1) we have 1 = ei+1,j−1ei+2,j −
ei+1,jei+2,j−1 = 0− 0 = 0, which is contradiction.

Case 3: If ei,j−1 6= 0 and ei+1,j−1 = 0, we have ei+1,j−2 + ei+1,j = 0, which implies that

ei+1,j−2 + ei+1,j = 0 = t× 0 = tei+1,j−1.

Case 4: If ei,j−1 = 0 and ei+1,j−1 6= 0, similar to (1.1) and (1.2) we have:

1 =

∣∣∣∣∣ ei+1,j−2 ei+2,j−2

ei+1,j−1 ei+2,j−1

∣∣∣∣∣ = ei+1,j−2ei+2,j−1 − ei+1,j−1ei+2,j−2 (1.3)

1 =

∣∣∣∣∣ ei+1,j−1 ei+2,j−1

ei+1,j ei+2,j

∣∣∣∣∣ = ei+1,j−1ei+2,j − ei+1,jei+2,j−1 (1.4)

which implies:

tei+1,j−1 = (ei+1,j−2ei+2,j − ei+1,jei+2,j−2)ei+1,j−1

= (ei+1,j−2
ei+1,jei+2,j−1 + 1

ei+1,j−1
− ei+1,j

ei+1,j−2ei+2,j−1 − 1

ei+1,j−1
)ei+1,j−1

= ei+1,j−2 + ei+1,j

In summary, this t satisfies that for all i ∈ Z, ei,j = tei,j−1 − ei,j−2.
Especially for i = j we have t = ej,j−2+ej,j

ei,j−1
=

0+ej,j
1 = ej,j , which implies Vj = ajVj−1 −

Vj−2.

A proof for the following well-known fact may be found in [17].
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Proposition 1.6. (Glide symmetry) Let E = (ei,j)i,j∈Z be a tame Coxeter frieze with

width m. If m is even, then E is invariant under a glide reflection with respect to the

horizontal median line between row m
2 +1 and row m

2 +2. If m is odd, then E is invariant

under a glide reflection with respect to row m+3
2 .

1.2 Integer-valued Frieze Patterns

The following three propositions 1.7, 1.8, 1.9 were already shown by Coxeter in [9] for frieze

patterns over positive integers, and were completed by Morier-Genoud in [17] for frieze

patterns over integers. Both proofs employed Laurent polynomials. We give alternative

proofs for these three propositions in another approach.

Proposition 1.7. (Integer-valued frieze patterns)[17] Let E = (ei,j)i,j∈Z be a Coxeter

frieze. If for all i ∈ Z, ei,i ∈ Z, then all the entries in E are integers.

Proof. It is trivial that for all i ∈ Z, ei,i−2 = ei,i+m+1 = 0 ∈ Z and ei,i−1 = ei,i+m = 1 ∈ Z.
Then we still need to show: ei,j ∈ Z for all i, j ∈ Z with i + 1 ≤ j ≤ i +m − 1. We do

induction over j.

Induction base: j = i + 1 : Since 1 =

∣∣∣∣∣ ei,i ei+1,i

ei,i+1 ei+1,i+1

∣∣∣∣∣ = ei,iei+1,i+1 − ei+1,iei,i+1 =

ei,iei+1,i+1 − ei,i+1, so we have ei,i+1 = ei,iei+1,i+1 − 1 ∈ Z.
Induction hypothesis: assume for j we have ei,j ∈ Z.
Induction step: for j + 1
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ei+2,j−1

ei+1,j−1 ei+2,j

ei,j−1 ei+1,j ei+2,j+1

ei,j ei+1,j+1

ei,j+1

For each adjacent 3× 3 diamond having the form above, we obtain:

1 =

∣∣∣∣∣ ei+1,j−1 ei+2,j−1

ei+1,j ei+2,j

∣∣∣∣∣ = ei+1,j−1ei+2,j − ei+1,jei+2,j−1 (1.5)

1 =

∣∣∣∣∣ ei,j−1 ei+1,j−1

ei,j ei+1,j

∣∣∣∣∣ = ei,j−1ei+1,j − ei,jei+1,j−1 (1.6)

1 =

∣∣∣∣∣ ei+1,j ei+2,j

ei+1,j+1 ei+2,j+1

∣∣∣∣∣ = ei+1,jei+2,j+1 − ei+1,j+1ei+2,j (1.7)

1 =

∣∣∣∣∣ ei,j ei+1,j

ei,j+1 ei+1,j+1

∣∣∣∣∣ = ei,jei+1,j+1 − ei,j+1ei+1,j (1.8)

(1.5) implies that ei+1,j is coprime to ei+1,j−1 , and ei+1,j is coprime to ei+2,j . Moreover,

we have:

Z 3 ei,jei+1,j+1 − 1
(1.6)(1.7)

=
ei,j−1ei+1,j − 1

ei+1,j−1
× ei+2,j+1ei+1,j − 1

ei+2,j
− 1

=
ei+1,j(ei,j−1ei+1,jei+2,j+1 − ei+2,j+1 − ei,j−1) + 1− ei+1,j−1ei+2,j

ei+1,j−1ei+2,j

Therefore ei,j+1
(1.8)
=

ei,jei+1,j+1−1
ei+1,j

∈ Z ⇔ ei+1,j | 1 − ei+1,j−1ei+2,j , which is indicated by

(1.5).

Proposition 1.8. [17] If a Coxeter frieze E = (ei,j)i,j∈Z consists of integer numbers, then

E is tame.

Proof. On the one hand, with (1.6) in Proposition 1.7 we have 1 = ei,j−1ei+1,j−ei,jei+1,j−1.

Similarly, we obtain 1 = ei+1,j−2ei+2,j−1 − ei+1,j−1ei+2,j−2. These two equations imply:

ei,j−1ei+1,jei+1,j−2ei+2,j−1 = ei+1,j−1(ei,jei+1,j−2ei+2,j−1 + ei+2,j−2) + 1

On the other hand we have:

ei,j−1ei+1,jei+1,j−2ei+2,j−1 = (ei,j−2ei+1,j−1 − 1)× (ei+2,jei+1,j−1 − 1)

= ei+1,j−1(ei,j−2ei+1,j−1ei+2,j − ei+2,j − ei,j−2) + 1
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Then we obtain:

ei,jei+1,j−2ei+2,j−1 = ei,j−2ei+1,j−1ei+2,j − ei,j−2 − ei+2,j − ei+2,j−2

According to adjacent 3× 3 form in (∗) Proposition 1.5 we have:∣∣∣∣∣∣∣∣
ei,j−2 ei+1,j−2 ei+2,j−2

ei,j−1 ei+1,j−1 ei+2,j−1

ei,j ei+1,j ei+2,j

∣∣∣∣∣∣∣∣
= ei,j−2 − ei+1,j−2

∣∣∣∣∣ ei,j−1 ei+2,j−1

ei,j ei+2,j

∣∣∣∣∣+ ei+2,j−2

= ei,j−2 + ei+2,j−2 − ei+1,j−2ei,j−1ei+2,j + ei+1,j−2ei+2,j−1ei,j

= ei,j−2 + ei+2,j−2 − ei+1,j−2ei,j−1ei+2,j + ei,j−2ei+1,j−1ei+2,j − ei,j−2 − ei+2,j − ei+2,j−2

= ei,j−2ei+1,j−1ei+2,j − ei+1,j−2ei,j−1ei+2,j − ei+2,j

= ei+2,j(ei,j−2ei+1,j−1 − ei+1,j−2ei,j−1 − 1) = 0

Proposition 1.9. (Positive-integer-valued frieze patterns) Let E = (ei,j)i,j∈Z be a

Coxeter frieze. E consists of positive integers (expect the bound 0’s at top and bottom) if

and only if there is a i ∈ Z, for all j ∈ Z with i ≤ j ≤ i +m − 1, Vj := ei,j is a positive

integer and Vj−1 divides Vj + Vj−2.

Proof. ”⇒ ” see Proposition 1.5.

” ⇐ ” We just need to show for i + 1 and ∀j ∈ Z with i + 1 ≤ j ≤ i +m, ei+1,j is also a

positive integer and ei+1,j−1 divides ei+1,j + ei+1,j−2.

Induction base: j = i+ 1

1 =

∣∣∣∣∣ ei,i ei+1,i

ei,i+1 ei+1,i+1

∣∣∣∣∣ = ei,iei+1,i+1 − ei,i+1ei+1,i = ei,iei+1,i+1 − ei,i+1

So we get ei+1,i+1 =
ei,i+1+1
ei,i

=
ei,i+1+ei,i−1

ei,i
∈ N+.

