

Modulhandbuch

für den Bachelor Studiengang Physik

zusammengestellt für die Fachrichtungen der Physik der Universität des Saarlandes von Prof Dr. Christoph Becher und Prof. Dr. Ludger Santen

Studienabschnit	Modul	Titel	Derzeitige/r	ECTS
Studienabschnit t	Wodui	ııteı	Modulverantwortliche/r	ECIS
1. Semester	EP I	Experimentalphysik I	Birringer	8
1. Semester	CP	Computerpraktikum	Rieger	2
1. Semester	M-MMP	Mathematische	Kruse	7
		Methoden der Physik		·
1. Semester	M-LA I	Lineare Algebra I	Decker	9
2. Semester	EP II	Experimentalphysik II	Jacobs	15
2. Semester	M-ANA I	Analysis I	Eschmeier	9
2. Semester	TP I	Theoret. Physik I	Kruse	8
3+4. Semester	EP III	Experimentalphysik	Becher	11
		III		
Semester	GP II	Physikalisches	Deicher, Huber	7
		Grundpraktkum II		
3. Semester	TP II	Theoret. Physik II	Morigi	8
Semester	WPM-TNGD	Theorie und Numerik	Rjasanow	9
		gewöhnlicher DGL		
4. Semester	TP III	Theoret. Physik III	Santen	8
Semester	GP III	Physikalisches	Deicher, Huber	7
		Grundpraktkum III		_
4. Semester	WPM-FKT	Funktionentheorie	Fuchs	9
5+6. Semester	EP IV	Experimentalphysik IV	Wichert	8
5. Semester	TP IV	• •	Diogor	8
5. Semester	FP I	Theoret. Physik IV	Rieger Hartmann	9
5. Semester	FFI	Phys. Praktikum für Fortgeschrittene I	паннанн	9
6. Semester	WPB	Wahlpflichtbereich	Studiendekan(in)/Studienbea	5
o. odnicatei	VVI D	vvanipiliontbereion	uftragte(r)	3
6. Semester	BS	Bachelorseminar	Studiendekan(in)/Studienbea	6
			uftragte(r)	
6. Semester	BA	Bachelorarbeit	Studiendekan(in)/Studienbea	12
			uftragte(r)in	

Experimental	physik I				EP I	
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte	
1	1.	WS	1 Semester	6	8	
Modulverantwor	tliche/r	Birringer				
Dozent/inn/en		Hochschullehrer(in) der Experimentalphysik oder technischen Physik studentischer Betreuer pro Übungsgruppe				
Zuordnung zum	Curriculum	Pflicht				
Zugangsvorauss	Zugangsvoraussetzungen Keine formalen Voraussetzungen.					
Leistungskontro	llen / Prüfungen	gen Eine benotete Klausur oder mündliche Prüfung. Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben.				
Lehrveranstaltur	ngen / SWS		perimentalphysik hwingungen und rlesuna		4 SWS	
		(max. Gruppe			2 SWS	
Arbeitsaufwand		 Präsenzzeit V 15 Wochen 			60 Stunden	
		 Präsenzzeit Ü 	bung			
		 15 Wochen à 2 SWS Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung 			30 Stunden	
		Mausui- Ouel	Traidingsvoibere	iturig	150 Stunden	
		Summe			240 Stunden	

Lernziele/Kompetenzen:

Modulnote

• Erwerb von Grundkenntnissen zur klassischen Mechanik sowie Schwingungen und Wellen unter experimentell-phänomenologischen Gesichtspunkten

Note der Klausur bzw. der mündlichen Prüfung

- Vermittlung eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Kennenlernen grundlegender Begriffe, Phänomene, Konzepte und Methoden
- Einüben elementarer Techniken wissenschaftlichen Arbeitens, insbesondere der Fähigkeit, physikalischer Problemstellungen durch Anwendung mathematischer Formalismen selbständig zu lösen
- Übersicht über weiterführende Rechentechniken

Inhalt

- Klassische Mechanik: Messen und Maße, Vektoren, Newtonsche Axiome, Punktmechanik, Potentialbegriff, Planetenbewegung, Bezugssysteme, Relativitätsmechanik, Mechanik des starren Körpers, Mechanik von Festkörpern (Elastizität, Plastizität) und Flüssigkeiten
- Schwingungen und Wellen: Harmonischer Oszillator; freie, gedämpfte und getriebene Schwingung; gekoppelte Schwingungen, Schwebungen und Gruppengeschwindigkeit, Wellenbewegung in Medien, Energietransport und Energiedichte einer Welle
- Behandlung und Einübung der im Rahmen der Mechanik benötigten Rechentechniken (auf den Vorlesungsverlauf verteilt)

Weitere Informationen

Allgemeines:

- Mit dem Modul beginnt das Physik-Studium im Wintersemester. Der Besuch des Vorkurses, der Oberstufen-Schulmathematik studienvorbereitend aufarbeitet, wird empfohlen (jeweils im September/Oktober vor Beginn der Vorlesungen).
- Die Modulveranstaltungen sind aufeinander und mit dem Physikalischen Grundpraktikum abgestimmt.
- Inhaltlich wird vorausgesetzt: Wissensstand mind. gemäß guten Leistungen in Grundkursen Physik und Mathematik.

Literaturhinweise:

Die Veranstaltungen folgen keinem bestimmten Lehrbuch. Zu Beginn der Veranstaltung wird unterstützende Literatur bekannt gegeben.

Folgende beispielhafte Standardwerke sind zu empfehlen:

Experimentalphysik I

- Halliday, Resnik, Walker, Koch: Physik, Verlag Wiley-VCH, 1. Auflage, 2005.
- Dransfeld, Kienle, Kalvius: Physik 1: Mechanik und. Wärme: Oldenbourg-Verlag, 10. Auflage, 2005
- Meschede: Gerthsen Physik, Springer Verlag, 23. Auflage, 2006.
- Bergmann-Schäfer, Lehrbuch der Experimentalphysik, Bd.1, Mechanik, Akustik, Wärme; Gruyter-Verlag, 11. Auflage, 1998
- Berkelev Physik Kurs. Bd.1. Mechanik: Springer Verlag. 5. Auflage. 1991
- Feynman Vorlesungen über Physik, Bd.1, Mechanik, Strahlung und Wärme (4. Auflage, 2001);
- W. Demtröder, Experimentalphysik 1, 4. Auflage, Springer Verlag, 2005.
- P.A. Tipler, R.A. Llewelyn, *Moderne Physik*, 1. Auflage, Oldenbourg Verlag, 2003.

Computerpra	СР				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1.	1.	WS	1 Semester	3	2

Modulverantwortliche/r Rieger

Dozent/inn/en Hochschullehrer(innen) der theoretischen Physik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Leistungskontrollen / Prüfungen Erfolgreiche Bearbeitung von Programmieraufgaben und/oder

Präsenzübungen

Lehrveranstaltungen / SWS • 1 Vorlesung (1 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 1 SWS 15 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben,

15 Stunden

Summe 60 Stunden

Modulnote Unbenotet

Lernziele/Kompetenzen

- Selbstständiger Umgang mit studienrelevanten Betriebssystemen und Anwendungsprogrammen
- Erlernen einer Programmiersprache
- Befähigung zur computergestützten Auswertung von Datensätzen
- Anwendung numerischer Methoden zur Beschreibung einfacher Modellsysteme
- Fähigkeit zur numerischen Analyse von physikalischen Problemen

Inhalt

- Programmiersprache C mit Übungsbeispielen
- Einführung in Maple
- Einführung in die Betriebssysteme Windows und Linux
- Handhabung eines Textverarbeitungssystems (Word, Open Office) und eines Präsentationsprogramms (z.B. Powerpoint).

Weitere Informationen

Literatur:

- Dokumentationen und Handbücher zu den Programmpaketen
- Jürgens M., Latex: Eine Einführung und ein bisschen mehr (http://www.fzjuelich.de/zam/files/docs/bhb/bhb-0134.pdf), FZJ-ZAM-BHB 0143 Einführende Literatur zur Programmiersprache C++

In den Übungen steht die direkte und interaktive Anwendung der Lehrinhalte aus der Vorlesung im Vordergrund.

Mathematisch	M-MMP				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1.	1.	WS	1 Semester	5	7

Modulverantwortliche/r Kruse

Dozent/inn/en Hochschullehrer(innen) der Theoretischen Physik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Leistungskontrollen / Prüfungen Klausur

Prüfungsvorleistung: Erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (3 SWS)

1 Übung (2 SWS)

Studierenden mit Defiziten in der mathematischen Vorbildung wird angeboten, diese im Rahmen eines begleitenden Tutoriums

gezielt aufzuarbeiten.

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 3 SWS 45 Stunden

• Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

135 Stunden

Summe 210 Stunden

Modulnote Unbenotet

Lernziele/Kompetenzen

- Übersicht über weiterführende Rechentechniken insbesondere als Grundlage für die Vorlesungen in theoretischer Physik
- Einführung in die mathematische Formulierung physikalischer Gesetzmäßigkeiten
- Entwicklung von Lösungsstrategien für mathematisch-physikalische Problemstellungen
- Einüben des Verfassens und der Darstellung von Lösungen zu Hausaufgaben

Inhalt

- Vektorräume, lineare Abbildungen, Eigenwerte, Diagonalisierung
- Funktionen von n Veränderlichen
- nichtlineare Koordinatentransformationen, Differentialgeometrie
- Differential- und Integralrechnung in n-dimensionalen Räumen
- Newtonsche Bewegungsgleichungen
- Schwingungen und gekoppelte Differentialgleichungen

Weitere Informationen

Inhaltlich wird vorausgesetzt: Wissensstand mind. gemäß guten Leistungen in Grundkursen Mathematik. Ein Vorkurs, der Oberstufen-Schulmathematik studienvorbereitend aufarbeitet, wird empfohlen.

Literatur:

- S. Großmann, Mathematischer Einführungskurs für die Physik, Teubner, (2005)
- W. Nolting, Grundkurs Theoretische Physik, Springer, Berlin, (2004)
- C. B. Lang, N. Pucker, Mathematische Methoden in der Physik, Elsevier, (2005)
- K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering, Cambridge University Press, (2006)

Lineare Algeb	M-LA I				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1.	1.	WS	1 Semester	6	9

Modulverantwortliche/r

Decker

Dozent/inn/enHochschullehrer(innen) der Mathematik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Zwischenklausur; Klausur oder mündl. Prüfung am

Semesterende.

