Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger

Fakultät für Mathematik und Informatik

Operator Algebras Problem Set 10 To be submitted by Wednesday, July 2, 4 pm.

Exercise 1

Suppose H is separable and let $M \subset \mathcal{B}(H)$ be an abelian von Neumann algebra. Show that there exists a single selfadjoint operator $a \in M$ which generates M, i.e. $\{a\}'' = M$.

Hint: Choose a sequence of projections $(p_n)_{n \in \mathbb{N}}$ in M which is strongly dense in the set of all projections in M (why does such a sequence exist?) and consider the operator $\sum_{n=0}^{\infty} 3^{-n} p_n$. You may use without proof the fact that the unit ball of $\mathcal{B}(H)$ is separable and metrizable in the strong operator topology.

Exercise 2

Let $M \subset \mathcal{B}(H)$ be a von Neumann algebra and let $(p_i)_{i \in I}$ be an arbitrary family of projections in M. The supremum of the family $(p_i)_{i \in I}$ is the projection onto the subspace

$$\overline{\operatorname{span}}\left(\bigcup_{i\in I}p_i(H)\right)\subset H$$

and is denoted by $\bigvee_{i \in I} p_i$. Show that $\bigvee_{i \in I} p_i \in M$.

Talk

This talk covers the *Cuntz algebra* and should give a sketch of the proof of Theorem 7.20.

- (a) Define the *Cuntz algebra* \mathcal{O}_n and briefly argue why it exists.
- (b) Define multi-indices and words in \mathcal{O}_n .
- (c) Prove Lemma 7.16 a), b) and c).
- (d) Define $\mathcal{F}_n^k, \mathcal{F}_n$ and \mathcal{S} .
- (e) Prove Lemma 7.15.
- (f) Define ρ_{ζ} and φ , and note (without proof) some facts about φ .
- (g) Define purely infinite C^* -algebras.
- (h) Sketch the proof of Theorem 7.20, that is the Cuntz algebra \mathcal{O}_n is purely infinite. (You may use the lemmas in section 7.6 without proving them.)