And ei+1,i divides ei+1,i+1 + ei+1,i−1, since
ei+1,i+1+ei+1,i−1

ei+1,i
=

ei+1,i+1+0
1 = ei+1,i+1 ∈ N+.

Induction hypothesis: assume for j we have that ei+1,j is a positive integer and ei+1,j−1

divides ei+1,j + ei+1,j−2.
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Induction step: for j + 1 we have:

1 =

∣∣∣∣∣ ei,j−1 ei+1,j−1

ei,j ei+1,j

∣∣∣∣∣ = ei,j−1ei+1,j − ei,jei+1,j−1

1 =

∣∣∣∣∣ ei,j ei+1,j

ei,j+1 ei+1,j+1

∣∣∣∣∣ = ei,jei+1,j+1 − ei,j+1ei+1,j

we obtain ei+1,j(ei,j+1 + ei,j−1) = ei,j(ei+1,j+1 + ei+1,j−1).

Case 1: If ei+1,j = 0, then we have 1 = ei,j−1ei+1,j − ei,jei+1,j−1 = −ei,jei+1,j−1 < 0

which is a contradiction.

Case 2: If ei+1,j 6= 0, then we have ∃p ∈ N+ such that ei+1,j+1+ei+1,j−1

ei+1,j
=

ei,j+1+ei,j−1

ei,j
= p.

That means, ei+1,j divides ei+1,j+1 + ei+1,j−1.

Moreover,
ei+1,j+1 = pei+1,j−1 − ei+1,j−1 ∈ Z
ei+1,j+1 =

ei,j+1ei+1,j+1
ei,j

> 0

}
⇒ ei+1,j+1 ∈ N+

Proposition 1.10. Let E = (ei,j)i,j∈Z be a positive-integer-valued Coxeter frieze (expect

bound 0’s at top and bottom) with width m ≥ 1, if there exists i ∈ Z with ei,i = 1, then

ei+1,i+1 6= 1.

Proof. Suppose ∃i ∈ Z, ei,i = ei+1,i+1 = 1. Then 1 =

∣∣∣∣∣ ei,i ei+1,i

ei,i+1 ei+1,i+1

∣∣∣∣∣ = ei,iei+1,i+1 −

ei+1,iei,i+1 = 1− ei,i+1, which implies ei,i+1 = 0. But E is a positive-integer-valued frieze,

which implies ei,j > 0 for all i, j ∈ Z, i − 1 ≤ j ≤ i + m,. Because of m ≥ 1 we have

ei,i+1 > 0, which is a contradiction.

This following proposition and its basic idea for proof were given by Coxeter in 1971 [9],

but we prove it completely.

Proposition 1.11. (Expression of each entry in frieze patterns) [9] If we denote

ai := ei,i, the row 2 in a tame Coxeter frieze (See Example 1.2(1)), then for every i, j ∈
N, i ≤ j ≤ i+m− 1, we have:
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ei,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 1

1 ai+1 1

1 ai+2 1
...

...
...

1 ai−1 1

1 ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof. Induction base: j = i, ei,i = ai = |ai| trivial.
Induction hypothesis: assume for j we have:

ei,t =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 1

1 ai+1 1

1 ai+2 1
...

...
...

1 aj−1 1

1 aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for all i ∈ Z

Induction step: for j + 1 we have:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 1

1 ai+1 1

1 ai+2 1
. . . . . . . . .

1 aj 1

1 aj+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= aj+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 1

1 ai+1 1

1 ai+2 1
. . . . . . . . .

1 aj−1 1

1 aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 1

1 ai+1 1

1 ai+2 1
. . . . . . . . .

1 aj−2 1

1 aj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= aj+1ei,j − ei,j−1

Prop1.5
= ei,j+1

1.3 SLk+1 Frieze Patterns

SLk+1 frieze pattern is a well-known extension of Coxeter frieze pattern. The following

definitions and propositions can be consulted in [1, 8, 3, 16, 17].
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Definition 1.12. (SLk+1−tiling and SLk+1-frieze)[8]

(1) An SLk+1-tiling is a bi-infinite matrix M = (mi,j)i,j∈Z, where all adjacent minors of

order k + 1 equals 1. i.e. for all i, j ∈ Z

M
(k+1)
i,j :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mi,j mi,j+1 ... mi,j+k−1 mi,j+k

mi+1,j mi+1,j+1 ... mi+1,j+k−1 mi+1,j+k

...
...

. . .
...

...

mi+k−1,j mi+k−1,j+1 ... mi+k−1,j+k−1 mi+k−1,j+k

mi+k,j mi+k,j+1 ... mi+k,j+k−1 mi+k,j+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

(2) An SLk+1-tiling is called tame if in addition all adjacent minors of order k+2 vanish.

i.e. M (k+2)
i,j = 0 for all i, j ∈ Z.

(3) Let E = (ei,j)i,j∈Z be an infinite matrix, if E satisfies the following conditions, then

E is called a SLk+1-frieze with width m:

1. E is SLk+1-tiling.

2. ∃m ∈ N, such that

ei,i−1 = ei,i+m = 1, ∀i ∈ Z

ei,i−1−l = ei,i+m+l = 0, ∀i, l ∈ Z, 1 ≤ l ≤ k

Example 1.13. (1) Let k = 1, then SL2-frieze is equivalent to Coxeter frieze.

(2) Let k = 2, an example of SL3-frieze with width 4 is as following:
row 0 0 0 0 0 0 0 0 0 0 0 0

row 1 1 1 1 1 1 1 1 1 1 1

row 2 4 3 1 5 4 3 1 6 4 3 1

row 3 8 1 4 9 8 2 2 21 8 1

row 4 40 1 3 6 8 5 1 6 40 1 3

row 5 4 1 4 3 4 2 1 11 4 1

row 6 1 1 1 1 1 1 1 1 1 1 1

row 7 0 0 0 0 0 0 0 0 0 0

Definition 1.14. (Projective dual)[17]

(1) A r-derived array ∂rM of a SLk+1-tilingM = (mi,j)i,j∈Z is a bi-infinite matrix, whose

elements are the adjacent minors of order r in M . i.e.

∂rM := (M
(r)
i,j )i,j∈Z
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(2) Let M = (mi,j)i,j∈Z be a SLk+1-tiling. The projective dual M∗ is the k-derived array

of M .

Proposition 1.15. (Projective dual of a SLk+1-tiling)[3] Let M be a SLk+1-tiling

and M∗ be its projective dual.

(1) M∗ is also a SLk+1-tiling.

(2) If M is tame, then M∗ is also tame.

(3) For all r ∈ N, 1 ≤ r ≤ k, (∂rM∗)i,j = (∂k+1−rM)i+r−1,j+r−1.

(4) If we left-shift M k − 1 elements, then we get (M∗)∗.

Proof. The proofs of (1)-(3) can be consulted in [3]. We just give the proof of (4).

Proof of (4): Choose r = k in (3), then we have:

((M∗)∗)i,j = (∂kM
∗)i,j = (∂1M)i+k−1,j+k−1 = (M)i+k−1,j+k−1

Proposition 1.16. (Glide symmetry of projective dual)[17]

Let E = (ei,j)i,j∈Z be a tame SLk+1-frieze with width m. If m is even, then E has glide

reflection to E∗ with respect to the horizontal median line between row m
2 + 1 and row

m
2 + 2. If m is odd, then E has glide reflection to E∗ with respect to row m+3

2 .

For example, in above figure, the determinant of each square equals to the value in the

circle with same colour. This implies, if we define the reversal version of E as E⊥, then

E∗ and E⊥ concide up to a shift of indices.
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Proposition 1.17. (Periodicity of tame SLk+1-frieze)[17] If we denote a SLk+1-frieze

E = (ei,j)i,j∈Z with width m. Then E fulfils:

ei,j = (−1)kei+k+m+2,j and ei,j = (−1)kei,j+k+m+2

In particular, ei,j = (−1)kei+k+m+2,j = (−1)2kei+k+m+2,j+k+m+2 = ei+k+m+2,j+k+m+2.

Therefore, E has period k +m+ 2.

The following proposition and its basic idea can be consulted in [3], but we prove it

completely.

Proposition 1.18. (Linear recurrence relations )[3] Let E = (ei,j)i,j∈Z be a tame

SLk+1-frieze. For all i ∈ Z fixed, Vj := ei,j. Then it satisfies the linear difference equation:

Vj = aj,1Vj−1 − aj,2Vj−2 + ...+ (−1)k−1aj,kVj−k + (−1)kVj−k−1

Proof. Since E is tame SLk+1-frieze, each adjacent minor of order k + 2 equals 0. By

using Laplace expansion, ∀i, j ∈ Z:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ei,j−k−1 ei+1,j−k−1 ... ei+k,j−k−1 ei+k+1,j−k−1

ei,j−k ei+1,j−k ... ei+k,j−k ei+k+1,j−k
...