Prüfungsvorleistungen: erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (4 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

180 Stunden

Summe 270 Stunden

Modulnote Aus Klausurnote bzw. Note der mündlichen Prüfung

Lernziele / Kompetenzen

- Fähigkeit, abstrakte algebraische Begriffsbildung zu verstehen und
- Beherrschung von Methoden der Linearen Algebra
- Anwendung der Methoden zur Problemlösung unter Benutzung von Hilfsmitteln (z.B. Programmpakete zur Computeralgebra)

Inhalt

- Mengenlehre und grundlegende Beweisverfahren, vollständige Induktion
- Algebraische Grundbegriffe: Gruppen, Ringe, Körper
- Vektorräume, Basis, Dimension, Koordinaten, Lineare Gleichungssysteme, Matrizen, lineare Abbildungen, Basiswechsel, Gauß-Algorithmus, invertierbare Matrizen
- Äquivalenzrelation und Kongruenzen, Quotientenvektorraum, Homomorphiesatz
- Operation von Gruppen auf Mengen, Symmetrie-und Permutationsgruppen
- Determinante, Entwicklungssätze, Cramersche Regel
- Endomorphismen, Eigenwerte, Polynome, Diagonalisierbarkeit
- Skalarprodukte und Orthogonalität, Gram-Schmidt-Verfahren Symmetrische, hermitische Matrizen, deren Normalform, orthogonale und unitäre Matrizen, positiv definit, Hurwitzkriterium
- Hauptachsentransformation, metrische und affine Klassifikation von Quadriken, Sylvesters Trägheitssatz

Experimental	EP II				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2.	2.	SS	1 Semester	6	8

Modulverantwortliche/r Jacobs Dozent/inn/en 1 Hochschullehrer(in) der Experimentalphysik oder Technischen Physik 1 student. Betreuer(in) pro Übungsgruppe **Zuordnung zum Curriculum** Pflicht Zugangsvoraussetzungen Keine formalen Voraussetzungen. Inhaltliche Voraussetzungen: grundlegende Kenntnisse aus dem Modul Experimentalphysik I Leistungskontrollen / Prüfungen • Vorlesung mit Übung: Eine benotete Klausur oder mündliche Prüfung. Prüfungsvorleistung: erfolgreiche Bearbeitung der Übungsaufgaben. • Vorlesung "Experimentalphysik II" Lehrveranstaltungen / SWS 4 SWS [ggf. max. Gruppengröße] (Elektrizitätslehre) • Übung zur Vorlesung (max. Gruppengröße: 15) 2 SWS **Arbeitsaufwand** • Präsenzzeit Vorlesung 15 Wochen à 4 SWS 60 Stunden Präsenzzeit Übung 15 Wochen à 2 SWS 30 Stunden • Vor- und Nachbereitung Vorlesung 15 Wochen à 2 SWS 30 Stunden • Bearbeitung der Übungsaufgaben 15 Wochen à 6 SWS 90 Stunden Klausur- oder Prüfungsvorbereitung 30 Stunden Summe 240 Stunden (8 CP)

Modulnote Note der Klausur bzw. der mündlichen Prüfung

Lernziele/Kompetenzen:

- Erwerb von Grundkenntnissen zur Elektrizitätslehre und Magnetismus
- Erwerb eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Kenntnis von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Herstellen des Zusammenhangs zwischen den theoretischen Begriffen und Resultaten mit experimentellen Ergebnissen
- Einüben elementarer Techniken wissenschaftlichen Arbeitens, insbesondere der Fähigkeit, physikalischer Problemstellungen durch Anwendung mathematischer Formalismen selbständig zu lösen

Inhalt

Vorlesung Experimentalphysik II (Elektrizitätslehre)

- Elektrostatik
- Elektrischer Strom und Magnetismus
- Maxwell-Gleichungen
- Elektromagnetische Schwingungen und Wellen
- elektrotechnische Anwendungen
- Behandlung und Einübung der im Rahmen der Elektrizitätslehre benötigten Rechentechniken (auf den Vorlesungsverlauf verteilt)

Weitere Informationen

Literaturhinweise (Auswahl):

- D. Halliday, R. Resnik, J. Walker, Koch: *Halliday Physik*, Verlag Wiley-VCH, 2. Auflage, 2009.
- P.A. Tipler, R.A. Llewelyn, Moderne Physik, 1. Auflage, Oldenbourg Verlag, 2003.
- D. Halliday, R. Resnick, J. Walker, Halliday Physik Bachelor-Edition, Verlag Wiley-VCH, 1. Auflage 2007
- H. Daniel, Physik I: Mechanik/Akustik/Wellen, de Gruiter, 1997; H. Daniel, Physik II: Elektrodynamik – relativistische Physik, de Gruiter, 1997
- K. Dransfeld, P. Kienle, G.M. Kalvius, *Physik I: Mechanik und. Wärme*; Oldenbourg-Verlag, 10. Auflage, 2005; K. Dransfeld, P. Kienle, *Physik II: Elektrodynamik*; Oldenbourg-Verlag, 6. Auflage, 2002.
- D.G. Giancoli, *Physik*, 3. Auflage, Pearson Studium, 2006
- R. Weber, Physik Teil I: KLassische Physik Experimentelle und theoretische Grundlagen, Tebner Verlag, 1. Auflage 2007.
- D. Meschede, Gerthsen Physik, Springer Verlag, 23. Auflage, 2006.
- Bergmann-Schäfer, Lehrbuch der Experimentalphysik, Bd.1, Mechanik, Akustik, Wärme; Gruyter-Verlag, 12. Auflage, 2008; Lehrbuch der Experimentalphysik, Bd. 2. Elektromagnetismus; Gruyter-Verlag; 9. Auflage, 2006.
- C. Kittel, W.D. Knight, M.A. Ruderman, A.C. Helmholz, B.J. Moyer, Berkeley Physik Kurs, Bd. 1, Mechanik, 5. Auflage 1994, E. M. Purcell, Berkeley Physik Kurs, Bd. 2, Elektrizität und Magnetismus, Vieweg Verlag, 4. Auflage, 1989.
- R.P. Feynman, R.B. Leighton, M. Sands, Feynman-Vorlesungen über Physik, Bd.1, Mechanik, Strahlung, Wärme, Oldenbourg Verlag, 5. Auflage, 2007; Bd.2, Elektromagnetismus und Struktur der Materie, Oldenbourg Verlag. 5. Auflage, 2007
- W. Demtröder, "Experimentalphysik 2", 3. Auflage, Springer Verlag, 2004, ISBN 3-540-20210-2.

Physikalische	EP II - GP I				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2.	2.	SS	1 Semester	4	7

Modulverantwortliche/r Deicher, Huber

Dozent/inn/en 1 Praktikumsleiter(in)

1 student. Betreuer(in) pro Praktikumsgruppe

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Inhaltliche Voraussetzungen: grundlegende Kenntnisse in Mechanik

Leistungskontrollen / Prüfungen • Praktikum: für jeden Versuch Eingangsgespräch mit

Versuchsbetreuer, Durchführung und Protokollierung,

Versuchsauswertung und Testat, Abschlussgespräch mit dem

Versuchsbetreuer

Lehrveranstaltungen / SWS

[ggf. max. Gruppengröße]

• Physikalisches Grundpraktikum I

(Gruppengröße: 2)

4 SWS

Arbeitsaufwand Physikalisches Grundpraktikum I

Durchführung der Versuche 40 Stunden Vorbereitung und Auswertung 170 Stunden

Summe 210 Stunden

Modulnote unbenotet

Lernziele/Kompetenzen:

- Erwerb von Grundkenntnissen zur Mechanik, Elektrizitätslehre und Radioaktivität
- Vermittlung eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Vermittlung wissenschaftlicher Methodik, insbesondere der Fähigkeit, einschlägige Probleme quantitativ mittels mathematischer Formalismen zu behandeln und selbständig zu lösen
- Vertiefung des Verständnisses ausgewählter physikalischer Konzepte und Theorien aus den Bereichen Mechanik, Elektrizitätslehre und Radioaktivität durch das Experiment
- Kennenlernen von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Kennenlernen verschiedener Instrumente und Messverfahren zur Durchführung verlässlicher Messungen sowie der Anwendung von PCs zur Steuerung und Datenerfassung
- Lernen, wie und mit welcher Genauigkeit mit einem vorgegebenen Versuchsaufbau und Messinstrumenten Messungen durchgeführt werden
- Einüben der Fähigkeit, ein genaues und vollständiges Versuchsprotokoll zu führen
- Fähigkeit, Daten mathematisch zu analysieren (Kurvenanpassung, Fehlerrechnung), wesentliche funktionale Zusammenhänge graphisch darzustellen und Messergebnisse zu beurteilen

Inhalt

Physikalisches Grundpraktikum I

Insgesamt 10 Versuche aus den Bereichen Mechanik, Elektrizitätslehre und Radioaktivität. Die Auswahl der Versuche und deren Reihenfolge ist mit den experimentalphysikalischen Vorlesungen der ersten beiden Semester abgestimmt.

- Einführung in die Fehlerrechnung
- Versuche zur Mechanik (z. B. Schwingungen, Drehbewegungen, Kreisel, mech. Materialeigenschaften, Akustik)
- Versuche zur Elektrizitätslehre (z.B. Gleichstrom, Wechselstrom, Magnetismus, Hall-Effekt, analoge Elektronik, alternative Energiequellen)
- Versuche zur den Grundlagen der Radioaktivität

Weitere Informationen

Inhaltlich wird auf die Module des ersten Semesters aufgebaut

Literaturhinweise (Auswahl):

- D. Halliday, R. Resnik, J. Walker, Koch: *Halliday Physik*, Verlag Wiley-VCH, 2. Auflage, 2009.
- P.A. Tipler, R.A. Llewelyn, Moderne Physik, 1. Auflage, Oldenbourg Verlag, 2003.
- D. Halliday, R. Resnick, J. Walker, Halliday Physik Bachelor-Edition, Verlag Wiley-VCH, 1. Auflage 2007
- H. Daniel, *Physik I: Mechanik/Akustik/Wellen*, de Gruiter, 1997; H. Daniel, *Physik II: Elektrodynamik relativistische Physik*, de Gruiter, 1997
- K. Dransfeld, P. Kienle, G.M. Kalvius, *Physik I: Mechanik und. Wärme*; Oldenbourg-Verlag, 10.
 Auflage, 2005; K. Dransfeld, P. Kienle, *Physik II: Elektrodynamik*; Oldenbourg-Verlag, 6. Auflage, 2002.
- D.G. Giancoli, *Physik*, 3. Auflage, Pearson Studium, 2006
- R. Weber, Physik Teil I: KLassische Physik Experimentelle und theoretische Grundlagen, Tebner Verlag, 1. Auflage 2007.
- D. Meschede, Gerthsen Physik, Springer Verlag, 23. Auflage, 2006.
- Bergmann-Schäfer, Lehrbuch der Experimentalphysik, Bd.1, Mechanik, Akustik, Wärme; Gruyter-Verlag, 12. Auflage, 2008; Lehrbuch der Experimentalphysik, Bd. 2. Elektromagnetismus; Gruyter-Verlag; 9. Auflage, 2006.
- C. Kittel, W.D. Knight, M.A. Ruderman, A.C. Helmholz, B.J. Moyer, Berkeley Physik Kurs, Bd. 1, Mechanik, 5. Auflage 1994, E. M. Purcell, Berkeley Physik Kurs, Bd. 2, Elektrizität und Magnetismus, Vieweg Verlag, 4. Auflage, 1989.
- R.P. Feynman, R.B. Leighton, M. Sands, Feynman-Vorlesungen über Physik, Bd.1, Mechanik, Strahlung, Wärme, Oldenbourg Verlag, 5. Auflage, 2007; Bd.2, Elektromagnetismus und Struktur der Materie, Oldenbourg Verlag, 5. Auflage, 2007
- W. Demtröder, "Experimentalphysik 1", 4, Auflage, Springer Verlag, 2005, ISBN 3-540-26034-X.
- W. Demtröder, "Experimentalphysik 2", 3. Auflage, Springer Verlag, 2004, ISBN 3-540-20210-2.

