# Mittelwerte, Funktionen als Objekte, parametrisierte Familien

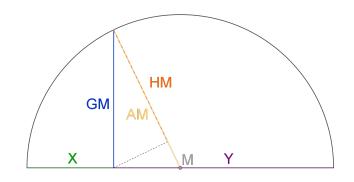


Im Rahmen des Vorkurses Mathematik für Studierende der Mathematik

# Arbeitsauftrag 1 Klassiker

Beweisen Sie die Ungleichungskette der Mittelwerte formal-algebraisch sowie visuellgeometrisch.

Für 
$$x < y$$
 gilt  $x < HM < GM < AM < y$ .



# Arbeitsauftrag 2 In Mitten von Mitten

a) Beweisen Sie, dass

$$AM(x,y) = \frac{x+y}{2}$$
,  $GM(x,y) = \sqrt{xy}$ ,  $HM(x,y) = \frac{2xy}{x+y}$  und  $QM(x,y) = \sqrt{\frac{x^2+y^2}{2}}$ 

kommutative Mittelwertfunktionen sind, indem Sie zeigen, dass diese die Axiome (M1), (M2) und (M3) erfüllen.

- b) Geben Sie eine Mittelwertfunktion an, die nicht kommutativ ist. Dazu müssen Sie zeigen, dass Ihre Mittelwertfunktion (M1) und (M2) aber nicht (M3) erfüllt.
- c) Beweisen Sie: Wenn  $MW_1$ ,  $MW_2$  und  $MW_3$  Mittelwertfunktionen sind, dann wird auch über  $MW(x,y) := MW_3(MW_1(x,y),MW_2(x,y))$  eine Mittelwertfunktion definiert. Ist diese ebenfalls kommutativ?
- d) Es gilt  $HM(x,y) = \frac{GM(x,y)^2}{AM(x,y)}$ . Gilt allgemein: Wenn  $MW_1$  und  $MW_2$  Mittelwertfunktionen sind, dann wird über  $MW(x,y) = \frac{MW_1(x,y)^2}{MW_2(x,y)}$  eine Mittelwertfunktion definiert?

#### **Arbeitsauftrag 3** Beweise

Arbeiten Sie den Beweis zu

Satz 2: Jede Mittelwertfunktion ist eine CHUQUET-Funktion

aus der Vorlesung (Arbeitsblatt) durch. Klären Sie dabei alle Beweisschritte und verwendeten Strategien.

### Arbeitsauftrag 4 Viele Mitten

- a) Formen Sie  $AM(x,y) = \frac{x+y}{2}$ ,  $HM(x,y) = \frac{2xy}{x+y}$  und  $QM(x,y) = \sqrt{\frac{x^2+y^2}{2}}$  so um, dass man erkennt, dass sie dem gleichen formalen Muster genügen, d.h. dass sie alle Beispiele zu einer mit  $p \in \mathbb{R}$  parametrisierten Familie der p-Potenz-Mittel sind.
- b) Erklären Sie anhand einer geeigneten Visualisierung, wie auch GM(x, y) in die Familie passt. Sie können dazu GeoGebra verwenden.