ONBs of Hilbert Modules, Cuntz Algebras, and Other Algebras Generated by Partial Isometries

(Joint with Malte Gerhold)

Abstract

We examine when the Hilbert modules \mathcal{B}^m and \mathcal{B}^n over a unital C^* -algebra \mathcal{B} can be isomorphic.

In the case m = 1, this leads us naturally to the Cuntz algebras O_n . For general m, we are lead to the universal C^* -algebra $O_{n,m}$ generated by a biunital $n \times m$ -matrix unit, generalizing $O_n = O_{n,1}$.

Since isomorphisms between \mathcal{B}^m and \mathcal{B}^n are, obviously, given by a unitary $n \times m$ -matrix, it is evident that $O_{n,m} \ (\cong O_{m,n})$ is intimately related to the universal C^* -algebra generated by a unitary $n \times m$ -matrix, the rectangular Brown algebra $\mathcal{U}_{n,m} \ (\cong \mathcal{U}_{m,n})$. In fact, we will see that $O_{n,m} \cong M_m(\mathcal{U}_{n,m}) \ (\cong M_n(\mathcal{U}_{n,m}))$, that it is a quotient of $\mathcal{U}_{n,m}$, and that it embeds naturally into the unital free product $O_n \otimes_1 O_m$.

It appears that the (adjoints of the) elements of the biunital matrix unit forming a unitary matrix in $M_{n,m}(O_{n,m})$ (whose entries are partially isometric and generate $O_{n,m}$) may be considered as a sort of a dilation of the unitary matrix in $M_{n,m}(\mathcal{U}_{n,m})$ (whose entries generate $\mathcal{U}_{n,m}$) through the natural conditional expectation $O_{n,m} \cong M_m(\mathcal{U}_{n,m}) \to \mathcal{U}_{n,m}$.