Eine aktuelle Liste der zur Verfügung stehenden Praktikumsversuche sowie Versuchsanleitungen und spezielle Literaturangaben zum Praktikumsteil finden sich unter http://grundpraktikum.physik.uni-saarland.de/

Anmeldung:

Eine Anmeldung zum Grundpraktikum ist jeweils zu Semesterbeginn erforderlich (bei den Praktikumsleitern)

Analysis I					M-Ana1
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2.	2.	SS	1 Semester	6	9

Modulverantwortliche/r

Eschmeier

Dozent/inn/enHochschullehrer(innen) der Mathematik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine

Leistungskontrollen / Prüfungen Klausur oder mündliche Prüfung

Prüfungsvorleistungen: erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (4 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

180 Stunden

Summe 270 Stunden

Modulnote Aus Klausurnote bzw. Note der mündlichen Prüfung

Lernziele / Kompetenzen

Beherrschung der grundlegenden Begriffe, Methoden und Techniken der Analysis einer Veränderlicher sowie die Fähigkeit, diese zum Lösen von Problemen einzusetzen (auch unter Benutzung von Computern)

Inhalt

- Mengen, Abbildungen, vollständige Induktion
- Zahlbereiche: Q, R, C
- Konvergenz, Supremum, Reihen, absolute Konvergenz, Umordnung
- Funktionen, Stetigkeit, Differenzierbarkeit, spezielle Funktionen
- Riemannintegral, Hauptsatz der Differential- und Integralrechnung
- Taylorformel, optional: Fourierreihen

Theoretische	TP I				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2.	2.	SS	1 Semester	6	8

Modulverantwortliche/r Kruse

Dozent/inn/en Hochschullehrer(innen) der Theoretischen Physik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Leistungskontrollen / Prüfungen Klausur oder mündliche Prüfung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (4 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

150 Stunden

Summe 240 Stunden

Modulnote Aus der Klausurnote bzw. der Note der mündlichen Prüfung

Lernziele / Kompetenzen

- Beherrschung der grundlegenden Konzepte, Methoden und Denkweisen der theoretischen Physik
- Verständnis des Wechselspiels von theoretischer Physik und Experimentalphysik
- Verständnis des Beitrags der theoretischen Physik zur Begriffsbildung und Begriffsgeschichte
- Verständnis der wichtigsten Arbeitsstrategien und Denkformen der theoretischen Physik

Inhalt

- Mechanik der Mehrteilchensysteme
- Fourierreihen und -transformationen
- Der starre K\u00f6rper
- Lagrange-Mechanik
- Hamilton-Mechanik
- Nichtlineare Probleme
- Kontinuumsmechanik

Weitere Informationen

Inhaltlich werden Mathematikkenntnisse aus dem Modul "mathematische Methoden in der Physik" vorausgesetzt.

Literatur:

- H. Goldstein, C. P. Poole, J. Safko, Klassische Mechanik, Wiley-VCH, 2006
- L. D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik Bd.1, Harri Deutsch, 1997
- W. Nolting, Grundkurs Theoretische Physik 2, Springer, 2006
- F. Kuypers, Klassische Mechanik, Wiley-VCH, 2005
- J.V. Jose, E.J. Saletan, Classical Dynamics: A Contemporary Approach, Cambridge University Press, 1998

Experimental	EP III				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
3. + 4.	4	WS+SS	2 Semester	9	11

Modulverantwortliche/r Becher

Dozent/inn/en 1 Hochschullehrer(innen) der Experimentalphysik oder der

technischen Physik

1 student. Betreuer pro Übungsgruppe

Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich] Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen

Experimentalphysik I und II

Leistungskontrollen / Prüfungen • Vorlesung mit Übung: Eine benotete Klausur oder mündliche Prüfung für beide Vorlesungen. Prüfungsvorleistung: jeweils erfolgreiche Bearbeitung der Aufgaben in den Übungen zu beiden

Vorlesungen.

Lehrveranstaltungen / SWS

• Vorlesung "Experimentalphysik IIIa" 3 SWS (Optik und Thermodynamik)

• Übung zur Vorlesung

(max. Gruppengröße: 15) 1 SWS

 Vorlesung "Experimentalphysik IIIb" (Quanten- und Atomphysik)

4 SWS

Übung zur Vorlesung

(max. Gruppengröße: 15) 1 SWS

Arbeitsaufwand

a) "Experimentalphysik IIIa"

Präsenzzeit Vorlesung15 Wochen à 3 SWS45 Stunden

• Präsenzzeit Übung

15 Wochen à 1 SWS 15 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

90 Stunden

Summe 150 Stunden

(5 CP)

b) "Experimentalphysik IIIb"

• Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 1 SWS 15 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben,

Klausur- oder Prüfungsvorbereitung

105 Stunden

Summe 180 Stunden (6 CP)

Summe 330 Stunden

Modulnote

Note der Klausur bzw. der mündlichen Prüfung

Lernziele/Kompetenzen:

- Erwerb von Grundkenntnissen zur Optik und Thermodynamik
- Erwerb von Grundkenntnissen zur Quanten- und Atomphysik
- Erwerb eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Kenntnis von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Herstellen des Zusammenhangs zwischen den theoretischen Begriffen und Resultaten mit experimentellen Ergebnissen
- Einüben elementarer Techniken wissenschaftlichen Arbeitens, insbesondere der Fähigkeit, physikalischer Problemstellungen durch Anwendung mathematischer Formalismen selbständig zu lösen

Inhalt

Experimentalphysik IIIa (Optik und Thermodynamik)

- Elektromagnetische Wellen in Materie
- Geometrische Optik
- Optische Instrumente
- Kohärenz, Interferenz und Beugung
- Grundlagen des Lasers
- Temperatur, Wärmetransport, kinetische Gastheorie, ideale Gase, Hauptsätze der Thermodynamik, Kreisprozesse
- kinetische Theorie der Wärme, Brownsche Molekularbewegung, Boltzmann-Verteilung, Wärmeleitung und Diffusion
- Einführung in die Statistische Physik
- Strahlungsgesetze, Hohlraumstrahlung

Experimentalphysik IIIb (Quanten- und Atomphysik)

- Atomarer Aufbau der Materie
- Licht als Teilchen
- Materiewellen
- Einzelteilchenexperimente und Statistische Deutung
- Atomspektren und Atommodelle
- Schrödinger-Gleichung und einfache Potentiale
- H-Atom
- Spin
- Atome in magnetischen und elektrischen Feldern

Weitere Informationen

Inhaltlich wird auf die Module der ersten beiden Semester aufgebaut

Literaturhinweise:

- Meschede: Gerthsen Physik, Springer Verlag, 23. Auflage, 2006.
- W. Demtröder, "Experimentalphysik 2", 3. Auflage, Springer Verlag, 2004, ISBN 3-540-20210-2.
- E. Hecht, "Optik", 4. Auflage, Oldenbourg Verlag, 2005, ISBN 3-486-24917-7.
- P.A. Tipler, R.A. Llewelyn, "Moderne Physik", 1. Auflage, Oldenbourg Verlag, 2003, ISBN: 3-486-25564-9.
- W. Demtröder, "Experimentalphysik 3", 3. Auflage, Springer Verlag, 2005, ISBN 3-540-21473-9.
- H. Haken, H.C. Wolf, "Atom- und Quantenphysik", 8. Auflage, Springer Verlag, 2004, ISBN 3-540-02621-5
- T. Mayer-Kuckuk, "Atomphysik", 5. Auflage, Teubner Verlag, 1997, ISBN: 3-519-43042-8.
- Feynman, Vorlesungen über Physik, Bd.3, Quantenmechanik (4. Auflage 1999); Oldenbourg Verlag.

Physikalisch	GP II				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
3.	3.	WS	1 Semester	4	7

Modulverantwortliche/r Deicher, Huber

Dozent/inn/en 1 Praktikumsleiter

1 student. Betreuer pro Praktikumsgruppe

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Leistungskontrollen / Prüfungen Praktikum: für jeden Versuch Eingangsgespräch mit

Versuchsbetreuer, Durchführung und Protokollierung, Versuchsauswertung und Testat, Abschlussgespräch mit

Versuchsbetreuer

Lehrveranstaltungen / SWS

Physikalisches Grundpraktikum II

(Gruppengröße: 2) 4 SWS

Arbeitsaufwand Physikalisches Grundpraktikum II

Durchführung der Versuche 40 Stunden Vorbereitung und Auswertung 170 Stunden

Summe 210 Stunden

Modulnote unbenotet

Lernziele/Kompetenzen:

- Erwerb von Grundkenntnissen zur Optik, Thermodynamik und Radioaktivität
- Vermittlung eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Vermittlung wissenschaftlicher Methodik, insbesondere der Fähigkeit, einschlägige Probleme quantitativ mittels mathematischer Formalismen zu behandeln und selbständig zu lösen
- Vertiefung des Verständnisses ausgewählter physikalischer Konzepte und Theorien aus den Bereichen Optik, Thermodynamik und Radioaktivität durch das Experiment
- Kennenlernen von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Kennenlernen verschiedener Instrumente und Messverfahren zur Durchführung verlässlicher Messungen sowie der Anwendung von PCs zur Steuerung und Datenerfassung
- Lernen, wie und mit welcher Genauigkeit mit einem vorgegebenen Versuchsaufbau und Messinstrumenten Messungen durchgeführt werden
- Einüben der Fähigkeit, ein genaues und vollständiges Versuchsprotokoll zu führen
- Fähigkeit, Daten mathematisch zu analysieren (Kurvenanpassung, Fehlerrechnung), wesentliche funktionale Zusammenhänge graphisch darzustellen und Messergebnisse zu beurteilen

Inhalt

Physikalisches Grundpraktikum II

Insgesamt 10 Versuche aus den Bereichen Optik, Thermodynamik und Radioaktivität.

