

Modulhandbuch

für die Studiengänge

Chemie Lehramt

- für die Sekundarstufe I und II (LS1+2)
- für die Sekundarstufe I (LS1)
- für die Berufschule (LaB)

Stand 23, 09, 2015

zusammengestellt von der Fachrichtung Chemie der Universität des Saarlandes

Saarbrücken im September 2015

Inhalt

1.	Modulübersicht LS1+2	3
2.	Modulübersicht LS1	4
3.	Modulübersicht LaB	5
4.	Semesteraufteilung LS1+2	6
5.	Semesteraufteilung LS1	7
6.	Semesteraufteilung LaB	8
7.	Pflichtmodule der Fachwissenschaft	9
8.	Wahlpflichtmodule der Fachwissenschaft	32
9.	Module der Fachdidaktik	73

1 Modulübersicht LS1+2

Modulli	eto (1 S14	-2, 90 + 25 + 22=137 CP)		
WOUUIII	SIE (LOTT	2, 30 + 23 + 22-137 GF)		
Fachwis	ssenscha	ft .		
Modul	LV	Titel der LV	СР	Sem
MaLa	MLa	Mathematik für Studierende des Lehramtes Chemie	5	1
AlLa	AC01	Allgemeine Chemie	4	1
AlLa	AC02	Grundlagen der Haupt- und Nebengruppenchemie	4	1
AlLa	PC01	Einführung in die Physikalische Chemie	4	1
AlLa	ACGLa	Einführungspraktikum Allgemeine Chemie für Lehramtsstudierende	4	2
AlLa	PCGLa	Grundpraktikum Physikalische Chemie für Lehramtsstudierende	4	2
ACLa	AC03	Reaktionen und Reaktionsmechanismen in Lösung	4	5
ACLa	AC04	Chemie der Nebengruppenelemente	4	6
		Fortgeschrittenenpraktikum Anorganische Chemie für		
ACLa	ACALa	Lehramtsstudierende	2	6
OCILA	OC01	Einführung in die Organische Chemie	7	2
OCIILa	OC02	Reaktionsmechanismen der Organischen Chemie	4	3
OCIILa	OCGLa	Grundpraktikum Organische Chemie für Lehramtsstudierende	5	4
PCLa	PC02	Thermodynamik	5	4
AnLa	An01	Grundlagen der Analytischen Chemie	4	3
AnLa	AnGLa	Grundpraktikum Analytische Chemie für Lehramtsstudierende	4	4
TCLa	TC08	Industrielle Aspekte der Chemie	3	8
SLa	SLa01	Spezielle Kapitel der Chemie für Lehramtsstudierende 1	3	7
SLa	SLa02	Spezielle Kapitel der Chemie für Lehramtsstudierende 2	3	8
S	TxGes	Toxikologie und Gesetzeskunde	3	6
WXX	XXX	Wahlpflichtveranstaltungen	14	5-10
Zw.sum	me:		90	
Fachdic				
FDI	FD01	Seminar zum semesterbegleitenden Schulpraktikum	3	5
FDI	FDA	Semesterbegleitendes Schulpraktikum	4	5
EDII	50 1	Einführung in das Fortgeschrittenenpraktikum für		
FDII	FGLa	Lehramtsstudierende	1	6
FDII	FGPLa	Fortgeschrittenenpraktikum für Lehramtsstudierende	2	6
FDII	CFD	Seminar und Fachdidaktisches Praktikum für Lehramtsstudierende	3	7
FDIII	FL	Forschendes Lernen und Experimentieren	1	8
FDIII	FLP	Chemisches Experimentieren im Saarlab	2	8
FDIV	FD02	Einführungsseminar zum fachdidaktischen Schulpraktikum	3	9
FDIV	FDB	Fachdidaktisches Schulpraktikum	6	9
Zw.sum			25	
Summe	LV:		115	
wieson	 schaftlich	oo Arhoit		
WA		ic Albeit	22	10
	summe:		137	10
Gesaiill	summe:		13/	

