Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger

Fakultät für Mathematik und Informatik

Operator Algebras Problem Set 8 To be submitted by Wednesday, **June 18**, 4 pm.

Exercise 1

Let H be a complex Hilbert space with orthonormal basis $(e_n)_{n \in \mathbb{N}}$, and let \tilde{H} be a complex Hilbert space with orthonormal basis $(\tilde{e}_n)_{n \in \mathbb{Z}}$. For $\lambda \in S^1 \subset \mathbb{C}$, we define shift and diagonal operators via

$$S: H \to H, \qquad \tilde{S}: \tilde{H} \to \tilde{H}, \qquad d(\lambda): H \to H, \qquad \tilde{d}(\lambda): \tilde{H} \to \tilde{H}$$
$$e_n \mapsto e_{n+1} \qquad \tilde{e}_n \mapsto \tilde{e}_{n+1} \qquad e_n \mapsto \lambda^n e_n \qquad \tilde{e}_n \mapsto \lambda^n \tilde{e}_n$$

Prove the following assertions:

(a) S is an isometry such that $1-SS^*$ is the projection onto the one-dimensional subspace $\mathbb{C}e_1 \subset H$, while $\tilde{S}, d(\lambda), \tilde{d}(\lambda)$ are unitaries with

$$d(\lambda)^* = d(\tilde{\lambda}), \quad d(\lambda)d(\lambda') = d(\lambda\lambda'), \quad \tilde{d}(\lambda)^* = \tilde{d}(\tilde{\lambda}), \quad \tilde{d}(\lambda)\tilde{d}(\lambda') = \tilde{d}(\lambda\lambda').$$

(b) It holds that $d(\lambda)S = \lambda S d(\lambda)$ and $\tilde{d}(\lambda)\tilde{S} = \lambda \tilde{S} d(\lambda)$, and more generally

 $\tilde{d}(\lambda)^k \tilde{S}^l = \lambda^{kl} \tilde{S}^l \tilde{d}(\lambda)^k, \ k, l \in \mathbb{Z}.$

Conclude that the set \mathcal{S} of finite linear combinations of $\tilde{d}(\lambda)^k \tilde{S}^l$ is a dense *-subalgebra of $C^*(\tilde{S}, \tilde{d}(\lambda)) \subset \mathcal{B}(\tilde{H})$.

(c) The maps

$$\beta_{\lambda} : \mathcal{B}(H) \to \mathcal{B}(H), \qquad \qquad \tilde{\beta}_{\lambda} : \mathcal{B}(\tilde{H}) \to \mathcal{B}(\tilde{H}) \\ T \mapsto d(\lambda)Td(\lambda)^{*}, \qquad \qquad T \mapsto \tilde{d}(\lambda)T\tilde{d}(\lambda)^{*}$$

are *-isomorphisms with $\beta_{\lambda}(C^*(S)) = C^*(S)$ and $\beta_{\lambda}(C^*(\tilde{S})) = C^*(\tilde{S})$.

(d) Use (c) to show that $\operatorname{sp}(\tilde{S}) = S^1$ and $\operatorname{sp}(\sigma(S)) = S^1$, where $\sigma : \mathcal{B}(H) \to \mathcal{B}(H)/\mathcal{K}(H)$ is the quotient map.

Exercise 2

Prove the "Five Lemma ", i.e. Lemma 6.27:

Assume we have the following commutative diagram of two short exact sequences:

$$\begin{array}{cccc} 0 \longrightarrow I_1 \xrightarrow{\iota_1} A_1 \xrightarrow{\pi_1} B_1 \longrightarrow 0 \\ & & & & & \\ \alpha & & & \varphi & & & \\ 0 \longrightarrow I_2 \xrightarrow{\iota_2} A_2 \xrightarrow{\pi_2} B_2 \longrightarrow 0 \end{array}$$

If α and β are *-isomorphisms, then also φ is a *-isomorphism.

Talk

The irrational rotation algebra A_{ϑ} was introduced in section 7.1. This talk should cover the results from section 7.2:

- (a) Give the definition of a *conditional expectation* and faithful positive linear map.
- (b) Construct the maps φ_1, φ_2 and outline why these are faithful conditional expectations.
- (c) Use Lemma 7.8 to show one of the differences between $\vartheta \notin \mathbb{Q}$ and $\vartheta \in \mathbb{Q}$.