...
. . .

...
...

ei,j−1 ei+1,j−1 ... ei+k,j−1 ei+k+1,j−1

ei,j ei+1,j ... ei+k,j ei+k+1,j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ei,j−k−1Mi,j−k−1 − ei,j−kMi,j−k + ...+ (−1)k+2ei,j−1Mi,j−1 + (−1)k+3ei,jMi,j

⇔ei,jMi,j = ei,j−1Mi,j−1 + ...+ (−1)k−1ei,j−kMi,j−k + (−1)kei,j−k−1Mi,j−k−1

where Mi,j is (i, j)-minor of E (the minor of the submatrix formed by deleting the i-th

row and j-th column). Notice that Mi,j−k−1 = Mi,j = 1. If we define aj,t := Mi,j−t, then

we obtain the linear difference equation.

2 Triangulation for positive-integer-valued Coxeter Frieze

In this section we introduce two important definitions, namely quiddity cycles and

triangulations. With a quiddity cycle of a positive-integer-valued Coxeter frieze pattern

we can find a polygon with specific triangulation. In reverse, with this polygon we can

recover the original Coxeter frieze pattern.
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Definition 2.1. (Quiddity cycle in Coxeter frieze)[9] Let E = (ei,j)i,j∈Z be a Coxeter

frieze with width m. c = (c1, c2, ..., cn) is a quiddity cycle of E if and only if n = m+ 3 is

the period of E and c is a cycle in row 2. i.e. ∃t ∈ {0, 1, ..., n− 1} fixed, ∀i ∈ {1, 2, ..., n}
and ∀k ∈ Z, we have ci = ekn+i+t,kn+i+t.

Remark 2.2. Let E be a Coxeter frieze with period n. Then E has n different quiddity

cycles. But all these quiddity cycles are unique up to cyclic permutation.

Proposition 2.3. Let E = (ei,j)i,j∈Z be a tame Coxeter frieze and c = (c1, c2, ..., cn) =

(et,t, et+1,t+1, ..., et+m+2,t+m+2) be a quiddity cycle of E for a fixed t ∈ Z. Then for all

j ∈ Z with t ≤ j ≤ t+m+ 1, we have:(
et,j −et,j−1
et+1,j −et+1,j−1

)
=

j∏
k=t

(
ek,k −1
1 0

)

Proof. We show this proposition by using induction over j.

Induction base: j = t,

t∏
k=t

(
ek,k −1
1 0

)
=

(
et,t −1
1 0

)
=

(
et,t −et,t−1
et+1,t −et+1,t−1

)

Induction hypothesis: for j we have:

j∏
k=t

(
ej,j −1
1 0

)
=

(
et,j −et,j−1
et+1,j −et+1,j−1

)

Induction step: for j + 1 we have:

j+1∏
k=t

(
ek,k −1
1 0

)
=

j∏
k=t

(
ek,k −1
1 0

)(
ej+1,j+1 −1

1 0

)

=

(
et,j −et,j−1
et+1,j −et+1,j−1

)(
ej+1,j+1 −1

1 0

)

=

(
et,jej+1,j+1 − et,j−1 −et,j

et+1,jej+1,j+1 − et+1,j−1 −et+1,j

)

Prop 1.5
=

(
et,j+1 −et,j
et+1,j+1 −et+1,j

)
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Proposition 2.4. (Triangulation)[17] Let E = (ei,j)i,j∈Z be a positive-integer-valued Cox-

eter frieze with width m and c = (c1, c2, ..., cn) be a quiddity cycle of E. Then c determines

a triangulation of a convex n-polygon, where ci counts the number of triangles, which con-

tain the i-th vertex of this n-polygon.

Example 2.5. Let E = (ei,j)i,j∈Z be the Coxeter frieze in Example 1.2(3). Then tuple c =

(3, 1, 2, 4, 1, 2, 2) is a quiddity cycle of E. Moreover, the following figure is a triangulation

of c.

Proposition 2.6. (Process to calculate frieze by triangulation)[17] Let c = (c1,

c2,...,cn) be a quiddity cycle. Then we can calculate all entries of a Coxeter frieze E,

where c is quiddity cycle of E, by using the following process.

(1) Choose one vertex vi and tag it 0.

(2) Tag 1 all vertex, which is connected with vi.

(3) If there is a triangle, whose two vertex are already tagged as a and b, then tag a + b

the third vertex.

(4) Repeat (3) until all vertex are tagged, ei+1,j−1 = the tag at vertex vj.

(5) Repeat (1)-(4) for i ∈ {1, 2, ..., n}, then we obtain the entries of a Coxeter frieze in a

period, with periodicity we can extent these entries to a Coxeter frieze E.

Example 2.7. Let c = (3, 1, 2, 4, 1, 2, 2) be the quiddity cycle as in Example 2.5.

(1) Choose vertex v2 and tag it 0. (figure 1)

(2) Tag v1 and v3 with 1, which is connected with v2. (figure 2)
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(3) If there is a triangle, whose two vertex are already tagged as a and b, then tag a + b

the third vertex. e.g. v4. (figure 3)

(4) Repeat (3) until all vertex are tagged. (figure 4)

figure 1 figure 2

figure 3 figure 4

Then e3,j−1 := the tag at vertex vj . In particular, if j−1 < 0, we denote e3,j−1+n = e3,j−1.

After that we obtain the third column in Example 1.2(3). If we repeat step (1)-(4) by

choosing vertex v1, v3, .., v7, then we obtain the other entries of a period of the frieze in

Example 1.2(3).

Proposition 2.8. (Quantity of positive-integer Coxeter frieze) [14] The quantity of

positive-integer-valued Coxeter frieze with width m is finite, and is equal to the (m+1)-th

Catalan number.

Cm+1 =
1

m+ 2

(
2(m+ 1)

m+ 1

)
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3 Cuntz Frieze Patterns

By Section 2 we know that we can extract a quiddity cycle of a Coxeter frieze pattern,

and then with triangulation and this quiddity cycle we can recover the original Coxeter

frieze pattern. That means, a finite sequence with some specific properties can build

a frieze pattern. That is the basic idea of another approach to frieze by Cuntz [10].

Since there is still no proper noun for the result of this approach. We call it "Cuntz

Frieze Patterns". In this section we will introduce the basic definitions and properties

of Cuntz frieze patterns (Section 3.1). Moreover, we will give an introduction about the

decomposition for a quiddity cycle (Section 3.2), and show the equivalence between Coxeter

frieze patterns and Cuntz frieze patterns (Section 3.3). Finally, we give an intuition about

the combinatorial models for integer-valued frieze patterns (Section 3.3).

3.1 Quiddity Cycles and Cuntz Frieze

The following definition has been given by Cuntz and Holm in 2017 [11].

Definition 3.1. (λ-quiddity cycle and Cuntz frieze)[10] Let R be a subset of a

commutative ring and λ ∈ {±1}, A λ-quiddity cycle over R is a tuple c = (c1, c2, ..., cn) ∈
Rn satisfying:

n∏
k=1

(
ck −1
1 0

)
=

(
λ 0

0 λ

)
= λ id

In particular, we also call a (−1)-quiddity cycle simply a quiddity cycle.

A Cuntz frieze F = (fi,j)i,j∈Z,i−2≤j≤i+n−2 produced by a quiddity cycle c = (c1, c2, ..., cn)

is defined by:

1. ci+tn,i+tn = ci for all t ∈ Z

2. fi,j :=

(∏j
k=i

(
ck −1
1 0

))
1,1

where M1,1 means the entry in the first row and first column of M . Especially, we denote

fi,i−2 = fi,i+n−2 = 0, fi,i−1 = fi,i+n−2 = 1. Then n is the period of F and m := n − 3 is

the width of F . Obviously, fi,i = ci for all i ∈ Z.

Remark 3.2. If we consider a number as a 1× 1 matrix, then we have:

fi,j =
(

1 0
) j∏
k=i

(
ck −1
1 0

)(
1

0

)
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Example 3.3. [10] Let R = C, then we have the following results:

(1) (0, 0) is the only λ-quiddity cycle of length 2.

(2) (−1,−1,−1) is the only 1-quiddity of length 3.

(3) (1, 1, 1) is the only (−1)-quiddity of length 3.

(4) (t, 2t , t,
2
t ), t a unit and (a, 0,−a, 0), a arbitrary, are the only λ-quiddity cycles of length

4.