2. Modulübersicht LS1

Modulli	ste (Lehr	amt für die Sekundarstufe I, 63 + 25 + 16=104 CP)		
Fachwi	ssenscha	 		
Modul	LV	Titel der LV	СР	Sem
AlLa	AC01	Allgemeine Chemie	4	1
AlLa	PC01	Einführung in die Physikalische Chemie	4	1
AlLa	ACGLa	Einführungspraktikum Allgemeine Chemie für Lehramtsstudierende	4	2
AlLa	PCGLa	Grundpraktikum Physikalische Chemie für Lehramtsstudierende	4	2
AlLa	AC02	Grundlagen der Haupt- und Nebengruppenchemie	4	1
OCILa	OC01	Einführung in die Organische Chemie	7	2
OCIILa		Reaktionsmechanismen der Organischen Chemie	4	3
OCIILa	OCGLa	Grundpraktikum Organische Chemie für Lehramtsstudierende	5	4
AnLa	An01	Grundlagen der Analytischen Chemie	4	3
AnLa	AnGLa	Grundpraktikum Analytische Chemie für Lehramtsstudierende	4	4
TCLa	TC08	Industrielle Aspekte der Chemie	3	6
SLa	SLa01	Spezielle Kapitel der Chemie für Lehramtsstudierende 1	3	6
S	TxGes	Toxikologie und Gesetzeskunde	3	4
XXW	XXX	Wahlpflichtveranstaltungen	10	4-8
Zw.sum	me.		63	
ZW.3uii			- 00	
Fachdio	laktik			
FDI	FD01	Seminar zum semesterbegleitenden Schulpraktikum	3	5
FDI	FDA	Semesterbegleitendes Schulpraktikum	4	5
	1 27 (Einführung in das Fortgeschrittenenpraktikum für	<u> </u>	
FDII	FGLa	Lehramtsstudierende	1	6
FDII	FGPLa	Fortgeschrittenenpraktikum für Lehramtsstudierende	2	6
FDII	CFD	Seminar und Fachdidaktisches Praktikum für Lehramtsstudierende	3	7
FDIII	FL	Forschendes Lernen und Experimentieren	1	4
FDIII	FLP	Chemisches Experimentieren im Saarlab	2	4
FDIV	FD02	Einführungsseminar zum fachdidaktischen Schulpraktikum	3	7
FDIV	FDB	Fachdidaktisches Schulpraktikum	6	7
Zw.sum	me:		25	
Summe	LV:		88	
wissens	schaftlich	e Arbeit		
WA	3.12.11.131		16	8
Gesami	summe:		104	

3. Modulübersicht LaB

Modulli	ste (beru	fliche Schule, 63 + 25=88 CP)		
	ssenscha			
Modul		Titel der LV	CP	Sem
AlLa	AC01	Allgemeine Chemie	4	1
AlLa	PC01	Einführung in die Physikalische Chemie	4	1
AlLa	ACGLa	Einführungspraktikum Allgemeine Chemie für Lehramtsstudierende	4	2
AlLa	PCGLa	Grundpraktikum Physikalische Chemie für Lehramtsstudierende	4	2
AlLa	AC02	Grundlagen der Haupt- und Nebengruppenchemie	4	1
OCILa	OC01	Einführung in die Organische Chemie	7	2
OCIILa	OC02	Reaktionsmechanismen der Organischen Chemie	4	3
OCIILa	OCGLa	Grundpraktikum Organische Chemie für Lehramtsstudierende	5	4
AnLa	An01	Grundlagen der Analytischen Chemie	4	3
AnLa	AnGLa	Grundpraktikum Analytische Chemie für Lehramtsstudierende	4	4
TCLa	TC08	Industrielle Aspekte der Chemie	3	6
SLa	SLa01	Spezielle Kapitel der Chemie für Lehramtsstudierende 1	3	g
S	TxGes	Toxikologie und Gesetzeskunde	3	6
XXW	XXX	Wahlpflichtveranstaltungen	10	5-10
Zw.sum	ime:		63	
Fachdio	laktik			
FDI	FD01	Seminar zum semesterbegleitenden Schulpraktikum	3	5
FDI	FDA	Semesterbegleitendes Schulpraktikum	4	5
FDII	FGLa	Einführung in das Fortgeschrittenenpraktikum für Lehramtsstudierende	1	6
FDII	FGPLa	Fortgeschrittenenpraktikum für Lehramtsstudierende	2	6
FDII	CFD	Seminar und Fachdidaktisches Praktikum für Lehramtsstudierende	3	7
FDIII	FL	Forschendes Lernen und Experimentieren	1	8
FDIII	FLP	Chemisches Experimentieren im Saarlab	2	8
FDIV	FD02	Einführungsseminar zum fachdidaktischen Schulpraktikum	3	9
FDIV	FDB	Fachdidaktisches Schulpraktikum	6	ç
Zw.sum	me:	·	25	
Summe	LV:		88	
wissan	 schaftlich	 ne Arheit		
WA			0	
Gosami	summe:		88	