- Versuche zur Thermodynamik (z.B. Temperaturmessung, Gasgesetze, Kreisprozesse, Wärmekapazität, Phasenumwandlungen, Wärmeleitung, Peltier-Effekt)
- Versuche zur den Grundlagen der Radioaktivität
- Versuche zur Optik (z.B. Geometrische Optik, Beugung, Mikroskop, polarisiertes Licht, opt. Materialkonstanten, Emission von Licht)

Weitere Informationen

Inhaltlich wird auf die Module der ersten beiden Semester aufgebaut

Literaturhinweise:

- Halliday, Resnik, Walker, Koch: *Physik*, Verlag Wiley-VCH, 1. Auflage, 2005.
- Dransfeld, Kienle, Kalvius: *Physik 1: Mechanik und. Wärme;* Oldenbourg-Verlag, 10. Auflage, 2005; *Bd 2: Elektrodynamik;* Oldenbourg-Verlag, 6. Auflage, 2002.
- Meschede: Gerthsen Physik, Springer Verlag, 23. Auflage, 2006.
- Bergmann-Schäfer, Lehrbuch der Experimentalphysik, Bd.1, Mechanik, Akustik, Wärme; Gruyter-Verlag, 11. Auflage, 1998
- Feynman Vorlesungen über Physik, Bd.1, Mechanik, Strahlung und Wärme (4. Auflage, 2001);
- W. Demtröder, "Experimentalphysik 1", 4. Auflage, Springer Verlag, 2005, ISBN 3-540-26034-X.
- W. Demtröder, "Experimentalphysik 2", 3. Auflage, Springer Verlag, 2004, ISBN 3-540-20210-2.
- E. Hecht, "Optik", 4. Auflage, Oldenbourg Verlag, 2005, ISBN 3-486-24917-7.
- P.A. Tipler, R.A. Llewelyn, "Moderne Physik", 1. Auflage, Oldenbourg Verlag, 2003, ISBN: 3-486-25564-9.

Eine aktuelle Liste der zur Verfügung stehenden Praktikumsversuche sowie Versuchsanleitungen finden sich unter http://grundpraktikum.physik.uni-saarland.de/

Anmeldung:

Eine Anmeldung zum Grundpraktikum ist jeweils zu Semesterbeginn erforderlich (bei den Praktikumsleitern)

Theoretische	TP II				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
3.	3.	WS	1 Semester	6	8

Modulverantwortliche/r Morigi

Dozent/inn/en Hochschullehrer(innen) der theoretischen Physik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen. Inhaltlich werden die werden

die Module "Mathematischen Methoden der

Physik" und "Theoretische Physik I" vorausgesetzt.

Leistungskontrollen / Prüfungen Klausur oder mündliche Prüfung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (4 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

• Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

150 Stunden

Summe 240 Stunden

Modulnote Aus der Klausurnote bzw. der Note der mündlichen Prüfung

Lernziele / Kompetenzen

- Theoretische Beschreibung von elektromagnetischen Feldern und Wechselwirkungen
- Einführung in die Methoden der klassischen Feldtheorie
- Verständnis des Beitrags der Theoretischen Physik zu Begriffsbildung und Begriffsgeschichte
- Verständnis der wichtigsten Arbeitsstrategien und Denkformen der theoretischen Physik

Inhalt

- Mathematische Methoden der Elektrodynamik
- Maxwellgleichungen
- Elektrostatik, Magnetostatik
- Elektrodynamik von Teilchen und Feldern
- Elektrodynamik in Materie
- Spezielle Relativitätstheorie

Weitere Informationen

Literatur:

- J.D. Jackson, Klassische Elektrodynamik, de Gruyter, 2006
- T. Fließbach, Elektrodynamik, Spektrum Akademischer Verlag, 2004 W. Nolting, Grundkurs Theoretische Physik 3, Springer, 2004

Theorie und Numerik gewöhnlicher Differentialgleichungen					TNGD
Studiensem. Regelstudiensem. Turnus Dauer SWS					ECTS-Punkte
3.	3.	WS	1 Semester	6	9

Modulverantwortliche/r

Rjasanow

Dozent/inn/en Hochschullehrer(innen) der Mathematik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Klausur oder mündl. Prüfung

Prüfungsvorleistungen: erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (4 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

180 Stunden

Summe 270 Stunden

Modulnote Aus Klausurnote bzw. Note der mündlichen Prüfung

Lernziele / Kompetenzen

Erwerb der Methoden und Techniken der analytischen und numerischen Lösung von gewöhnlichen Differentialgleichungen

Inhalt

- Beispiele gewöhnlicher Differentialgleichungen
- Spezielle Differentialgleichungen
- Spezielle Differentialgleichungen 2. Ordnung
- Die Laplace- Transformation
- Existenztheorie
- Differentialgleichungssysteme und Differentialgleichungen höherer Ordnung
- Runge- Kutta- Methoden
- Mehrschrittverfahren
- Integration steifer Differentialgleichungen
- Randwertprobleme
- Einführung in die Finite- Elemente- Methode

Theoretische Physik III – Quantenphysik und statistische Physik: Grundlegende Konzepte					TP III
Studiensem.	ensem. Regelstudiensem. Turnus Dauer SWS				
4.	4.	SS	1 Semester	6	8

Modulverantwortliche/r Santen

Dozent/inn/en Hochschullehrer(innen) der Theoretischen Physik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Inhaltlich baut der Kurs auf die Module TP I und TP II auf.

Leistungskontrollen / Prüfungen Klausur oder mündliche Prüfung

Prüfungsvorleistung: Erfolgreiche Bearbeitung von

Übungsaufgaben

Lehrveranstaltungen / SWSVorlesung (4 SWS)

Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

• Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

150 Stunden

.____

Summe 240 Stunden

Modulnote Aus der Klausurnote bzw. der Note der mündlichen Prüfung

Lernziele / Kompetenzen

- Überblick über die grundlegenden Konzepte, Methoden und Begriffe der theoretischen Quantenphysik und der statistischen Physik.
- Verständnis von physikalischen Gesetzen, die als Wahrscheinlichkeitsaussagen formuliert sind.
- Herstellen des Zusammenhangs zwischen den theoretischen Begriffen und Resultaten mit experimentellen Ergebnissen
- Verständnis des Beitrags der Theoretischen Physik zu Begriffsbildung und Begriffsgeschichte
- Verständnis der wichtigsten Arbeitsstrategien und Denkformen der Theoretischen Quantenmechanik und statistischen Physik

Inhalt

- Schrödingergleichung, Eigenzustände, zeitliche Entwicklung
- Eindimensionale Probleme
- Orts- u. Impulsdarstellung
- Allgemeiner Formalismus der Quantenmechanik, Messprozess
- Harmonischer Oszillator
- Unitäre Transformationen, Symmetrien
- Quantenmechanischer Drehimpuls, Wasserstoffatom
- Grundlagen der statistischen Mechanik
- Gleichgewichtsensemble
- Anschluss an die Thermodynamik
- Das klassische ideale Gas

Weitere Informationen

Literatur:

- C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantenmechanik 1, de Gruyter, 1998
- W. Nolting, Grundkurs Theoretische Physik 5/1, Springer, 2003
- R. Shankar, Principles of Quantum Mechanics, Springer, 1994
- F. Schwabl, Quantenmechanik 1, Springer, 2004
- F. Schwabl, Statistische Mechanik, Springer, 2006
- W. Nolting, Grundkurs Theoretische Physik 6, Springer, 2004
- W. Brenig, Statistische Theorie der Wärme, Springer, 1992
- F. Reif und W. Muschnik, Statistische Physik und Theorie der Wärme, de Gruyter, 1987
- M. LeBellac, F. Mortessagne, G.G. Batrouni, Equilibrium and Non-Equilibrium Thermodynamics, Cambridge University Press, 2004

Physikalisches Grundpraktikum III					GP III
Studiensem.	ECTS-Punkte				
4.	4.	SS	1 Semester	4	7

Modulverantwortliche/r Deicher, Huber

Dozent/inn/en 1 Praktikumsleiter

1 student. Betreuer pro Praktikumsgruppe

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Leistungskontrollen / Prüfungen Für jeden Versuch Eingangsgespräch mit Versuchsbetreuer,

Durchführung und Protokollierung,

Versuchsauswertung und Testat, Abschlussgespräch mit

Versuchsbetreuer

Lehrveranstaltungen / SWS Physikalisches Grundpraktikum III

(Gruppengröße: 2) 4 SWS

Arbeitsaufwand

Durchführung der Versuche 40 Stunden Vorbereitung und Auswertung 170 Stunden

Summe 210 Stunden

Modulnote unbenotet

Lernziele / Kompetenzen:

- Erwerb von Grundkenntnissen zur Quanten- und Atomphysik
- Vermittlung eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Vermittlung wissenschaftlicher Methodik, insbesondere der Rolle von Schlüsselexperimenten
- Fähigkeit, einschlägige Probleme quantitativ mittels mathematischer Formalismen zu behandeln und selbständig zu lösen
- Vertiefung des Verständnisses ausgewählter physikalischer Konzepte und Theorien aus verschiedenen Bereichen der Physik durch das Experiment
- Kennenlernen von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Kennenlernen verschiedener Instrumente und Messverfahren zur Durchführung verlässlicher Messungen sowie der Anwendung von PCs zur Steuerung und Datenerfassung
- Lernen, wie und mit welcher Genauigkeit mit einem vorgegebenen Versuchsaufbau und Messinstrumenten Messungen durchgeführt werden
- Einüben der Fähigkeit, ein genaues und vollständiges Versuchsprotokoll zu führen
- Fähigkeit, Daten mathematisch zu analysieren (Kurvenanpassung, Fehlerrechnung), wesentliche funktionale Zusammenhänge graphisch darzustellen und Messergebnisse zu beurteilen

Inhalt

vertiefende Versuche aus verschiedenen Bereichen der modernen Physik (z. B. Rastertunnelmikroskop, digitale Elektronik, Supraleitung, Franck-Hertz-Versuch, Photoeffekt, Millikan-Versuch, e/m-Bestimmung, Kohärenz von Wellen, Phasenumwandlungen, Temperaturstrahler)

Weitere Informationen

Inhaltlich wird auf die Module der ersten drei Semester aufgebaut.

Literaturhinweise:

- W. Demtröder, "Experimentalphysik 3", 3. Auflage, Springer Verlag, 2005, ISBN 3-540-21473-9.
- H. Haken, H.C. Wolf, "Atom- und Quantenphysik", 8. Auflage, Springer Verlag, 2004, ISBN 3-540-02621-5.
- T. Mayer-Kuckuk, "Atomphysik", 5. Auflage, Teubner Verlag, 1997, ISBN: 3-519-43042-8.
- P.A. Tipler, R.A. Llewelyn, "Moderne Physik", 1. Auflage, Oldenbourg Verlag, 2003, ISBN: 3-486-25564-9.
- Feynman, Vorlesungen über Physik, Bd.3, Quantenmechanik (4. Auflage 1999); Oldenbourg Verlag.

Eine aktuelle Liste der zur Verfügung stehenden Praktikumsversuche sowie Versuchsanleitungen finden sich unter http://grundpraktikum.physik.uni-saarland.de/

Anmeldung:

Eine Anmeldung zum Grundpraktikum ist jeweils zu Semesterbeginn erforderlich (bei den Praktikumsleitern)

Funktionentheorie					WPM-Fkt
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
4.	4.	SS	1 Semester	6	9

Modulverantwortliche/r

Fuchs

Dozent/inn/enHochschullehrer(innen) der Mathematik

Zuordnung zum Curriculum Wahlpflicht (Teilmodul zum Wahlpflichtmodul Mathematik WPM)

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Klausur oder mündl. Prüfung

Prüfungsvorleistungen: erfolgreiche Bearbeitung der

Übungsaufgaben.