Proposition 3.4. [10] Let Dn be the dihedral group with 2n elements acting on 1, ..., n and

c = (c1, c2, ..., cn) be a λ-quiddity cycle. Then cσ := (c1, c2, ..., cn)
σ := (cσ(1), cσ(2), ..., cσ(n))

is a λ-quiddity cycle as well.

In most articles, the authors show the equivalence between "Cuntz frieze patterns" and

"tame Coxeter frieze patterns" at first and then obtain the linear recurrence relation for

Cuntz frieze patterns directly. But we prove these claims in another easy approach: We

firstly show the linear recurrence relation for Cuntz frieze patterns, which is helpful for

the straightforward proof for the equivalence between "Cuntz frieze patterns" and "tame

Coxeter frieze patterns" later.

Proposition 3.5. (Linear recurrence relation) [11] Let c = (c1, c2, ..., cn) be a quiddity

cycle and F = (fi,j)i,j∈Z be the Cuntz frieze produced by c. Then for all i, j ∈ Z, i − 2 ≤
j ≤ i+ n− 1, fi,j = fi,j−1fj,j − fi,j−2.

Proof.

fi,j−1fj,j − fi,j−2

=
(

1 0
) j−1∏
k=i

(
ck −1
1 0

)(
1

0

)(
1 0

)( cj −1
1 0

)(
1

0

)

−
(

1 0
) j−2∏
k=i

(
ck −1
1 0

)(
1

0

)

=
(

1 0
)(j−1∏

k=i

(
ck −1
1 0

)(
cj −1
0 0

)
−
j−2∏
k=i

(
ck −1
1 0

))(
1

0

)

=
(

1 0
) j−1∏
k=i

(
ck −1
1 0

)((
cj −1
0 0

)
−

(
0 1

−1 cj−1

))(
1

0

)
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=
(

1 0
) j−1∏
k=i

(
ck −1
1 0

)(
cj −2
1 −cj−1

)(
1

0

)

=
(

1 0
) j−1∏
k=i

(
ck −1
1 0

)(
cj −1
1 0

)(
1

0

)

=
(

1 0
) j∏
k=i

(
ck −1
1 0

)(
1

0

)
= fi,j

Proposition 3.6. Let c = (c1, c2, ..., cn) be a quiddity cycle and F = (fi,j)i,j∈Z be the

Cuntz frieze produced by c. Then for all i, j ∈ Z, i ≤ j ≤ i+ n− 2 we have:

j∏
k=i

(
ck −1
1 0

)
=

(
fi,j −fi,j−1
fi+1,j −fi+1,j−1

)

Proof. We prove this proposition by using induction over j.

Induction base: j = i,

i∏
k=i

(
ck −1
1 0

)
=

(
ci −1
1 0

)
=

(
fi,i −1
1 0

)
=

(
fi,i −fi,i−1
fi+1,i −fi+1,i−1

)

Induction hypothesis: for j we have:

j∏
k=i

(
ck −1
1 0

)
=

(
fi,j −fi,j−1
fi+1,j −fi+1,j−1

)

Induction step: for j + 1 we have:

j+1∏
k=i

(
ck −1
1 0

)
=

j∏
k=i

(
ck −1
1 0

)(
cj+1 −1
1 0

)

=

(
fi,j −fi,j−1
fi+1,j −fi+1,j−1

)(
fj+1,j+1 −1

1 0

)

=

(
fi,jfj+1,j+1 − fi,j−1 −fi,j

fi+1,jfj+1,j+1 − fi+1,j−1 −fi+1,j

)

Prop 3.5
=

(
fi,j+1 −fi,j
fi+1,j+1 −fi+1,j

)



Mang Zhao: Combinatorial Models of Frieze Patterns 21

Remark 3.7. (1) Let c = (c1, c2, ..., cn) be a quiddity cycle and F = (fi,j)i,j∈Z be the

Cuntz frieze produced by c. Then for all i, j ∈ Z, i− 2 ≤ j ≤ i+ n− 2:

fi,j =
(

1 0
) j∏
k=i

(
ck −1
1 0

)(
1

0

)
= −

(
1 0

) j+1∏
k=i

(
ck −1
1 0

)(
0

1

)

=
(

0 1
) j∏
k=i−1

(
ck −1
1 0

)(
1

0

)
= −

(
0 1

) j+1∏
k=i−1

(
ck −1
1 0

)(
0

1

)

(2) As AB 6= BA for A,B ∈ M2(R), if c = (c1, ..., ci−1, ci, ci+1, ci+2, ..., cn) is a quiddity

cycle, then in general (c1, ..., ci−1, ci+1, ci, ci+2, ..., cn) is not a quiddity cycle for the

case ci 6= ci+1.

Proposition 3.8. (Equivalence relation) Let R be a subset of a commutative ring,

then for a fixed n ∈ N+, ”a ∼ b⇔ ∃σ ∈ Dn, a = bσ” defines an equivalence relation on R.

Proof. Reflexivity: Choose σ = id ∈ Dn. Then a = aσ.

Symmetry: Let a, b ∈ Rn, then we have:

a ∼ b⇔ ∃σ ∈ Dn, a = bσ ⇔ ∃π = −σ ∈ Dn, b = bσ(−σ) = a−σ = aπ ⇔ b ∼ a

Transitivity: If a ∼ b and b ∼ c, then ∃σ1, σ2 ∈ Dn, a = bσ1 , b = cσ2 . Choose π = σ1σ2 ∈
Dn, then we have:

a = bσ1 = cσ1σ2 = cπ ⇒ a ∼ c

Proposition 3.9. Let R be a subset of a commutative ring, c = (c1, c2, ..., cn) ∈ Rn be

a finite sequence. If there exists x, y ∈ R such that d = (x, c1, c2, ..., cn, y) ∈ Rn+2 is a

λ-quiddity cycle, then x, y are uniquely determined.

Proof. Define M :=

(
m1,1 m1,2

m2,1 m2,2

)
:=
∏n
k=1

(
ck −1
1 0

)
. Then, we have:

(
x −1
1 0

)
n∏
k=1

(
ck −1
1 0

)(
y −1
1 0

)
=

(
x −1
1 0

)(
m1,1 m1,2

m2,1 m2,2

)(
y −1
1 0

)

=

(
m1,1xy −m2,1y +m1,2x−m22 m2,1 −m1,1x

m1,1y +m1,2 −m1,1

)
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Therefore x, y are uniquely determined, since(
x −1
1 0

)
n∏
k=1

(
ck −1
1 0

)(
y −1
1 0

)
=

(
λ 0

0 λ

)
⇔

{
x = −λm2,1

y = λm1,2

.

Proposition 3.10. Let R be a subset of a commutative ring and c = (c1, c2, ..., cn) ∈ Rn

be a λ-quiddity cycle. Then −c = (−c1,−c2, ...,−cn) is a (−1)nλ-quiddity cycle.

Proof. Notice that ∀x ∈ R, for the matrix A :=

(
x −1
1 0

)
we have |A| =

∣∣A>∣∣ = 1,

which implies that A is invertible. Moreover, we have:

n∏
k=1

(
−ck −1
1 0

)
=

n∏
k=1

(
(−1)

(
ck 1

−1 0

))
= (−1)n

n∏
k=1

(
ck −1
1 0

)>

= (−1)n
(

1∏
k=n

(
ck −1
1 0

))>
Prop 3.7

= (−1)n
(
λ 0

0 λ

)>
= (−1)nλ id

Proposition 3.11. [11] Let R = C and c = (c1, c2, ..., cn) ∈ Rn be a λ-quiddity cycle.

Then there are two different indices j, k ∈ {1, ..., n} with |cj | < 2 and |ck| < 2.

3.2 Reducibility

Definition 3.12. (Reducibility) [10] Let R be a subset of a commutative ring and

c = (c1, c2, ..., cm) ∈ Rm (m > 2) be a λ-quiddity cycle. Then, c is called reducible over R if

there exists a λ′-quiddity cycle a = (a1, a2, ..., ak) and a λ′′-quiddity cycle b = (b1, b2, ..., bl),

such that:

1. λ = −λ′λ′′

2. k, l > 2

3. there exists a permutation σ ∈ Dn, such that

cσ = (a1 + bl, a2, ..., ak−1, ak + b1, b2, ..., bl−1) =: a⊕ b

If c is not reducible then c is called irreducible.

Example 3.13. [10]



Mang Zhao: Combinatorial Models of Frieze Patterns 23

(1) The set of irreducible λ-quiddity cycles over N is {(1, 1, 1)}.

(2) The set of irreducible λ-quiddity cycles over Z is

{(1, 1, 1), (−1,−1,−1), (a, 0,−a, 0), (0, a, 0,−a)|a ∈ Z\{±1}}.