4. Semesteraufteilung LS1+2

Modul	LV	СР	Sem	Summen
MaLa	MLa	5	1	
AlLa	AC01	4	1	
AlLa	AC02	4	1	
AlLa	PC01	4	1	17
AlLa	ACGLa	4	2	
AlLa	PCGLa	4	2	
OCILa	OC01	7	2	15
AnLa	An01	4	3	
OCIILa	OC02	4	3	8
AnLa	AnGLa	4	4	
OCIILa	OCGLa	5	4	
PCLa	PC02	5	4	14
		-		
ACLa	AC03	4	5	
FDI	FD01	3	5	
FDI	FDA	4	5	11
ACLa	AC04	4	6	
ACLa	ACALa	2	6	
S	TxGes	3	6	
FDII	FGLa	1	6	
FDII	FGPLa	2	6	12
FDII	CFD	3	7	
SLa	SLa01	3	7	6
TCLa	TC08	3	8	
SLa	SLa02	3	8	
FDIII	FL	1	8	
FDIII	FLP	2	8	9
FDIV	FD02	3	9	
FDIV	FDB	6	9	9
				-
WXX	XXX	14	5-10	14
WA		22	10	22
		137		137

5. Semesteraufteilung LS1

Modul	LV	СР	Sem	Summen
AlLa	AC01	4	1	
AlLa	PC01	4	1	
AlLa	AC02	4	1	12
AlLa	ACGLa	4	2	
AlLa	PCGLa	4	2	
OCILa	OC01	7	2	15
AnLa	An01	4	3	
OCIILa	OC02	4	3	8
AnLa	AnGLa	4	4	
OCIILa	OCGLa	5	4	
S	TxGes	3	4	
FDIII	FL	1	4	
FDIII	FLP	2	4	15
FDI	FD01	3	5	
FDI	FDA	4	5	7
TCLa	TC08	3	6	
FDII	FGLa	1	6	
FDII	FGPLa	2	6	
Sla	SLa01	3	6	9
FDII	CFD	3	7	
FDIV	FD02	3	7	
FDIV	FDB	6	7	12
XXW	XXX	11	4-8	10
WA		16	8	16
Summe:		104		104

6. Semesteraufteilung LaB

Modul	LV	СР	Sem	Summen
AlLa	AC01	4	1	
AlLa	PC01	4	1	
AlLa	AC02	3	1	11
AlLa	ACGLa	3	2	
AlLa	PCGLa	3	2	
OCILa	OC01	7	4	13
AnLa	An01	5	3	
OCIILa	OC02	4	3	9
AnLa	AnGLa	3	4	
OCIILa	OCGLa	3	4	6
FDI	FD01	3	5	
FDI	FDA	4	5	7
TCLa	TC08	3	6	
S	TxGes	3	6	
FDII	FGLa	1	6	
FDII	FGPLa	2	6	9
BCLa	BCLa	3	7	
FDII	CFD	3	7	6
BCLa	BCGLa	2	8	
FDIII	FL	1	8	
FDIII	FLP	2	8	
SLa	SLa01	2	9	7
FDIV	FD02	3	9	
FDIV	FDB	6	9	9
XXW	XXX	11	5-10	11
		88		88

7. Pflichtmodule der Fachwissenschaft

Mathematik					MaLa
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
1	4	jährlich	1 Semester	V2 + U1	5

