Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger

Fakultät für Mathematik und Informatik

Operator Algebras Problem Set 4 To be submitted by Wednesday, **May 14**, 4 pm.

Exercise 1

Let A be a unital C*-algebra and let $x, y \in A$. Show that

$$\operatorname{sp}(xy) \cup \{0\} = \operatorname{sp}(yx) \cup \{0\}$$

and provide an example where sp(xy) and sp(yx) do not coincide.

Exercise 2

Let H be a complex Hilbert space and $T \in \mathcal{B}(H)$.

(a) Show that there is a unique decomposition T = VP where $V \in \mathcal{B}(H)$ is a partial isometry and $P \in \mathcal{B}(H)$ is positive such that $\ker(V) = \ker(P) = \ker(T)$. Hint: Take $P = |T| := \sqrt{T^*T}$ and $V = V_0 \oplus 0$ where

 $V_0: \overline{\operatorname{ran}(|T|)} \to \overline{\operatorname{ran}(|T|)}, Px \mapsto Tx.$

In particular, justify that these expressions are well-defined and make sense. For the uniqueness statement, first prove that P is unique.

- (b) Show that V is unitary whenever T is invertible.
- (c) How does the decomposition T = VP look like in the case $H = \mathbb{C}$?

Exercise 3

Let H be a complex Hilbert space and $T \in \mathcal{B}(H)$. Prove the following statements:

- (a) T = 0 if and only if $\langle Tx, x \rangle = 0$ for all $x \in H$.
- (b) $T = T^*$ if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$.
- (c) $T \ge 0$ if and only if $\langle Tx, x \rangle \ge 0$ for all $x \in H$. *Hint*: Show that for every $\lambda < 0$, the operator $\lambda 1 - T$ is bounded from below, that is, there exists a constant c > 0 such that $\|(\lambda 1 - T)x\| \ge c\|x\|$ for all $x \in H$.

The following exercises are **not graded** and will be discussed on Monday, May 12.

Exercise 4

Let A be a C*-algebra, $x \in A$ normal and $f, g \in C(sp(x))$. Show:

- (a) Proposition 3.29 b), that is, sp(f(x)) = f(sp(x)).
- (b) Recall Proposition 3.29 e) and Lemma 3.8 a) and verify the following arguments:
 - i) If x is selfadjoint and $f(t) = 2t^2$, then f(x) is positive.
 - ii) If x is positive and $f(t) = t^3$, then f(x) is positive.
 - iii) If x is positive and $x^n = 0$ for some $n \in \mathbb{N}$, then x = 0.
 - iv) If x is positive and $\lambda \in (0, \infty)$, then λx is also positive.
 - v) Recall the proof of Lemma 4.2.
 - vi) If x is normal and $y \in C^*(1, x)$ is positive, then there exists a positive function $\tilde{g} \in C(\operatorname{sp}(x))$ such that $\tilde{g}(x) = y$.

Exercise 5

Find the unique positive square root of the matrix $S = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$. The following steps may

help you:

- (a) Verify that S is selfadjoint and compute its eigenvalues. Make sure that all eigenvalues are positive.
- (b) Diagonalize S, that is, find a unitary matrix U such that $S = U^*DU$, where D is diagonal matrix consisting of the eigenvalues of S.
- (c) Verify that the square root of S is given by $U^*D'U$, where D' is the diagonal matrix consisting of the square roots of the eigenvalues of S.