Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger

Fakultät für Mathematik und Informatik

Operator Algebras Problem Set 9 To be submitted by Wednesday, **June 25**, 4 pm.

Exercise 1

Let H be a complex Hilbert space.

- (a) Show that the involution $* : \mathcal{B}(H) \to \mathcal{B}(H)$ is continuous in the norm topology and the weak operator topology, but not in the strong operator topology.
- (b) Let $(x_{\lambda})_{\lambda \in \Lambda}$, $(y_{\lambda})_{\lambda \in \Lambda}$ be two nets in $\mathcal{B}(H)$ (over the same index set Λ) with $x_{\lambda} \to x$ and $y_{\lambda} \to y$ in the strong operator topology. Show that if $(x_{\lambda})_{\lambda \in \Lambda}$ is bounded, then $(x_{\lambda}y_{\lambda})_{\lambda \in \Lambda}$ converges strongly to xy. (This fails to be true in general if $(x_{\lambda})_{\lambda \in \Lambda}$ is not assumed to be bounded. A counterexample may be found in the book A Hilbert Space Problem Book by Paul Halmos.)

Exercise 2

Let H be a complex Hilbert space and let $S, T \subset \mathcal{B}(H)$ be subsets with $S \subset T$.

- (a) Show that the commutant $S' \subset \mathcal{B}(H)$ of S is a weakly closed unital subalgebra.
- (b) Show that if $S = S^*$, then the commutant $S' \subset \mathcal{B}(H)$ of S is a strongly closed unital *-subalgebra (and hence a von Neumann algebra).
- (c) Show that $S \subset S''$ and $T' \subset S'$. Deduce that S''' = S'.

Talk

Show that the rational rotation algebra is not simple, while the irrational rotation algebra is simple. For the rational rotation algebra A_{ϑ} you can proceed as follows:

- (a) Find a representation $\pi: A_{\vartheta} \to M_q(\mathbb{C})$.
- (b) Find unital C*-algebras B and D as well as unital *-homomorphisms $\varphi : A_{\vartheta} \to B$ and $\psi : A_{\vartheta} \to D$ such that $\varphi(v^q) = 1$ and $\psi(v^q) \neq 1$.
- (c) Conclude that A_{ϑ} is not simple.

Use section 7.3 for the irrational rotation algebra A_{ϑ} :

- (i) Define a *(normalized)* trace.
- (ii) Briefly recall the defition of φ_1, φ_2 .
- (iii) Show that $\tau := \varphi_1 \circ \varphi_2$ is a unital faithful trace (Proposition 7.10).
- (iv) Conclude that A_{ϑ} is simple (Theorem 7.11).