Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger

Fakultät für Mathematik und Informatik

Operator Algebras Problem Set 5 To be submitted by Wednesday, May 21, 4 pm.

Exercise 1

Let A be a unital C^{*}-algebra and let $x \in A$ be selfadjoint. Show that:

- (a) Recall that x is invertible if and only if $0 \notin sp(x)$.
- (b) Let x be invertible. Show that x^{-1} is selfadjoint.
- (c) Let $sp(x) \subset (0, \infty)$. Use the functional calculus to show $sp(x^{-1}) \subset (0, \infty)$.
- (d) Show that if $f, g \in C(sp(x))$, then f(x) and g(x) commute; in particular, f(x) and x commute.
- (e) Show that $\operatorname{sp}(x-1) \subset [0,\infty)$ if and only if $\operatorname{sp}(x) \subset [1,\infty)$.
- (f) Show that if $sp(x) \subset [1, \infty)$, then x is invertible and $sp(1 x^{-1}) \subset [0, \infty)$.

Exercise 2

Let I, A and B be C^* -algebras and let $\iota : I \to A$ and $\pi : A \to B$ be *-homomorphisms.

(a) Show that if the sequence

$$0 \to I \to A \to B \to 0$$

is exact, then ι is injective, π is surjective, $\iota(I) \triangleleft A$ is a closed ideal in A and $B \cong A/\iota(I)$.

(b) Conversely, if ι is injective and $\iota(I) \triangleleft$ is a closed ideal in A, show that

$$0 \to I \to A \to A/\iota(I) \to 0$$

is exact, where $A \to A/\iota(I)$ is the canonical quotient map.

Talk

In this talk we want to look at special C^* -subalgebras, namely hereditary C^* -subalgebras. The recommended literature is: " C^* -algebras and Operator Theory" by Gerald Murphy.

i) Read Section 3.2 and give the definition and an example for hereditary C^* -subalgebras. How are these linked to closed left ideals (Theorem 3.2.1)?

- ii) In the separable case, what do hereditary C^* -subalgebras look like (Theorem 3.2.5 and Theorem 3.2.6)? How are closed ideals linked to hereditary C^* -subalgebras (Theorem 3.2.7)?
- iii) Show that Theorem 3.2.5 does in general not hold for non-separable hereditary C^* -subalgebras.