(3) (1, 0,−1, 0) is reducible over Z, since (0, 1, 0,−1) = (1, 1, 1)⊕ (−1,−1,−1).

Proposition 3.14. [10] Let a = (a1, a2, ..., ak) be a λ′-quiddity cycle and b = (b1, b2, ..., bl)

be a λ′′-quiddity cycle. Then

a⊕ b := (a1 + bl, a2, ..., ak−1, ak + b1, b2, ..., bl−1)

is a (−λ′λ′′)-quiddity cycle.

Remark 3.15. (1) We denote by lc the length of a quiddity cycle c. Let a, b be {±1}-
quiddity cycles, then la⊕b = la + lb − 2.

(2) Let R = Z and c = (c1, ..., cn) ∈ Rn be a quiddity cycle. If c can be decomposed into

two irreducible {±1}-quiddity cycles a, b, such that c = a⊕ b, then la, lb ∈ {3, 4}.

(3) Let R be a subset of a commutative ring and c = (c1, ..., cn) ∈ Rn be an irreducible

quiddity cycle. Then for all c′ ∈ Rn with c ∼ c′, c′ is irreducible. (In other words,

cσ is irreducible, for all σ ∈ Dn.)

Proof. Suppose ∃σ ∈ Dn, such that cσ is reducible. That means ∃a, b two {±1}-
quiddity cycles over R and ∃τ ∈ Dn, such that cσ = (a ⊕ b)τ . If we define π =

−στ ∈ Dn, then we have c = (cσ)−σ = ((a⊕ b)τ )−σ = (a⊕ b)π, which implies that c

is reducible. It is a contradiction to c irreducible.

Proposition 3.16. Let a = (a1, a2, ..., ak) be a λ′-quiddity cycle and b = (b1, b2, ..., bl) be

a finite sequence. Then b is a λ′′-quiddity cycle if and only if a⊕ b is a (−λ′λ′′)-quiddity
cycle.

Proof. ”⇒ ” see Proposition 3.14.

”⇐ ” (−λ′λ′′) id

=

(
a1 + bl −1

1 0

)
k−1∏
t=2

(
at −1
1 0

)(
ak + b1 −1

1 0

)
l−1∏
t=2

(
bt −1
1 0

)
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=

(
bl −1
1 0

)(
0 −1
1 0

)(
a1 −1
1 0

)
k−1∏
t=2

(
at −1
1 0

)(
ak −1
1 0

)
(

0 −1
1 0

)(
b1 −1
1 0

)
l−1∏
t=2

(
bt −1
1 0

)

= (−λ′)

(
bl −1
1 0

)
l−1∏
t=1

(
bt −1
1 0

)

Therefore, (bl, b1, ..., bl−1) is a λ′′-quiddity cycle. With Proposition 3.4 we know that b is

also a λ′′-quiddity cycle.

Proposition 3.17. (Existence of reducibility) [10] Let R be a commutative ring,

c = (c1, c2, ..., cm) ∈ Rm be a λ-quiddity cycle, F = (fi,j)i,j∈Z, be the Cuntz frieze produced

by c. Then, c is reducible over R if and only if ∃i, j ∈ Z, i ≤ j ≤ i + n − 4, fi,j = 1 or

fi,j = −1.

Proposition 3.18. (Commutativity and associativity) Let R be a subset of a com-

mutative ring, a = (a1, a2, ..., ak) ∈ Rk be a λ-quiddity cycle, b = (b1, b2, ..., bl) ∈ Rl be a

λ′-quiddity cycle c = (c1, c2, ..., cm) ∈ Rm be a λ′′-quiddity cycle, k, l,m > 2.

(1) ∃σ ∈ Dk+l, a⊕ b = (b⊕ a)σ

(2) ∃σ ∈ Dl+m, τ ∈ Dl, (a⊕ b)⊕ c = a⊕ (bτ ⊕ c)σ

(3) If k = l, λ = λ′ and a⊕ b = b⊕ a, then a = b

Proof. (1)

a⊕ b = (a1 + bl, a2, ..., ak−1, ak + b1, b2, ..., bl−1)

= (ak + b1, b2, ..., bl−1, a1 + bl, a2, ..., ak−1)
σ

= (b⊕ a)σ

(2)

(a⊕ b)⊕ c = (a1 + bl, a2, ..., ak−1, ak + b1, b2, ..., bl−1)⊕ c

= (a1 + bl + cm, a2, ..., ak−1, ak + b1, b2, ..., bl−2, bl−1 + c1, c2, ..., cm−1)

= a⊕ (b1, b2, ..., bl−2, bl−1 + c1, c2, ..., cm−1, bl + cm)

= a⊕ (bl + cm, b1, b2, ..., bl−2, bl−1 + c1, c2, ..., cm−1)
σ

= a⊕ ((bl, b1, b2, ..., bl−1)⊕ c)σ

= a⊕ (bτ ⊕ c)σ



Mang Zhao: Combinatorial Models of Frieze Patterns 25

(3) a ⊕ b = (a1 + bl, a2, ..., ak−1, ak + b1, b2, ..., bl−1), b ⊕ a = (b1 + ak, b2, ..., bl−1, bl +

a1, a2, ..., ak−1). With a ⊕ b = b ⊕ a and k = l, we obtain that a2 = b2, a3 =

b3, ..., ak−1 = bk−1. With λ = λ′ and Proposition 3.9 we have a1 = b1, ak = bk.

Therefore, a = b.

Remark 3.19. (1) Proposition 3.18 (1) just showed that a ⊕ b ∼ b ⊕ a. In most cases

we can not have a ⊕ b = b ⊕ a. For example, a = (1, 1, 1) and b = (2, 1, 2, 1), then

a⊕ b = (2, 1, 3, 1, 2) 6= (3, 1, 2, 2, 1) = b⊕ a.

(2) Similarly, Proposition 3.18 (2) does not imply (a⊕b)⊕c = a⊕(b⊕c). Actually, in most

cases it is wrong. For example, a = (1, 1, 1), b = (2, 1, 2, 1) and c = (1, 1, 1), then

(a ⊕ b) ⊕ c = (2, 1, 3, 1, 2) ⊕ (1, 1, 1) = (3, 1, 3, 1, 3, 1) 6= (2, 1, 4, 1, 2, 2) = (1, 1, 1) ⊕
(3, 1, 2, 2, 1) = a⊕ (b⊕ c).

(3) If a⊕ b = (a⊕ c)σ and σ ∈ Dk+l−2 = Dk+m−2, then we may have b 6= c. For example,

(1, 1, 1)⊕ (0, 6, 0,−6) = (−5, 1, 1, 6, 0)

(1, 1, 1)⊕ (5, 0,−5, 0) = (1, 1, 6, 0,−5) = (−5, 1, 1, 6, 0)σ

We can notice that (5, 0,−5, 0) 6= (0, 6, 0,−6).

Proposition 3.20. Let R be a subset of a commutative ring. Let a = (a1, a2, ..., ak) ∈ Rk

be a λ-quiddity cycle, b = (b1, b2, ..., bl) ∈ Rl be a λ′-quiddity cycle and c = (c1, c2, ..., cm) ∈
Rm be a λ′′-quiddity cycle, k, l,m > 2. If we define d := a⊕ (b⊕ c)σ as a (λλ′λ′′)-quiddity

cycle for all σ ∈ Dl+m, then one of the following properties will be satisfied:

(i) There exists c′ ∈ Rm and π1 ∈ Dk+m, π2 ∈ Dk+l+m, such that c ∼ c′ and d =

((a⊕ c′)π1 ⊕ b)π2.

(ii) There exists b′ ∈ Rl and π1 ∈ Dk+l, π2 ∈ Dk+l+m, such that b ∼ b′ and d = ((a ⊕
b′)π1 ⊕ c)π2.

Proof. We consider (b⊕ c)σ in the following 4 cases.

Case 1: (b⊕ c)σ = (b⊕ c) = (b1 + cm, b2, ..., bl−1, bl + c1, c2, ..., cm−1), then we have:
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a⊕ (b⊕ c)σ = a⊕ (b⊕ c)
Prop3.18(1)

= ((b⊕ c)⊕ a)σ1

Prop3.18(2)
= (b⊕ (cσ2 ⊕ a)σ3)σ1

Prop3.18(1)
= ((cσ2 ⊕ a)σ3 ⊕ b)σ1σ4

Prop3.18(1)
= ((a⊕ cσ2)σ3σ5 ⊕ b)σ1σ4

= ((a⊕ c′)π1 ⊕ b)π2

where σ1, σ4 ∈ Dk+l+m, σ2 ∈ Dm, σ3, σ5 ∈ Dk+m, and π1 = σ3σ5, π2 = σ1σ4, c
′ = cσ2 .