Lehrveranstaltungen / SWS • 1 Vorlesung (4 SWS)

1 Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

180 Stunden

Summe 270 Stunden

Modulnote Aus Klausurnote bzw. Note der mündlichen Prüfung

Lernziele / Kompetenzen

Beherrschung grundlegender Methoden und Techniken der komplexen Analysis in einer Veränderlichen

Inhalt

- Komplexes Differentialkalkül und Integralsatz von Cauchy
- Satz von Liouville, Mittelwerteigenschaft, Maximumprinzip
- Satz von Morera und Goursat,
- Automorphismen des Einheitskreises
- Folgen und Reihen holomorpher Funktionen
- Residuensatz und Anwendungen
- Produkt und Reihenentwicklungen, spezielle Funktionen
- Optional: Riemannscher Abbildungsatz
- Optional: Analytische Fortsetzung

Weitere Informationen

Inhaltlich wird auf die Module der Vorlesung Analysis I, Lineare Algebra I und Mathematische Methoden der Physik aufgebaut

Experimentalphysik IV					EP IV
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
5. + 6.	6	WS+SS	2 Semester	6	8

5. + 6.	6	WS+SS	2 Semester	6	8		
Modulverantwor	tliche/r	Wichert					
Dozent/inn/en		1 Hochschullehrer(innen) der Experimentalphysik oder Technische Physik1 student. Betreuer pro Übungsgruppe					
Zuordnung zum [Pflicht, Wahlpflicht		Pflicht					
Zugangsvorauss	setzungen		Voraussetzunger ussetzungen: Ker chanik		physik und		
Leistungskontro	llen / Prüfungen	 Vorlesung mit Übung: Eine benotete Klausur oder mündliche Prüfung für beide Vorlesungen. Prüfungsvorleistung: jeweils erfolgreiche Bearbeitung der Aufgaben in den Übungen zu beiden Vorlesungen. 					
Lehrveranstaltur	ngen / SWS	 Vorlesung "E: (Festkörperpl Übung zur Vo (max. Gruppe 	orlesung	ιVa"	2 SWS 1 SWS		
		 Vorlesung "E: 	xperimentalphysik ementarteilchenp		2 SWS		
		(max. Gruppe	•		1 SWS		
Arbeitsaufwand		Bearbeitung d	orlesung à 2 SWS bung	ung, pen,	30 Stunden 15 Stunden		
			-	<u>-</u> -	75 Stunden		
		Summe		1	20 Stunden (4 CP)		
		 b) "Experimentalphysik IVb" Präsenzzeit Vorlesung 15 Wochen à 2 SWS 		;	30 Stunden		
		Bearbeitung d	à 1 SWS nbereitung Vorles ler Übungsaufgab	ung, en,	15 Stunden		
		Klausur- oder	Prüfungsvorbere	•	75 Stunden		
		Summe		1	20 Stunden (4 CP)		
				Sumn	ne 240 Stunden		

Modulnote

Note der Klausur bzw. der mündlichen Prüfung

Lernziele/ Kompetenzen:

- Erwerb von Grundkenntnissen zur Festkörperphysik
- Erwerb von Grundkenntnissen zur Kern- und Elementarteilchenphysik
- Vermittlung eines Überblicks der historischen Entwicklung und moderner Anwendungen
- Vermittlung wissenschaftlicher Methodik, insbesondere der Fähigkeit, einschlägige Probleme quantitativ mittels mathematischer Formalismen zu behandeln und selbständig zu lösen
- Kennenlernen von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Einüben elementarer Techniken wissenschaftlichen Arbeitens, insbesondere der Fähigkeit, physikalischer Problemstellungen durch Anwendung mathematischer Formalismen selbständig zu lösen

Inhalt

Vorlesung Experimentalphysik IVa (Festkörperphysik I)

- Struktur der Kristalle
- Bindungen
- Phononen
- · thermische Eigenschaften
- Bose-Einstein- und Fermi-Dirac-Verteilung
- Freies Elektronengas
- Bändermodell

Vorlesung Experimentalphysik IVb (Kern- Elementarteilchen- und Astrophysik)

- Kernbausteine
- Kernkräfte. Kernmodelle. Kernreaktionen
- Teilchenbeschleuniger, Detektoren, Reaktoren
- Anwendungen nuklearer Methoden
- Elementarteilchen und fundamentale Wechselwirkungen
- Quarks und Austauschteilchen

Weitere Informationen

Inhaltlich wird auf die Module EP I, EP II, EP III aufgebaut.

Literaturhinweise:

- Demtröder: Experimentalphysik IV
- Mayer-Kuckuk: Kernphysik
- Povh, Rith, Scholz, Zetsch: Teilchen und Kerne
- Hering: Angewandte Kernphysik
- Kittel: Festkörperphysik
- Ashcroft, Mermin: Festkörperphysik
- Kopitzi: Einführung in die Festkörperphysik
- Bergmann, Schäfer: Experimentalphysik Bd. 6 Festkörper

Theoretische Physik IV – Quantenphysik und statistische Physik: Weiterführende Konzepte					TP IV
Studiensem. Regelstudiensem. Turnus Dauer SWS					ECTS-Punkte
5.	5.	WS	1 Semester	6	8

Modulverantwortliche/r Rieger

Dozent/inn/en Hochschullehrer(innen) der Theoretischen Physik

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Keine formalen Voraussetzungen.

Die Inhalte des Moduls TP III werden vorausgesetzt.

Leistungskontrollen / Prüfungen Klausur oder mündliche Prüfung

Prüfungsvorleistungen: Erfolgreiche Bearbeitung der

Übungsaufgaben

Lehrveranstaltungen / SWS • Vorlesung (4 SWS)

Übung (2 SWS)

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 4 SWS 60 Stunden

Präsenzzeit Übung

15 Wochen à 2 SWS 30 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

150 Stunden

Summe 240 Stunden

Modulnote Aus der Klausurnote bzw. der Note der mündlichen Prüfung

Lernziele / Kompetenzen

- Überblick über weiterführende Konzepte, Methoden und Begriffe der theoretischen Quantenphysik und der statistischen Physik.
- Diskussion von komplexeren Modellsystemen
- Anschluss an aktuelle Forschungsgebiete
- Einführung in moderne Methoden der Quantenmechanik und statistischen Physik

Inhalt

- · Variations- und Störungsrechnung
- Zeitabhängige Phänomene
- Mehrteilchenprobleme, identische Teilchen
- Ideale Quantengase
- Klassische wechselwirkende Systeme
- Phasenübergänge
- Stochastische Prozesse

Weitere Informationen

Literatur:

- C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantenmechanik 1&2, de Gruyter, 1998
- W. Nolting, Grundkurs Theoretische Physik 5/2, Springer, 2006
- R. Shankar, Principles of Quantum Mechanics, Springer, 1994
- F. Schwabl, Quantenmechanik 1&2, Springer, 2004
- F. Schwabl, Statistische Mechanik, Springer, 2006
- W. Nolting, Grundkurs Theoretische Physik 6, Springer, 2004
- W. Brenig, Statistische Theorie der Wärme, Springer, 1992
- F. Reif und W. Muschnik, Statistische Physik und Theorie der Wärme, de Gruyter, 1987
- M. LeBellac, F. Mortessagne, G.G. Batrouni, Equilibrium and Non-Equilibrium Thermodynamics, Cambridge University Press, 2004

Physikalisches Praktikum für Fortgeschrittene					FP I	
Studiensem.	Studiensem. Regelstudiensem. Turnus Dauer SWS					
5.	F WC.CC 4.Competer 4					

Modulverantwortliche/r Hartmann

Dozent/inn/en 1 Praktikumsleiter

1 student. Betreuer pro Praktikumsgruppe

Zuordnung zum Curriculum Pflicht

Zugangsvoraussetzungen Die physikalischen Grundpraktika I – III müssen erfolgreich

abgeschlossen sein.

Inhaltlich wird auf die Module Experimentalphysik I, II, und III

aufgebaut

Leistungskontrollen / Prüfungen • Für jeden Versuch: Eingangsgespräch mit

Versuchsbetreuer, Durchführung und Protokollierung der

Versuche, Versuchsauswertung und Testat, Abschlussgespräch mit Versuchsbetreuer;

• mündl. Prüfung oder Klausur

Lehrveranstaltungen / SWS Phys. Praktikum für Fortgeschrittene

(Gruppengröße: 2) 4 SWS

Arbeitsaufwand Phys. Praktikum für Fortgeschrittene,

Durchführung der Versuche 48 Stunden Vorbereitung und Auswertung 192 Stunden

Blockseminar 5 Stunden

Vorbereitung eines Vortrags über einen

durchgeführten Versuch 25 Stunden

Summe 270 Stunden

Modulnote Note aus mündlicher Prüfung oder Klausur

Lernziele/Kompetenzen

- Vertiefung des Verständnisses ausgewählter physikalischer Konzepte und Theorien durch das Experiment
- Kennenlernen von Schlüsselexperimenten und experimentellen Techniken/Messmethoden
- Kennenlernen moderner Instrumente und Messverfahren zur Durchführung verlässlicher Messungen sowie der Anwendung und Programmierung von PCs zur Steuerung und Datenerfassung
- Kennenlernen von und Arbeiten mit wissenschaftlichen Apparaturen, wie sie auch in der aktuellen Forschung eingesetzt werden
- Kennenlernen von Standardverfahren der statistischen Auswertung von Daten

Inhalt

- a) Durchführung von 5 Versuchen aus dem Bereich der Atom- oder Festkörperphysik:
- LabView Tutorial
- Versuche zur Atomphysik (z.B. Faradayeffekt, Zeemaneffekt, Mikrowellen, Vakuumtechnik, Magnetische Kernresonanz)
- Versuche zur Festkörperphysik (z.B. Thermische Analyse, Magnetische Sensorik, Elektronenstrahllithographie)
 - b) Vortrag über einen der durchgeführten Versuche am Ende des Semesters im Rahmen eines Blockseminars

Weitere Informationen

Allgemeines:

Fortgeschrittenenpraktikum: Eine aktuelle Liste der zur Verfügung stehenden Versuche sowie allgemeine Informationen finden sich unter http://www.nssp.uni-saarland.de/lehre/F-Praktikum/

Anmeldung:

Eine Anmeldung bei den Praktikumsleitern ist jeweils zu Semesterbeginn erforderlich (für das Fortgeschrittenenpraktikum unter http://www.nssp.uni-saarland.de/lehre/F-Praktikum/)

Wahlpflichtbe	ereich				WPB
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1. + 5.+6	6.	WS+SS	1 Semester		20

Modulverantwortliche/r Studiendekan/in bzw. Studienbeauftragte/r der Physik

Dozent/inn/enHochschullehrer(innen) aus den Fachbereichen Physik,

Mathematik, Informatik und Chemie

Zuordnung zum Curriculum Wahlpflichtbereich

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Klausur oder mündliche Prüfung

Lehrveranstaltungen / SWS Vorlesung und Seminare (je nach Wahl des Nebenfachs)

Arbeitsaufwand Insgesamt 600 Stunden

(Detailinformationen in den Modulbeschreibungen der Teilmodule)

Modulnote Aus den Klausuren bzw. mündl. Prüfungen der gewählten

benoteten Teilmodule. Das Gewicht der Teilnote entspricht den

ECTS-Punkten der Veranstaltung.