Modulverantwortliche/r	Albrecht			
Dozent/inn/en	Dozenten der Mathematik			
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Lehramt Chemie an Schulen (LS1+2), Pflicht Lehramt Chemie an Schulen (LS1, LaB), Wahlpflicht			
Zulassungsvoraussetzungen zum Modul	keine			
Prüfungen	Klausur nach Abschluss der Lehrveranstaltung			
Lehrveranstaltungen / SWS	MLa01 Mathematik für Studierende des Lehramtes Chemie 2V+1Ü, WS			
Arbeitsaufwand	Vorlesung: 15 Wochen, 2 SWS: Vor- Nachbereitung Übung: 15 Wochen, 1 SWS: Vor- Nachbereitung, Klausur Summe:	30 h 60 h (zus. 3 CP) 15 h 45 h (zus. 2 CP) 150 h (5 CP)		
Modulnote	Note der Abschlussklausur			

Lernziele / Kompetenzen

Die Studierenden sollen:

lineare Gleichungssysteme bearbeiten können,

Eigenwerte und Determinanten von quadratischen Matrizen berechnen können,

grundlegende Begriffe und elementare Techniken der Analysis in einer Veränderlichen kennen und die Fähigkeit haben, diese zum Lösen elementarer Probleme einzusetzen,

Inhalt

Vorlesung (3 CP):

- Reelle und komplexe Zahlen,
- Lösen linearer Gleichungssysteme,
- Matrizen, Determinanten, Eigenwertprobleme,
- Konvergenz von Folgen und Reihen,
- Funktionen, Stetigkeit, Grenzwerte bei Funktionen,
- Differenzierbarkeit, Berechnung lokaler Extrema,
- Stammfunktionen und Integration,
- Elementare Differentialgleichungen.

Übungen (2 CP):

Bearbeiten von Übungsbeispielen und Übungsaufgaben zum jeweiligen Stoff der Vorlesung

Gelegentliche Ergänzungen zur Vorlesung

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

J. Hainzl: Mathematik für Naturwissenschaftler, Teubner-Verlag.1981

L.Papula: Mathematik für Chemiker, F. Enke, Stuttgart, N. Rösch: Mathematik für Chemiker. Springer-Verlag 1993.

Anmeldung: Anmeldung zu den Übungen und zur Klausur erforderlich

Allgemeine G	AlLa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	2 Semester	7,5V + 12 P	17

Modulverantwortliche/r	Scheschkewitz				
Dozent/inn/en	Dozenten der AC, Springborg				
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Lehramt Chemie an Schulen (LS1+2, LS1, LaB), Pflicht				
Zulassungsvoraussetzungen zum Modul	Voraussetzung für Teilnahme an Praktikum ACGLa: AC01 Voraussetzung für Teilnahme an Praktikum PCGLa: AC01, PC01				
Prüfungen, Leistungskontrollen	je eine Abschlussklausuren zu AC01 , AC02 und PC01 1 MC-Test, 1 Stoffprüfungen, schriftliche Protokolle zu ACGLa schriftliche Protokolle zu PCGLa				
Lehrveranstaltungen / Methoden	AC02 Grundlagen der Hauptgruppenchemie, 2,5 SWS, WS PC01 Einführung in die Physikalische Chemie, 2,5 SWS, WS ACGLa Einführungspraktikum Allgemeine Chemie für Lehramtsstudierende 6P, SS PCGLa Grundpraktikum Physikalische Chemie für Lehramtsstudierende 6P, SS				
Arbeitsaufwand	Vorlesung/Übung AC01: 7 Wochen, 5 SWS: Vor- und Nachbereitung, Klausur Vorlesung AC02: 7 Wochen, 5 SWS Vor- Nachbereitung, Klausur Vorlesung/Übung PC01: 7 Wochen, 5 SWS: Vor- und Nachbereitung, Klausur Praktikum ACGLa 15 Nachmittage à 4 h Vor- und Nachbereitung Praktikum PCGLa Praktikum inkl. Kolloquium 10 Nachmittage à 5 h Vor- und Nachbereitung Summe: 600 h (20 CP)	35 h 85 h (zus. 4 CP) 35 h 85 h (zus. 4 CP) 35 h 85 h (zus. 4 CP) 60 h 60 h 120 h (zus. 4 CP) 50 h 70 h 120 h (zus. 4 CP)			
Modulnote	der nach CP gewichtete Mittelwert der Noten der Abschlussklausuren Jede Abschlussklausur muss separat bestanden werden.				