This case fulfils (i).

Case 2: (b ⊕ c)σ = (bi, bi+1..., bl−1, bl + c1, c2, ..., cm−1, b1 + cm, b2, ..., bi−1) for all i ∈
{2, ..., l − 1}, then we have:

a⊕ (b⊕ c)σ

= (a1, ..., ak)⊕ (bi, bi+1..., bl−1, bl + c1, c2, ..., cm−1, b1 + cm, b2, ..., bi−1)

= (a1 + bi−1, a2, ..., ak−1, ak + bi, bi+1..., bl−1, bl + c1, c2, ..., cm−1, b1 + cm, b2, ...,

bi−2)

= (bl + c1, c2, ..., cm−1, b1 + cm, b2, ..., bi−2, a1 + bi−1, a2, ..., ak−1, ak + bi, bi+1...,

bl−1)
σ1

= (c⊕ (b1, b2, ..., bi−2, a1 + bi−1, a2, ..., ak−1, ak + bi, bi+1..., bl−1, bl))
σ1

= (c⊕ (a⊕ bσ2)σ3)σ1

Prop3.18(1)
= ((a⊕ bσ2)σ3 ⊕ c)σ1σ4

= ((a⊕ b′)π1 ⊕ c)π2

where σ1, σ4 ∈ Dk+l+m, σ2 ∈ Dl, σ3 ∈ Dk+l, and π1 = σ3, π2 = σ1σ4, b
′ = bσ2 . This

case fulfils (ii).

Case 3: (b⊕ c)σ = (bl + c1, c2, ..., cm−1, b1 + cm, b2, ..., bl−1) = c⊕ b, then similar to Case

1, we have:
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a⊕ (b⊕ c)σ = a⊕ (c⊕ b)
Prop3.18(1)

= ((c⊕ b)⊕ a)σ1

Prop3.18(2)
= (c⊕ (bσ2 ⊕ a)σ3)σ1

Prop3.18(1)
= ((bσ2 ⊕ a)σ3 ⊕ c)σ1σ4

Prop3.18(1)
= ((a⊕ bσ2)σ3σ5 ⊕ c)σ1σ4

= ((a⊕ b′)π1 ⊕ c)π2

where σ1, σ4 ∈ Dk+l+m, σ2 ∈ Dl, σ3σ5 ∈ Dk+l, and π1 = σ3σ5, π2 = σ1σ4, b
′ = bσ2 .

This case fulfils (ii).

Case 4: (b ⊕ c)σ = (cj , cj+1, ..., cm−1, b1 + cm, b2, ..., bl−1, bl + c1, c2, ..., cj−1) for all j ∈
{2, ...,m− 1}, then we have:

a⊕ (b⊕ c)σ

= (a1, ..., ak)⊕ (cj , cj+1, ..., cm−1, b1 + cm, b2, ..., bl−1, bl + c1, c2, ..., cj−1)

= (a1 + cj−1, a2, ..., ak−1, ak + cj , cj+1..., cm−1, cm + b1, b2, ..., bl−1, bl + c1, c2, ...,

cj−2)

= (cm + b1, b2, ..., bl−1, c1 + bl, c2, ..., cj−2, a1 + cj−1, a2, ..., ak−1, ak + cj , cj+1...,

cm−1)
σ1

= (b⊕ (c1, c2, ..., cj−2, a1 + cj−1, a2, ..., ak−1, ak + cj , cj+1..., cm−1, cm))
σ1

= (b⊕ (a⊕ cσ2)σ3)σ1

Prop3.18(1)
= ((a⊕ cσ2)σ3 ⊕ b)σ1σ4

= ((a⊕ c′)π1 ⊕ b)π2

where σ1, σ4 ∈ Dk+l+m, σ2 ∈ Dm, σ3 ∈ Dk+m, and π1 = σ3, π2 = σ1σ4, b
′ = bσ2 . This

case fulfils (i).

3.3 Coxeter Frieze and Cuntz Frieze

The following proposition has been given by Cuntz and Holm in [11], but we give an

alternative proof.
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Proposition 3.21. (Equivalence between Coxeter frieze and Cuntz frieze) Each

tame Coxeter frieze is a Cuntz frieze, and vice versa.

Proof. ”⇒ ” Let E = (ei,j)i,j∈Z be a tame Coxeter frieze with width m. With Proposition

2.3 for any fixed i ∈ Z we obtain:

i+m+1∏
k=i

(
ek,k −1
1 0

)
=

(
ei,i+m+1 −ei,i+m
ei+1,i+m+1 −ei+1,i+m

)
=

(
0 −1
1 −ei+1,i+m

)

Since ei+1,i+m
Prop1.5
= ei+1,i+m+1ei+m+2,i+m+2 − ei+1,i+m+2 = ei+m+2,i+m+2, we have:

i+m+2∏
k=i

(
ek,k −1
1 0

)
=

(
0 −1
1 −ei+1,i+m

)(
ei+1,i+m −1

1 0

)
= − id

That means, E is a Cuntz frieze produced by (ei,i, ..., ei+m+2,i+m+2).

” ⇐ ” Let F = (fi,j)i,j∈Z be a Cuntz frieze produced by a quiddity cycle c. With

Proposition 3.6 we know that for i ≤ j ≤ i+ n− 2:

1 =

∣∣∣∣∣
j∏
k=i

(
ck −1
1 0

)∣∣∣∣∣ =
∣∣∣∣∣ fi,j −fi,j−1
fi+1,j −fi+1,j−1

∣∣∣∣∣ = fi,j−1fi+1,j − fi,jfi+1,j−1

That means, the determinant of each 2×2 adjacent entries equals 1. F is a Coxeter frieze.

With Proposition 3.5 we know fi,j , fi,j−1 and fi,j−2 are linear dependent, so the determi-

nant of each 3× 3 adjacent entries equals 0. F is tame.

3.4 Combinatorial Models for integer-valued Frieze

In section 2 we have already introduced the triangulation for positive-integer-valued Cox-

eter Frieze. If we just consider Coxeter friezes in the positive-integer-valued case, we have

the process to convert one quiddity cycle to one triangulation and verse vice. For the

integer-valued case, we also have a similar system for transformation between quiddity

cycles and triangulations. The details can be consulted in [11]. Here we don’t give a deep

explanation about it.

Proposition 3.22. [10] Let R be a subset of a commutative ring, a = (a1, ..., ak) ∈ Rk be

a λ-quiddity cycle and b = (b1, ..., bl) ∈ Rl be a λ′-quiddity cycle. If we denote a and b by

using polygons (not necessary by triangulation), then a⊕ b can be represent as following:
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a⊕ b = (a1 + bl, a2, ..., ak−1, ak + b1, b2, ..., bl−1)

Definition 3.23. (Triangulation for integer-numbered Frieze)[11] For m ∈ N≥2, let T be

a triangulation of a regular m-polygon. A labelling of T is an assignment of integers at,

called labels, to the triangles t of T . Let d be the sum of the number of negaive labels

and half the number of labels 0. We call (−1)d the sign of he labelling if d is an integer.

A labelling is called admissible if the following conditions are satisfied:

(1) The set of triangles t with at ∈ {1,−1} can be written as a disjoint union of two-

element subsets {t1, t2} (called squares) such that t1, t2 have a common edge (i.e.

are neighbouring triangles) and at1 = −at2 .

(2) The sign is 1, i.e. the sum of the number of negative labels and half the number of

labels 0 is even.

Example 3.24. (1) The following left figure represents the triangulation for the frieze in

Example 1.13 (3).

(2) The following right figure shows the triangulation of quiddity cycle (1, 1, 2, 0, 1, 0,−2).
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Theorem 3.25. [11]

(a) Let T be a triangulation of a regular m-gon with vertices denoted (in counterclockwise

order) 1, 2, ...,m, and assume that we have an admissible labelling of T . For each

vertex i let ci be the sum of the labels of the triangles attached at the vertex i. Then

(c1, ..., cm) is a quiddity cycle over Z.

(b) Every quiddity cycle over Z can be obtained as in (a) from an admissible labelling.

Remark 3.26. [11] With 3.25 (b) we obtain that the mapping from triangulation to quid-

dity over Z is surjective. But it is not injective. For example, the following triangulation

maps to the same quiddity as Example 3.24 (1).
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4 Factorization of Reducibility

4.1 Factorization

This section is the main part of my bachelor thesis to present my own results. With

section 3 we know that the "⊕" operator fulfils neither commutativity nor associativity.