Übersteigt der Umfang der benoteten Teilmodule 13 ECTS-Punkte, werden die besten Prüfungsleistungen in den

Teilmodulen bis zu ihrer vollen ECTS-Punktzahl berücksichtigt.

Lernziele / Kompetenzen

- Arbeitsmethodik und Denkweise angrenzender Fachgebiete begreifen
- Fähigkeit zur Bearbeitung interdisziplinärer Forschungsthemen
- Erwerb fachübergreifender Kompetenzen
- Siehe Modulbeschreibung der wählbaren Module.

Inhalt

Siehe Modulbeschreibungen für die einzelnen Teilmodule

Weitere Informationen

- Die angegebenen ECTS-Punkte sind mindestens zu erbringen. Mindesten 13 ECTS-Punkte müssen in benoteten Lehrveranstaltungen erbracht werden.
- Die Studenten k\u00f6nnen nach vorheriger Absprache mit dem Pr\u00fcfungsausschuss auch alternative Nebenf\u00e4cher und Vorlesungen w\u00e4hlen.

Tutortätigkeit					AWP-TT
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
5.	5.	Jedes Semester	1 Semester	2	2

Modulverantwortliche/r Studiendekan/in bzw. Studienbeauftragte/r der Physik

Dozent/inn/en Dozenten der Physik

Zuordnung zum Curriculum Wahlpflichtbereich

Zugangsvoraussetzungen Erfolgreicher Abschluss des zu betreuenden Moduls

Leistungskontrollen / Prüfungen Hospitation der von den Tutoren abgehaltenen

Lehrveranstaltungen

Lehrveranstaltungen / SWSBetreuung von Übungen

Arbeitsaufwand Präsenzzeit 15 Stunden

Vorbereitung der Übungen/Praktika 45 Stunden

Summe 60 Stunden

Modulnote Keine

Lernziele / Kompetenzen

- Organisation von Lehrveranstaltungen und Umsetzung methodischer Ziele
- Didaktische Aufbereitung komplexer, physikalischer Sachverhalte
- Ausrichtung eines Fachvortrags am Vorwissen des Auditoriums

Inhalt

- Einführung in die fachdidaktischen Aspekte der jeweiligen Lehrveranstaltung
- Moderieren von Übungsgruppen / Betreuung von Praktikumsversuchen
- Korrektur von schriftlichen Ausarbeitungen
- Teilnahme an den Vorsprechungen der Übungsgruppenleiter/Praktikumsbetreuer

Weitere Informationen

• Das Modul kann alternativ zum Teilmodul "Effizientes Lernen/wiss. Darst." eingebracht werden

Effizientes Lernen/Wissenschaftliche Darstellung					ELWD
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1.	5	WS	1 Semester	2	2

Modulverantwortliche/r Jacobs

Dozent/inn/en Dozenten der Physik

Zuordnung zum Curriculum Wahlpflichtbereich

Zugangsvoraussetzungen Keine

Leistungskontrollen / Prüfungen Anfertigung einer Hausarbeit oder eines Vortrags zu einem

vorgegebenen Thema, Kurztests in Vorlesung

Lehrveranstaltungen / SWS Seminar (2SWS)

Arbeitsaufwand Präsenzzeit im Seminar 30 Stunden

Nachbereitung, Hausarbeit, Vorbereitung der

Präsentation 30 Stunden

60 Stunden

Modulnote Unbenotet

Lernziele / Kompetenzen

Fähigkeit den Studienablauf effizient zu organisieren

• Erwerb von Kenntnissen in Lerntechniken und Selbstorganisation

Summe

Selbstständige Literaturrecherche

 Selbstständige Ausarbeitung von wissenschaftlichen Darstellungen in schriftlicher und mündlicher Form

Inhalt

- Einführung in die Studieninhalte und –organisation
- Einführung in die Grundlagen allgemeiner Lerntechniken und Selbstorganisation
- Arbeit in Lerngruppen, Vor- und Nacharbeit von Vorlesungen
- Literaturrecherche
- Anfertigen von Praktikumsauswertungen und kurzer wissenschaftlicher Texte
- Aufbau eines wissenschaftlichen Vortrages

Weitere Informationen

- Das Modul kann alternativ zum Teilmodul "Tutortätigkeit" eingebracht werden
- Es wird empfohlen, das Teilmodul in den Anfangssemestern zu belegen

Industriepraktikum					WP IP
Studiensem. 5.	Regelstudiensem. 5.	Turnus WS	Dauer 1 Semester	SWS Blockveranst.	ECTS-Punkte 5
Modulverantwortliche/r		Hochschullehre	r(innen) der Phy	sik	
Dozent/inn/en		Hochschullehre	r(innen) der Phys	sik	

Zuordnung zum Curriculum Wahlpflichtbereich

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Praktikumsbericht, Abschlussvortrag

Lehrveranstaltungen / SWS Dreiwöchiges Industriepraktikum

ArbeitsaufwandPräsenzzeit im Praktikum120 Stunden

Anfertigung des Berichts, Vortrag 30 Stunden

Summe 150 Stunden

Modulnote Unbenotet

Lernziele / Kompetenzen

- Einblick in die Abläufe marktorientierter Forschungsprojekte
- Schulung der Teamfähigkeit durch Mitarbeit in größeren Arbeitsgruppen

Inhalt

- Mitarbeit an industriellen Forschungsprojekten in privatwirtschaftlichen Forschungsabteilungen oder drittmittelfinanzierten Institutionen (z.B. Fraunhofer-Institute)
- Erstellung eines Praktikumsberichts
- Mündliche Präsentation des Praktikumsverlaufs in Anwesenheit des assoziierten Praktikumsbetreuers*.

Weitere Informationen

* Vor Beginn des Praktikums muss ein betreuender Professor gesucht werden, mit dem die Inhalte des Praktikums abgestimmt werden.

Die Veranstaltung wird alternativ zum Projektpraktikum oder einem physikalischen Wahlpflichtfach aus dem Masterstudiengang Physik angeboten.

Projektpraktikum				WP PP	
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
5.	5.	WS	1 Semester	Blockveranst.	5
				-	

Modulverantwortliche/r Hochschullehrer(innen) der Physik

Dozent/inn/en Hochschullehrer(innen) der Physik

Zuordnung zum Curriculum Wahlpflichtbereich

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Praktikumsbericht, Abschlussvortrag

Lehrveranstaltungen / SWS Dreiwöchiges Projektpraktikum

Arbeitsaufwand Präsenzzeit im Praktikum 120 Stunden

Anfertigung des Berichts, Vortrag 30 Stunden

150 Stunden

Summe 150 Stur

Modulnote Unbenotet

Lernziele / Kompetenzen

- Einblick in aktuelle Forschungsthemen und -methoden der Physik
- Fähigkeit zur Bearbeitung komplexer physikalischer Fragestellungen
- Zielgerichtete Literaturrecherche

Inhalt

Mitarbeit an aktuellen Forschungsprojekten der Arbeitsgruppen der Physik

Weitere Informationen

Die Veranstaltung wird alternativ zum Projektpraktikum oder einem physikalischen Wahlpflichtfach aus dem Masterstudiengang Physik angeboten.

Physikalische Wahlpflicht				WP PW	
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
5.	5.	WS+SS	1 Semester	4	5

Modulverantwortliche/r Studiendekan

Dozent/inn/e n Hochschullehrer(innen) aus den Fachrichtungen der Physik

Zuordnung zum Curriculum Wahlpflichtbereich

Zugangsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Klausur oder mündl. Prüfung

Lehrveranstaltungen / SWS Vorlesung (3 SWS) und Übung (1SWS) aus den

Wahlpflichtvorlesungen des Master Studiengangs Physik

Arbeitsaufwand • Präsenzzeit Vorlesung

15 Wochen à 3 SWS 45 Stunden

Präsenzzeit Übung

15 Wochen à 1 SWS 15 Stunden

 Vor- und Nachbereitung Vorlesung, Bearbeitung der Übungsaufgaben, Klausur- oder Prüfungsvorbereitung

90 Stunden

Summe 150 Stunden

Modulnote Keine

Lernziele / Kompetenzen

- Übersicht über ein aktuelles Forschungsgebiet der Physik
- Einführung in die aktuelle Forschungsmethodik der Physik

Inhalt

Siehe Modulbeschreibungen für die einzelnen Vorlesungen

Weitere Informationen

Die Veranstaltung wird alternativ zum Industrie- oder Projektpraktikum angeboten. Dasselbe Modul kann nicht gleichzeitig für den Bachelor- und Mastermodul als Studienleistung anerkannt werden.

Dynamik und Kinetik				PC02	
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1	4	WS	1 Semester	4	5

Modulverantwortliche/r	Hempelmann		
Dozent/inn/en	Hempelmann, Jung, Springborg		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Wahlpflichtbereich		
Zugangsvoraussetzungen	Keine formalen Voraussetzungen. Inhaltliche Voraussetzungen: Kenntnisse aus der Veranstaltung Experimentalphysik IIIa		
Prüfungen	benotet: Klausur nach Abschluss aller Lehrveranstaltungen		
Lehrveranstaltungen / SWS	PC02 Dynamik und Kinetik, 2V, 2Ü, WS		
Arbeitsaufwand	PC02 Vorlesung mit Übung: 15 Wochen, 4 SWS 60 h Vor- und Nachbereitung 60 h Klausurvorbereitung 30 h zus. 150 h (5 CP)		
Modulnote	Note der Abschlussklausur		

Lernziele / Kompetenzen

Die Studierenden sollen:

- die zentralen Begriffe der Kinetik (Reaktionsordnung, Ratenkonstanten, Aktivierungsenergie) beherrschen und experimentell bestimmen können,
- Geschwindigkeitsgesetze aufstellen und zu analysieren wissen,
- Auswirkungen der Chemischen Kinetik auf präparative Fragestellungen transferieren können,

Inhalt

PC02 Vorlesung PC2 mit Übung (5 CP):

