Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger



Fakultät für Mathematik und Informatik

## Operator Algebras Problem Set 7 To be submitted by Wednesday, **June 11**, 4 pm.

A state  $\phi$  on a C<sup>\*</sup>-algebra is called *faithful* if  $\phi(x^*x) = 0$  implies x = 0 for every element x.

## Exercise 1

Let A be a C<sup>\*</sup>-algebra, let  $\phi$  be a state on A and let  $(H_{\phi}, \pi_{\phi}, \zeta_{\phi})$  be the GNS-representation of A corresponding to  $\phi$ . Prove the following statements:

- (a) For every closed ideal I in A, we have  $I \subset \ker(\pi_{\phi})$  if and only if  $I \subset \ker(\phi)$ .
- (b) If  $\phi$  is a faithful state, then  $\pi_{\phi}$  is a faithful representation.

## Exercise 2

We consider the universal  $C^*$ -algebras

 $C^*(p, 1 \mid p \text{ is a projection, i.e. } p = p^2 = p^*)$  $C^*(s, 1 \mid s \text{ is a symmetry, i.e. } s^*s = ss^*, s = s^*).$ 

(Here, we consider 1 as a generator with the relations  $1 = 1^* = 1^2$  and 1x = x1 = x for every other generator x.)

- (a) Show that these  $C^*$ -algebras are isomorphic by writing down an explicit isomorphism. To do so, find a symmetry  $s' \in C^*(p, 1)$  and a projection  $p' \in C^*(s, 1)$  and use the universal property twice. (It might help to solve (a) and (b) at the same time.)
- (b) How does the spectrum of a projection and the spectrum of a symmetry look like? Since the  $C^*$ -algebras above are commutative, they are isomorphic to the algebra of continuous functions on the spectrum, i.e.

 $C^*(p,1) \cong C(\operatorname{sp}(p)), \quad C^*(s,1) \cong C(\operatorname{sp}(s)).$ 

What are images of  $id_{sp(p)}$  and  $id_{sp(s)}$  under the isomorphism between  $C^*(p, 1)$  and  $C^*(s, 1)$ ?

## Exercise 3

Show that the following  $C^*$ -algebras are isomorphic.

- $C(\{1, ..., n\})$
- $\mathbb{C}^n = \mathbb{C} \oplus \cdots \oplus \mathbb{C}$
- $C^*(p_1,\ldots,p_n,1 \mid p_i \text{ projections}, \sum_{i=1}^n p_i = 1)$
- $C^*(u, 1 \mid u^*u = uu^* = 1, u^n = 1)$