So, it is difficult to say, which form is the decomposition of a {±1}-quiddity cycle. In this

section we define a rule of decomposition (Section 4.1), if we ignore the importance of this

rule, we can find out that the decomposition is not unique. Furthermore, we introduce

one more interesting property, which is called "Simple" (Section 4.2).

Definition 4.1. (Factorization) LetR be a subset of a commutative ring, c = (c1, c2, ..., cm) ∈
Rm be a reducible λ-quiddity cycle with m > 2. We denote by lc the length of c. If there

exits n ∈ N+, n > 1, a1, ..., an and σ1, ..., σn−1 such that for all i ∈ {1, ..., n} we have:

1. ai ∈ Rlai is a λ(i)-quiddity cycle, where λ(i) ∈ {±1}.

2. lai > 2.

3. ai is irreducible.

4. σi ∈ D∑i+1
k=1 lak

.

5. c = (((((a1 ⊕ a2)σ1)⊕ a3)σ2 ⊕ ...)σn−2 ⊕ an)σn−1 (∗∗)

Then we call (∗∗) the factorization of c. And a1, ..., an are called factors of this factoriza-

tion.

Proposition 4.2. Let R be a subset of a commutative ring, c = (c1, c2, ..., cm) ∈ Rm

be a λ-quiddity cycle, and a1, ..., an are {±1}-quiddity cycles. Then a1, ..., an are factors

of c if and only if there exists π1, ..., πn−1 with πi ∈ D∑n
k=i lak

,∀i ∈ {1, ..., n − 1} and

c = (an ⊕ (an−1 ⊕ (...⊕ (a2 ⊕ a1)π1 ...)πn−3)πn−2)πn−1.

Proof. Notice that a1, ..., an are factors of c if and only if there exists σ1, ..., σn−1 with

σi ∈ D∑i+1
k=1 lak

, ∀i ∈ {1, ..., n− 1} and c = (((((a1 ⊕ a2)σ1)⊕ a3)σ2 ⊕ ...)σn−2 ⊕ an)σn−1 . So

we show this proposition by using induction over n.

Induction base: n = 2, with Proposition 3.18(1) we have ∃ϑ1 ∈ Dla1+la2
, π1 = ϑ1σ1, such

that (a1 ⊕ a2)σ1 = ((a2 ⊕ a1)ϑ1)σ1 = (a2 ⊕ a1)π1 .
Induction hypothesis: for n we have:

d := (((((a1⊕a2)σ1)⊕a3)σ2⊕...)σn−2⊕an)σn−1 = (an⊕(an−1⊕(...⊕(a2⊕a1)π1 ...)πn−3)πn−2)πn−1
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Induction step: for n+ 1 we have ∃ϑn+1 ∈ Dld+la2
, πn = ϑnσn such that:

(((((a1 ⊕ a2)σ1)⊕ a3)σ2 ⊕ ...)σn−2 ⊕ an)σn−1 ⊕ an+1)
σn

= (d⊕ an+1)
σn

= ((an+1 ⊕ d)ϑn)σn

= (an+1 ⊕ d)πn

= (an+1 ⊕ (an ⊕ (an−1 ⊕ (...⊕ (a2 ⊕ a1)π1 ...)πn−3)πn−2)πn−1)πn

Corollary 4.3. (1) Let R be a subset of a commutative ring, c = (c1, ..., cm) ∈ Rm be

a λ-quiddity cycle. If a = (a1, ..., ak) ∈ Rk is a irreducible λ′-quiddity cycle, b =

(b1, ..., bl) ∈ Rl is a (−λλ′)-quiddity cycle and σ ∈ Dm, such that c = (a ⊕ b)σ or

c = (b⊕ a)σ. Then with Proposition 4.2 a is always a factor of c.

(2) Let R be a subset of commutative ring, e = (e1, ..., em) ∈ Rm be a reducible λ-quiddity

cycle. If there exists a ∈ Rp, b ∈ Rq, c ∈ Rr, d ∈ Rs four {±1}-quiddity cycles, such

that e = (a⊕ b)⊕ (c⊕ d), then c may not be a factor of e.

Example 4.4. (1) (0, 2, 2, 1, 5, 0,−3,−1) ∈ R8 is a quiddity cycle. Notice that

(0, 2, 2, 1, 5, 0,−3,−1)

= (1, 1, 1)⊕ ((3, 0,−3, 0)⊕ ((1, 1, 1)⊕ ((−1,−1,−1)⊕ (1, 1, 1))σ1)

= ((((−1,−1,−1)⊕ (1, 1, 1))⊕ (1, 1, 1))σ2 ⊕ (3, 0,−3, 0))σ3 ⊕ (1, 1, 1)

with σ1, σ2 ∈ D5, σ3 ∈ D7, we know that (1, 1, 1), (3, 0,−3, 0), (−1,−1,−1) are fac-

tors of the quiddity cycle (0, 2, 2, 1, 5, 0,−3,−1) (No matter whether the form of

decomposition in Definition 4.1 or in Proposition 4.2 is).
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(2) If we decompose (0,2,2,1,5,0,-3,-1) in other forms, then we may have:

(0, 2, 2, 1, 5, 0,−3,−1)

= (((1, 1, 1)⊕ ((1, 1, 1)⊕ (1, 1, 1)))σ1 ⊕ ((0, 2, 0,−2)⊕ (−1,−1,−1))σ2)

with σ1, σ2 ∈ D5, but (0, 2, 0,−2) is not a factor of (0, 2, 2, 1, 5, 0,−3,−1).

Proposition 4.5. Let R = C and c = (c1, ..., cm) ∈ Rm be a {±1}-quiddity cycle with

m > 2, then ∃n ∈ N, ∃a1, ..., an irreducible {±1}-quiddity cycles over R and ∃σ1 ∈
D∑2

k=1 lak
, ..., σn−1 ∈ D∑n

k=1 lak
, such that c = (((((a1⊕ a2)σ1)⊕ a3)σ2 ⊕ ...)σn−2 ⊕ an)σn−1.

Proof. This proposition will be shown by using induction over m.

Induction basis: m = 3, assume c = (c1, c2, c3), such that c is a {±1}-quiddity cycle. With

example 3.3 and Example 3.13 we know that c = (1, 1, 1) or c = (−1,−1,−1), therefore c
is always irreducible.

Induction hypothesis: for m, ∃n ∈ N, ∃a1, ..., an are irreducible {±1}-quiddity cycles over

R and ∃σ1 ∈ D∑2
k=1 lak

, ..., σn−1 ∈ D∑n
k=1 lak

, such that c = (((((a1 ⊕ a2)
σ1) ⊕ a3)

σ2 ⊕
...)σn−2 ⊕ an)σn−1 .

Induction step: for m+ 1, we consider the following cases.
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Case 1: If c is irreducible, then this situation is trivial.

Case 2: If c is reducible. That means, ∃d, e two {±1} quiddity cycles over R, and

c = (d ⊕ e)τ with ld > 2, le > 2, τ ∈ Dt+1. With Remark 3.15 ld + le − 2 = m + 1,

therefore ld = m+ 1 + 2− le < m+ 1, which implies ld ≤ m and similarly le ≤ m.

With induction hypothesis, we know that, ∃n1, n2 ∈ N, ∃a1, ..., an1 , b1, ..., bn2 are irre-

ducible {±1}-quiddity cycles over R and ∃σ1 ∈ D∑2
k=1 lak

, ..., σn−1 ∈ D∑n1
k=1 lak

, π1 ∈
D∑2

k=1 lbk
, ..., πn2−1 ∈ D∑n2

k=1 lbk
, such that

d = (((((a1 ⊕ a2)σ1)⊕ a3)σ2 ⊕ ...)σn1−2 ⊕ an1)
σn1−1

e = (((((b1 ⊕ b2)π1)⊕ b3)π2 ⊕ ...)πn2−2 ⊕ bn2)
πn2−1

If we define e1 = (((((b1 ⊕ b2)π1) ⊕ b3)π2 ⊕ ...)πn2−3 ⊕ bn2−1)
πn2−2 , then e = (e1 ⊕

bn2)
πn2−1 and therefore c = (d⊕ e)τ = (d⊕ (e1⊕ bn2)

πn2−1)τ . With Proposition 3.20

we obtain one of the following cases:

(i) There exists b′n2
∈ Rlbn2 , τ1 ∈ Dld+lbn2

, τ2 ∈ Dt+1, such that b′n2
∼ bn2 and

c = ((d⊕ b′n2
)τ1 ⊕ e1)τ2τ

(ii) There exists e′1 ∈ R
∑k=n2−1

k=1 lbk , τ1 ∈ Dld+
∑k=n2−1

k=1 lbk
, τ2 ∈ Dt+1, such that e′1 ∼

e1 and c = ((d⊕ e′1)τ1 ⊕ bn2)
τ2τ

Notice that no matter in which case, the irreducible {±1}-quiddity cycle bn2 has

been moved out of e. Since we need to move b2, ..., bn2 out of e. So, we need to

repeat Proposition 3.20 totally n2 − 1 times, then this proposition will hold.