- Kinetische Gastheorie: Stoßzahl, Stoßquerschnitt, freie Weglänge
- o Transportprozesse: Diffusion
- o Geschwindigkeitsgesetze: Molekularität, zusammengesetzte Reaktionen, Reaktionsordnung,
- o Ratenkonstanten: Herleitung aus der Kinetischen Gastheorie; Temperaturabhängigkeit, thermodyn. Aspekte der Theorie des Übergangszustandes,
- Besonderheiten in Lösung: Diffusionskontrollierte Reaktionen, Homogene Katalyse,
- o Kinetik auf Oberflächen: Adsorptionsisothermen, Heterogene Katalyse,
- o Photochemische & radikalische Reaktionen: Explosionen, Ozonloch
- Kombination aus Kinetik & Diffusion: Reaktionsfronten, Oszillierende Reaktionen, Musterbildung,
- (Elektrochemische Kinetik)

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: P.W. Atkins, Physikalische Chemie;

G. Wedler, Lehrbuch der Physikalischen Chemie Th. Engel, Ph. Reid, Physikalische Chemie

Thermodynamik und Kinetik I				PC01/PCG	
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
5+6	6	WS+SS	2 Semester	12	9

Modulverantwortliche/r	Hempelmann
Dozent/inn/en	Hempelmann, Jung, Springborg
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Wahlpflichtbereich
Zugangsvoraussetzungen	Keine formalen Voraussetzungen. Inhaltliche Voraussetzungen: Kenntnisse aus der Veranstaltung Experimentalphysik IIIa
Prüfungen	zum PCG Praktikum, Klausur nach Abschluss aller Lehrveranstaltungen
Lehrveranstaltungen / SWS	PC01 Thermodynamik, 2V, 2Ü, SS PCG Grundpraktikum Physikalische Chemie, P8, WS und SS
Arbeitsaufwand	PC01 Vorlesung mit Übung: 15 Wochen, 4 SWS 60 h Vor- und Nachbereitung 60 h Klausurvorbereitung 30 h zus. 150 h (5 CP) PCG Praktikum inkl. Kolloquium (6 Wochen à 20 h) 120 h (4 CP) Summe: 270 h (9 CP)
Modulnote	Note der Abschlussklausur

Lernziele / Kompetenzen

Die Studierenden sollen:

- ightharpoonup Die Grundzüge der Thermodynamik und die wesentlichen thermodynamischen Größen ΔU , ΔH , ΔS , ΔG und ΔF beherrschen,
- > mit Phasen, Phasengleichgewichte und Phasendiagramme umgehen können,
- > chemische Gleichgewichte mit Mitteln der Thermodynamik quantitativ beschreiben können,
- die Grundzüge der Gleichgewichtselektrochemie kennen.
- Auswirkungen der Chemischen Kinetik auf präparative Fragestellungen transferieren können,
- Eigenständiges experimentelles Arbeiten mit Messmethoden der Physikalischen Chemie zu den Gasgesetzen, zur Thermodynamik und zur chemischen Reaktionskinetik.

Inhalt

PC01 Vorlesung PC1 mit Übung (5 CP):

- o Ideales Gas, Reales Gas, Kinetische Gastheorie,
- o Erster Hauptsatz (Grundlagen und wiss. Anwendungen),
- o Zweiter Hauptsatz (Grundlagen und Wissenschaftliche Anwendungen),
- o dritter Hauptsatz,
- Kreisprozesse und Wirkungsgrad,
- o Gleichgewichtsbedingungen,
- o Phasengleichgewichte und Trennmethoden,
- o Grenzflächen, Oberflächenspannung, Benetzung
- o Mischphasenthermodynamik, Phasendiagramme
- o Kolligative Eigenschaften: Ebullioskopie, Kryoskopie, Osmotischer Druck,
- o Chemisches Gleichgewicht, Adsorptionsisothermen, Säure-Base-Gleichgewichte,
- Grundzüge der Debye-Hückel-Theorie wässriger Elektrolyte, Gleichgewichtselektrochemie

PCG Grundpraktikum Physikalische Chemie (4 CP):

Eigenständiges experimentelles Arbeiten mit Messmethoden der Physikalischen Chemie zu den Gasgesetzen, zur Thermodynamik und zur chemischen Reaktionskinetik.

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: P.W. Atkins, Physikalische Chemie;

G. Wedler, Lehrbuch der Physikalischen Chemie Th. Engel, Ph. Reid, Physikalische Chemie

Anmeldung zu PCG über Homepage der AK Springborg zu Semesterbeginn erforderlich

Kapazität des Praktikums PCG: 30 Teilnehmer pro Kurs, maximal 2 Kurse

EDV-Praktikum				PCEDV	
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
4	4	SS	1 Semester	3	1

Modulverantwortliche/r	Hempelmann		
Dozent/inn/en	Hempelmann, Jung, Springborg		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Wahlpflichtbereich		
Zugangsvoraussetzungen	Keine formalen Voraussetzungen. Inhaltliche Voraussetzungen: Kenntnisse aus der Veranstaltung Experimentalphysik IIIa		
Prüfungen	Prüfungsvorleistungen: schriftliche Tests zu den Vorlesungen, benotet: Klausur nach Abschluss der Lehrveranstaltungen		
Lehrveranstaltungen / SWS	PCEDV EDV-Anwendungen, 3P, SS		
Arbeitsaufwand	PCEDV inkl. Praktische Übungen (2 Wochen à 12 h, Vorbereitung auf Test 6 h) 30 h (1 CP)		
Modulnote	Note der Abschlussklausur		

Lernziele / Kompetenzen

Lernziele / Kompetenzen

Die Studierenden sollen:

- Die Grundzüge der Thermodynamik und die wesentlichen thermodynamischen Größen ΔU, ΔH, ΔS, ΔG und ΔF beherrschen,
- mit Phasen, Phasengleichgewichte und Phasendiagramme umgehen können,
- chemische Gleichgewichte mit Mitteln der Thermodynamik quantitativ beschreiben können,
- die Grundzüge der Gleichgewichtselektrochemie kennen.
- Auswirkungen der Chemischen Kinetik auf präparative Fragestellungen transferieren können, Eigenständiges experimentelles Arbeiten mit Messmethoden der Physikalischen Chemie zu den Gasgesetzen, zur Thermodynamik und zur chemischen Reaktionskinetik.

Inhalt

PCEDV EDV-Praktikum (1 CP)

Die Anwendung von Computern zur Behandlung von Daten und naturwisschaftlichen Fragestellungen:

Betriebssysteme: Linux, Unix, Windows

Programmierungstechniken: Flussdiagramme, "Computer Spielen"

Programmiersprache: C, C++

Numerische Probleme: Integration, Differentation, Funktionen, Inter- und Extrapolation, Minimieren,

Nähern, lineare Gleichungen, Eigensysteme

Mathematische Probleme: Maple

Externe Geräte: Labview

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: P.W. Atkins, Physikalische Chemie;

G. Wedler, Lehrbuch der Physikalischen Chemie Th. Engel, Ph. Reid, Physikalische Chemie

Modul Grundlagen der	Abk. Anl				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
12	1-2	jährlich	2 Semester	11	9

Modulverantwortliche/r Huber

Dozent/inn/en Huber, N. N., Kohlmann, Martin

Zuordnung zum Curriculum Wahlpflichtbereich

Zulassungsvoraussetzungen Zum Modul:keine

Zur Modulprüfung: Testate:

Test zur Vorlesung, Protokoll und Kolloquium zum Praktikum

Leistungskontrollen / Prüfungen benotet:

Klausur nach Abschluss der Lehrveranstaltungen

Lehrveranstaltungen / SWS An01 Grundlagen der Analytischen Chemie, 2V,1Ü, WS

AnG Grundpraktikum Analytische Chemie, 8P, SS

Arbeitsaufwand Vorlesung + Übung inkl. Klausur

15 Wochen (3 SWS): 45 h (zus.

Vor- Nachbereitung, Klausur 105 h 5 CP)

Praktikum inkl. Kolloquium (6 Wochen à 20 h) 120 h (4 CP)

Summe: 270 h (9 CP)

Modulnote Note der Abschlussklausur

Lernziele / Kompetenzen

Die Studierenden sollen:

- ein Verständnis für qualitative und quantitative analytische Fragestellungen entwickeln,
- zwischen den unterschiedlichen Teilbereichen der Analytik unterscheiden können,
- Kenntnisse über die Stufen und Durchführung eines analytischen Prozesses erwerben,
- Kenntnisse über analytische Kenngrößen und deren statistische Bewertung erwerben,
- Geräte und Instrumente für die Durchführung von chemischen Analysen kennen lernen,
- die Grundprinzipien nasschemischer und einfacher instrumenteller Analysenmethoden beherrschen,
- die Prinzipien von chemischen und physikalischen Trenn- und Anreicherungsmethoden verstehen,
- Richtlinien der Protokollierung und guten Laborpraxis beherrschen,
- quantitative Analysen vollständig durchführen, protokollieren und auswerten können.

Inhalt

Vorlesung (3 CP):

- Grundbegriffe der chemischen Analytik, Aufgabenstellungen einer chemischen Analyse,
- analytischer Prozess: Probenahme, Probenvorbereitung, Messung, Auswertung,
- Messung von Masse und Volumen, Konzentrationsmaße
- Haupt-, Neben-, Spurenbestandteile,
- Kenngrößen analytischer Methoden: Mengen- und Konzentrationsangaben, Messwert, Analysenwert, Analysenfunktion, Standardabweichung, Vertrauensbereich, Kalibrierung
- Anwendung chemischer Reaktion für quantitative Analysen,
- Gravimetrie, Fällungsreaktionen, Anwendungen,
- Volumetrie, Titrationskurven, Indikationsmethoden,
- Säure-Base-Gleichgewichte und Acidimetire,
- Komplexbildungsgleichgewichte und Komplexometrie
- Fällungsreaktionen, Gravimetrie, Fällungstitrationen,
- Redoxreaktionen und Redoxtitrationen.
- Lambert-Beersches Gesetz und Photometrie.
- Nernstsche Gleichung und Potentiometrie,
- Faradaysches Gesetz und Coulometrie,
- Ziele und Charakterisierung einer Trennoperation, Trennfaktor und Wiederfindungsfaktor,
- Trennung durch Elektrolyse, Abscheidungsspannung, Zersetzungsspannung,
- Langmuir-Adsorptionsisotherme und Adsorption, elutrope Reihen
- Raoultsches- und Henrysches Gesetz und Absorption,
- Nernst'sches Verteilungsgesetz und Extraktion,
- Ionenaustauschgleichgewichte und Ionenaustausch,
- multiplikative Verteilung, Chromatographie.

Übungen (2 CP):

- Übungsbeispiele zu Massenwirkungsgesetz, pH-Wert-Berechnung, Titrationskurven, Löslichkeitsprodukt,
- Angabe und Berechnungen von Konzentrationen, Umrechnung von Konzentrationsangaben, Herstellung von Lösungen,
- Übungsbeispiele zu Lambert-Beerschem Gesetz, Nernstscher Gleichung, Faradayschem Gesetz,
- Übungsbeispiele zu Langmuir-Adsorptionsisotherme, Henryschem Gesetz, Nernstschem Gesetz,
- Erstellen von Analysenfunktionen, Berechnung von Analysen- und Messwerten,
- Berechnung von Mittelwert, Standardabweichung und Vertrauensbereich einer Messserie.