Lernziele / Kompetenzen

Entwicklung des Verständnis für:

Chemische, physikalische und mathematische Grundlagen der Chemie, begleitet von Versuchen und Übungen

Physikalische und chemische Eigenschaften der Hauptgruppenelemente kennen lernen

Inhalt

AC01 Vorlesung und Übung Allgemeine Chemie (4 CP):

Vorlesung:

- Energie und Materie
- Materie, Stoff, Verbindung, Element
- Atomhypothese und chemische Reaktion
- Aufbau der Atome, Kern Hülle, Bohrsches Atommodell etc.
- Quantenzahlen und deren Anwendung in der Chemie
- Aufbau des Periodensystems
- Das Versagen des Bohrschen Atommodells, Heisenbergsche Unschärferelation
- Einfache Vorstellung zur chemischen Bindung und zur Struktur von Molekülen, Salzen und Metallen
- Das chemische Gleichgewicht, Massenwirkungsgesetz und Anwendung in wäßrigen Lösungen
- Reaktionsgeschwindigkeit, Reaktionswärme
- Redoxchemie und Elektrochemie
- Allgemeine Betrachtungen zur Chemie der Elemente

Übuna:

- Säure-Base-Reaktionen: Lewis-Säuren und -Basen, Säure-Base-Begriff nach Brønsted,
- Berechnung von pH-Werten und Titrationskurven
- Redoxchemie: Aufstellung von Redoxgleichungen
- Stöchiometrieaufgaben
- Elektrochemie: Berechnung von Potentialen, Anwendung der Nernst-Gleichung, Potentialketten
- VSEPR-Model: Molekülstrukturen (Lewisformeln)
- "Kästenschreibweise": Auffüllung der Orbitale mit Elektronen und resultierend Hybridisierungszustände an ausgesuchten Molekülverbindungen
- ausgewählte Verbindungen in der Anorganischen Chemie, Bindungserklärungen (z.B. Diboran: 2e3z-Bindung), Doppelbindungsregel etc.

AC02 Vorlesung mit Übungen (4 CP):

- Chemie der Hauptgruppenelemente (s,p-Elemente)
 - a) Einteilung nach Gruppen und Eigenschaften
 - b) Die Elemente und deren Herstellung
 - c) Die wichtigsten Verbindungen
 - d) Ausgewählte Anwendungen

Chemie der Nebengruppenelemente (d.f-Elemente)

Übersicht und Grundlagen

PC01 Vorlesung und Übung (4 CP):

- Mathematik als wissenschaftliches Werkzeug
- Grundlagen der klassischen Thermodynamik
- Grundlagen der kinetischen Gastheorie und der statistischen Thermodynamik
- Grundlagen der Quantentheorie
- Grundlagen der chemischen Kinetik
- Grundlagen der Elektrochemie

ACGLa Praktikum Einführungspraktikum Allgemeine Chemie für Lehramtsstudierende (4 CP)

- einfache Synthesen und Stoffumwandlungen (qualitativ und quantitativ)
- Ionenreaktionen (Nachweis)
- Massenwirkungsgesetz
- Elektrische Spannungsreihe
- Bestimmung von Lösungswärmen
- Kenntnis wichtiger Elemente und deren Verbindungen
- Säure-Base-Titration

PCGLa Grundpraktikum Physikalische Chemie für Lehramtsstudierende (4 CP)

- Arbeitsgang bei jedem Versuch: Vorbereitung und Durchführung des Versuchs, kritische Auswertung der Ergebnisse unter Berücksichtigung der Messfehler, schriftliche Darstellung der Ergebnisse.
- Experimente zur Thermodynamik, z. B. Reale Gase, Molmassenbestimmung (Ebullioskopie),
 Verteilungsgleichgewicht, Phasengleichgewichte (Dampfdruck, Schmelzdiagramm), Kalorimetrie (Neutralisation, Verbrennungswärmen), Elektrochemie (Gleichgewichtselektrochemie, Elektrische Leitfähigkeit