Remark 4.6. Proposition 4.5 is equivalent to that each λ-quiddity over C has a factor-

ization. But this doesn’t means, this factorization is unique.

Actually, with Remark 3.19(3) we know that if R is a subset of a commutative ring,

c ∈ Rn is a quiddity cycle and a,b are two (irreducible) {±1}-quiddity cycles, such that

c = (a ⊕ b)σ, then b is not unique. That implies, no matter in which form, if c ∈ Rn is

reducible, then its decomposition can always be not unique.

Proposition 4.7. (Positive-integer frieze and factorization) Let R = N+, c =

(c1, c2, ..., cn) ∈ Rn be a quiddity cycle with n > 2, If c produces a positive-integer-valued

Cuntz frieze (expect the bound 0’s at top and bottom), then one of the following cases will

be satisfied:
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(i) c = (1, 1, 1)

(ii) ∃d ∈ Rn−1 is a quiddity cycle and ∃σ ∈ Dn, such that c = (d ⊕ (1, 1, 1))σ and d

produces a positive-integer-valued Cuntz frieze.

Proof. Since the by c produced Cuntz Frieze F consists of positive integers, c consists of

positive integers as well. If n = 3, then c = (1, 1, 1) is irreducible, which fulfils (i). If n = 4,

then with Example 3.3 we have c = (2, 1, 2, 1) = (1, 1, 1) ⊕ (1, 1, 1) or c = (1, 2, 1, 2) =

((1, 1, 1)⊕ (1, 1, 1))π1 for a π1 ∈ D4.

For n ≥ 5, with Proposition 3.11 and Proposition 1.10 ∃t ∈ {1, ..., n}, ct = 1 and ct+1 6=
1, ct−1 6= 1. Then ∃πn−1 ∈ Dn such that:

c = ((ct+1 − 1, ct+2, ..., cn, c1, ..., ct−2, ct−1 − 1)⊕ (1, 1, 1))πn−1

We denote by d = (ct+1 − 1, ct+2, ..., cn, c1, ..., ct−2, ct−1 − 1) a finite sequence of length

n− 1. With Proposition 3.16 we obtain that d is a quiddity cycle as well, and clearly all

the entries in d are positive integer.

Furthermore, let F̃ be the Cuntz Frieze produced by d. Then with Proposition 3.5 we

obtain F̃ satisfies linear recurrence:

f̃i,j = f̃i,j−1f̃j,j − f̃i,j−2,∀i, j ∈ Z, i− 2 ≤ j ≤ i+ n− 2

Since all the entries in d are positive integers, we have f̃i,i > 0, for all i ∈ Z. Since F is a

positive-integer-valued Cuntz frieze, with Remark 3.7 we get:

fi,j =
(

1 0
) j∏
k=i

(
ck −1
1 0

)(
1

0

)
> 0,∀i, j ∈ Z, i ≤ j ≤ i+ n− 4

In particular, for the fixed t+ 2 we have:

f̃t+2,j =
(

1 0
) j∏
k=t+2

(
ck −1
1 0

)(
1

0

)
> 0,∀j ∈ Z, t+ 2 ≤ j ≤ t+ n− 2

where ci+n = ci for all i ∈ Z. With Proposition 1.9, F̃ consists of positive integers.

Remark 4.8. (1) All λ-quiddity cycles having the form (1, ..., 1) are irreducible over R =

N+.

Proof. Suppose c = (c1, ..., cm) = (1, ..., 1) ∈ Rm is reducible as c = (a ⊕ b)σ with

a ∈ Rk, b ∈ Rl, σ ∈ Dm. Then we obtain m = k + l − 2 and m =
∑m

t=1 ct =∑k
t=1 at +

∑l
t=1 bt ≥ k + l = m+ 2, which is a contradiction.
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(2) The reducibility of a λ-quiddity cycle is dependent on the commutative ring R. For

example, (1, 1, 1, 1, 1, 1, 1, 1, 1) is irreducible over R = N+ since (1).

But (1, 1, 1, 1, 1, 1, 1, 1, 1) = (1, 1, 1)⊕ (0, 1, 1, 1, 1, 1, 1, 0) is reducible over R = N.

Theorem 4.9. Let R = N+, c = (c1, ..., cn) ∈ Rn be a quiddity cycle of a positive-integer-

valued Cuntz frieze. Then c has a factorization such that c = ((((1, 1, 1)⊕(1, 1, 1))σn−3 ...)σ2⊕
(1, 1, 1))σ1, where σ1 ∈ Dn, ..., σn−3 ∈ D4.

Proof. If m = 3, then c = (1, 1, 1) trivial. If m > 3, then since c = (c1, ..., cn) ∈ Rn is a

quiddity cycle of a positive-integer-valued Cuntz frieze, with Proposition 4.7 we obtain that

∃d1 ∈ Rn−1 quiddity cycle and ∃σ ∈ Dn, such that c = (d1⊕ (1, 1, 1))σ. Recursively using

Proposition 4.7 we obtain c = (((dn−3 ⊕ (1, 1, 1))σn−3 ...)σ2 ⊕ (1, 1, 1))σ1 , where dn−3 ∈
R3, σi ∈ Dn−i+1,∀i ∈ {1, 2, ..., n − 3}. Since dn−3 ∈ R3 is a quiddity cycle, we have

dn−3 = (1, 1, 1).

4.2 Simple Frieze Patterns

Definition 4.10. (Simple quiddity cycle) Let R be a subset of a commutative ring,

c = (c1, c2, ..., cn) ∈ Rn be a λ-quiddity cycle with n > 2. We denote ctn+i = ci for ∀t ∈ Z
and i ∈ {1, ..., n}. If (ci, ci+1, ..., cj) is not a {±1}-quiddity cycle for all i, j ∈ Z with

|i− j| < n− 1, then we call c simple.

Example 4.11. (1) (1, 1, 1) and (−1,−1,−1) are simple over Z.

(2) The quiddity cycle (1, 1, 1, 1, 1, 1) is not simple over Z, since (1, 1, 1) is also a quiddity

cycle.

Proposition 4.12. Let R be a subset of a commutative ring and c = {c1, ..., cn} ∈ Rn be

a quiddity cycle.

(1) If c is not simple and we denote ct+n = ct for all t ∈ Z, then ∃i, j ∈ {1, ..., 2n}, i < j,

such that c′ = (ci, ..., cj) is a quiddity cycle.

(2) If 0 ∈ R and c is irreducible, then c is simple.

(3) If 0 /∈ R and c is irreducible, then c may be not simple.
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Proof. (1) If c is not simple, then ∃i, j ∈ {1, ..., n} such that a = (ci, ..., cj) is a λ-quiddity

cycle and b = (cj+1, ..., cn, c1, ..., ci−1) = (cj+1, ..., cn, cn+1, ..., cn+i−1) is a λ′-quiddity

cycle. With(
−1 0

0 −1

)
=

n∏
k=1

(
ck −1
1 0

)
=

j∏
k=i

(
ck −1
1 0

)
n+i−1∏
k=j+1

(
ck −1
1 0

)

=

(
λ 0

0 λ

)(
λ′ 0

0 λ′

)
=

(
λλ′ 0

0 λλ′

)

we obtain λλ′ = −1⇒ λ = −1 or λ′ = −1.

(2) Suppose c not simple. That means, with (1) ∃i, j ∈ {1, ..., n, n+ 1, ..., 2n}, i ≤ j, such
that c′ = (ci, ..., cj) is a quiddity cycle, which is a contradiction to c irreducible.

(3) For example, R = N+, c = (1, 1, 1, 1, 1, 1, 1, 1, 1) is irreducible but not simple.
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5 Open Questions

1. Can we show that, if c is a simple λ-quiddity cycle over N+, then λ = −1. In other

words, there is no 1-quiddity cycle over N+.

2. Can we show that, if c = (c1, ..., cn) is a simple quiddity cycle over C, then for

∀i ∈ {1, ..., n}, ∃j ∈ {1, ..., n}, such that cj = ci

3. Can we show that, if R is a subset of a commutative ring and c is a simple quiddity

cycle over R, then the Cuntz Frieze pattern (fi,j)i,j∈Z, which is produced by c,

satisfies that fi,j ∈ R,∀i, j ∈ Z, i ≤ j ≤ i+ n− 4.
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