AnG Praktikum (4 CP):

- Säure-Base Titration und komplexometrische Titration (z. B. Bestimmung der temporären und Gesamtwasserhärte)
- Potentiometrische Titration (z. B. Fällungstitration von Halogeniden)
- Redoxtitrationen (z. B. CSB-Bestimmung mit Dichromat)
- Flammenphotometrie
- Potentiometrie (z. B. Kalibrierung eines pH-Meters, Bestimmung eines pH-Wertes)
- Extraktion und photometrische Bestimmung von Metallen (z. B. Metalldithizonate)
- Chromatographische Trennung und Identifizierung (z. B. Papier- oder
- Dünnschichtchromatographie)
- Ionenaustausch (z. B. Bestimmung des Gesamtsalzgehaltes oder Anreicherung von Metallionen)
- Wasseranalytik: Probenahme, pH-Wert, Leitfähigkeit, Glührückstand, Wasserhärte, chemischer Sauerstoffbedarf, Gesamtsalzgehalt, Sauerstoffgehalt, CSB, Ionenchromatographie

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: M. Otto, Analytische Chemie, Wiley-VCH, 2006 Anmeldung: zum Praktikum AnG zu Semesterbeginn erforderlich

Kapazität: AnG 35 pro Kurs, 2 Kurse

Analysis II	Ana2				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
4	4	SS	1 Semester	6	9

Modulverantwortliche/r Albrecht, Eschmeier, Fuchs, Groves

Dozent/inn/en Dozenten der Mathematik

Zuordnung zum Curriculum Wahlpflichtbereich

Zulassungsvoraussetzungen Analysis 1, Lineare Algebra 1

Leistungskontrollen / Prüfungen Schriftliche oder mündliche Prüfung

(Bekanntgabe des Modus zu Beginn der Vorlesung).

Lehrveranstaltungen / SWS Vorlesung (4 SWS), Übung (2 SWS)

Arbeitsaufwand 60 h Kontaktzeit für die Vorlesung.

30 h Kontaktzeit in den Übungen,

180 h Selbststudium (Vor- und Nachbereitung, Bearbeitung von

Übungsaufgaben) – insgesamt 270 h.

Modulnote Note der schriftlichen bzw. der mündlichen Abschlussprüfung

Lernziele/Kompetenzen

Beherrschung der grundlegenden Begriffe, Methoden und Techniken der Analysis von Funktionen mehrerer Veränderlicher, sowie die Fähigkeit, diese zum Lösen von Problemen einzusetzen (auch unter Benutzung von Computern).

Inhalt

- Metrische und topologische Grundbegriffe, Kompaktheit
- Normierte Räume, Banachscher Fixpunktsatz
- Kurven, Bogenlänge, optional: Krümmung, Torsion
- Differentiationsbegriffe, Taylorformel, implizite Funktionen, Umkehrsatz
- Extrema mit und ohne Nebenbedingungen, optional: Mannigfaltigkeiten
- Mehrdimensionales Riemannintegral, optional: Lebesgueintegral
- · Optional: Approximationssätze

Weitere Informationen

Unterrichtssprache: deutsch

Literaturhinweise: Bekanntgabe jeweils vor der Vorlesung auf der Vorlesungsseite im Internet. Methoden: Information durch Vorlesung; Vertiefung durch Eigentätigkeit (Nacharbeit, aktive Teilnahme an den Übungen).

Anmeldung: Bekanntgabe jeweils rechtzeitig vor Semesterbeginn durch Aushang und Internet. Im Bachelor-Studium sind Analysis 1 und Analysis 2 zu einem Modul zusammengefasst, der (in der Regel vor Beginn des dritten Semesters) zusätzlich zu den Klausuren auch noch mündlich geprüft wird.

Informationss	CS 330 / InfoSys				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1	1	SS	1 Semester	4	6

Modulverantwortliche/r Prof. Dr. Gerhard Weikum

Dozent/inn/en Prof. Dr. Gerhard Weikum, Prof. Dr. Christoph Koch

Zuordnung zum Curriculum Wahlpflichtbereich

Zulassungsvoraussetzungen Keine

Leistungskontrollen / Prüfungen Es werden 6 benotete Leistungspunkte vergeben wenn folgende

Voraussetzungen erfüllt sind:

1) erfolgreiche Teilnahme an zwei Teilklausuren in der Mitte

und am Ende des Semesters

oder

erfolgreiche Teilnahme an einer Teilklausur und der

Nachklausur Anfang Oktober

2) erfolgreiche Teilnahme an den Übungen: Abgabe eines kleinen Programmierprojektes und Erreichen von mehr als

der Hälfte der möglichen Punkte bei kurzen Multiple-

Choice-Tests in den Übungsstunden.

Lehrveranstaltungen / SWS Vorlesung: 3 SWS

Übung: 1 SWS

Übungsgruppen mit bis zu 20 Studierenden

Arbeitsaufwand 180 h = 80 h Präsenz- und 100 h Eigenstudium

Modulnote Die Note wird aus den Ergebnissen der zwei bestandenen (Teil-)

Klausuren berechnet

Lernziele/Kompetenzen

Die Vorlesung vermittelt grundlegende Kenntnisse über Konzepte und Schnittstellen von Datenbanksystemen und anderen Arten von Informationsdienstsoftware sowie der Anwendungsentwicklungswerkzeuge zur Realisierung von Informationssystemen. Besonderes Augenmerk wird auf die logische Ebene des ANSI 3-Schichtenmodells gelegt.

Inhalt

Schwerpunktthemen sind das relationale Modell, Anfragesprachen für Datenbanksysteme, Nichtausdrückbarkeitsbeweise, Datenmodellierung, Designtheorie und Normalformen für relationale Schemata, Äquivalenz und Minimierung von Anfragen, Integritätsbedingungen, Datenintegration und aktuelle Themen wie Webinformationssysteme, Information Retrieval, und die Handhabung von unvollständiger Information.

Die notwendigen Grundlagen werden in der Vorlesung eingeführt

Weitere Informationen

Unterrichtssprache: deutsch

Literaturhinweise:

- Alfons Kemper, Andre Eickler: Datenbanksysteme eine Einführung, Oldenbourg, 2001
- Serge Abiteboul, Richard Hull, Victor Vianu: Foundations of Databases, Addison-Wesley, 1995
- Jiawei Han, Micheline Kamber: Data Mining Concepts and Techniques, Morgan Kaufmann, 2001

Programmier	CS 120 / P1				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
5	5	WS	1 Semester	6	9

Modulverantwortliche/r Prof. Dr. Gert Smolka

Dozent/inn/en Prof. Dr. Gert Smolka, Prof. Dr. Andreas Podelski

Prof. Dr.-Ing. Holger Hermanns

Zuordnung zum Curriculum Wahlpflichtbereich

Zulassungsvoraussetzungen Keine

Leistungskontrollen / Prüfungen

Lehrveranstaltungen / SWS Vorlesung: 4 SWS (ca. 250 Studierende)

Übung: 2 SWS

Übungsgruppen mit bis zu 20 Studierenden

Arbeitsaufwand 270 h = 80 h Präsenz- und 190 h Eigenstudium

• Die Note wird aus den Klausuren gemittelt und kann durch

Leistungen in den Übungen verbessert werden.

Lernziele/Kompetenzen

- höherstufige, getypte funktionale Programmierung anwenden können
- Verständnis rekursiver Datenstrukturen und Algorithmen, Zusammenhänge mit Mengenlehre
- Korrektheit beweisen und Laufzeit abschätzen
- Typabstraktion und Modularisierung verstehen
- Struktur von Programmiersprachen verstehen
- einfache Programmiersprachen formal beschreiben können
- einfache Programmiersprachen implementieren können
- anwendungsnahe Rechenmodelle mit maschinennahen Rechenmodellen realisieren können
- Praktische Programmiererfahrung, Routine im Umgang mit Interpretern und Übersetzern

Inhalt

- Funktionale Programmierung
- Algorithmen und Datenstrukturen (Listen, Bäume, Graphen; Korrektheitsbeweise; asymptotische Laufzeit)
- Typabstraktion und Module
- Programmieren mit Ausnahmen
- Datenstrukturen mit Zustand
- Struktur von Programmiersprachen (konkrete und abstrakte Syntax, statische und dynamische Syntax)
- Realisierung von Programmiersprachen (Interpreter, virtuelle Maschinen, Übersetzer)

Weitere Informationen

Unterrichtssprache:

Literaturhinweise:

Skript zur Vorlesung; siehe auch Literaturliste vom WS 02/03: http://www.ps.uni-sb.de/courses/prog-ws02/literatur.html

Bachelorsem	BS				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
6.	6.	Jedes Semester	1 Semester	2	6

Modulverantwortliche/r Studiendekan/in bzw. Studienbeauftragte/r der Physik

Dozent/inn/en Dozenten der Physik

Zuordnung zum Curriculum Pflicht (mit Wahloption)

Zugangsvoraussetzungen Keine

Leistungskontrollen / Prüfungen Mündliche Präsentation von wissenschaftlichen Artikeln aus dem

Themengebiet der Bachelorarbeit

Lehrveranstaltungen / SWS Seminar (2 SWS), max. Gruppengröße 15

Arbeitsaufwand Präsenzzeit 30 Stunden

Vorbereitung des Vortrags, Literaturstudium 150 Stunden

Summe 180 Stunden

Modulnote Aus der Beurteilung des Vortrags

Lernziele / Kompetenzen

- Einarbeitung in die Themenstellung der Bachelorarbeit
- Erlernen der in der Bachelorarbeit zu verwendenden Methodik
- Vermittlung von Fähigkeiten des wissenschaftlichen Diskurses

Inhalt

Erarbeitung und didaktische Aufbereitung der für Bachelorarbeit relevanten Fachliteratur

Bachelorarbe	ВА				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
6.	6.	Jedes Semester	1 Semester		12

Modulverantwortliche/r Studiendekan/in bzw. Studienbeauftragte/r der Physik

Dozent/inn/en Dozenten der Physik

Zuordnung zum Curriculum Pflicht (mit Wahloption)

Zugangsvoraussetzungen Keine

Leistungskontrollen / Prüfungen Anfertigung der Bachelorarbeit

Lehrveranstaltungen / SWS

Arbeitsaufwand Bearbeitung der Fragestellung und Anfertigung der Arbeit

(Bearbeitungszeit 10 Wochen)

360 Stunden

Modulnote Aus der Beurteilung der Bachelorarbeit

Lernziele / Kompetenzen

Zielgerichtete Bearbeitung eines wissenschaftlichen Projektes unter Anleitung

• Ein aktuelles Forschungsgebiet in seiner Komplexität umreißen zu können

• Fähigkeit reproduzierbare, wissenschaftliche Ergebnisse unter Anleitung zu erzielen

Inhalt

- Literaturstudium zum vorgegebenen Thema
- Erarbeitung der relevanten Methodik
- Dokumentation des Projektverlaufs
- Anfertigung der Bachelorarbeit