13/83

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: Gerd Wedler: Lehrbuch der Physikalischen Chemie, Wiley-VCH, 2004

Paul C. Yates: *Chemical Calculations at a Glance*, Blackwell Publishing, 2005 Hollemann, Wiberg, *Lehrbuch der Anorganischen Chemie*, 101. Auflage

maximale Teilnehmerzahl: 100 Teilnehmer pro Vorlesung ACGLa: 20 pro Kurs, 2 Kurse

PCGLa: 20 pro Kurs, 2 Kurse

Anorganische	ACLa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	2 Semester	V6 + P4	10

Modulverantwortliche/r	Hegetschweiler			
Dozent/inn/en	Hegetschweiler, Morgenstern			
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Lehramt Chemie an Schulen (LS1+2), Pflicht			
Zulassungsvoraussetzungen zum Modul	AlLa Voraussetzung für die Teilnahme am Praktikum ACALa sind die Testate der Vorlesung AC03			
Prüfungen	Klausur nach Abschluss aller Lehrvera	anstaltungen		
Lehrveranstaltungen / Methoden	Vorlesung/Übung AC03 Reaktionen und Reaktionsmechanismen in Lösung, 2 + 1 SWS, WS Vorlesung/Übung/Seminar AC04 Chemie der Nebengruppenelemente, 1 + 1 + 1 SWS, SS Praktikum ACALa Fortgeschrittenepraktikum Anorganische Chemie für Lehramtsstudierende, 4 SWS, SS			
Arbeitsaufwand	Vorlesung/Übungen AC03: 15 Wochen, 3 SWS Vor- Nachbereitung, Klausur Vorlesung/Übungen/Seminar AC04: 15 Wochen, 3 SWS Vor- Nachbereitung, Klausur Praktikum ACALa: 3 Wochen, 20 SWS inkl. Vor- und Nachbereitung 60 h (2 CP) Summe: 300 h (10 CP)			
Modulnote	Note der Abschlussklausur			

Lernziele / Kompetenzen

Die Studierenden sollen:

- Prinzipien herausarbeiten
- Zusammenhänge über das Periodensystem erkennen
- In die chemische Experimentiertechnik eingeführt werden
- Wichtige Stoffe und Reaktionen im Praktikum kennen lernen
- Die schriftliche Protokollierung von Versuchen einüben
- Quantitative Beziehungen zur Beschreibung chemischer Vorgänge kennen lernen
- vertiefte Kenntnisse über wichtige Reaktionstypen in der anorganischen Chemie erwerben,
- die kinetischen und thermodynamischen Parameter von Lösungsreaktionen kennen,
- wichtige Reaktionsmechanismen kennen und verstehen,
- komplexe Gleichgewichtssysteme diskutieren und berechnen können,
- die strukturellen Eigenheiten von Metallkomplexen kennen und diskutieren können,
- die Konzepte der Gruppentheorie und Darstellungstheorie zur Beschreibung der Elektronenstruktur von Übergangsmetallkomplexen verwenden können
- sich einen Überblick über die vielseitige Phänomenologie der Metallkomplexe aneignen.

Inhalt

Vorlesung/Übungen AC03 (2,5 + 1.5 CP):

- Koordinationschemische Grundlagen: Klassifikation von Metallzentren und Liganden, Koordinationszahl, Koordinationsgeometrie, Solvatation, Ionenbeweglichkeit in Lösung;
- Thermodynamische Grundlagen: Solvatationsenergie, Gitterenergie, Born-Haber-Kreisprozesse $(\Delta H, \Delta S, \Delta G)$;
- Wichtige Lösemittel und deren physikalische und chemische Eigenschaften;
- Grundlegende Reaktionstypen in Lösung: Protonenübertragungen (pH, Hammettsche Aciditätsfunktion, Supersäuren und Basen), Komplexbildung, Löslichkeitsgleichgewichte, Elektronenübertragungen, Kombination verschiedener Reaktionstypen und gegenseitige Beeinflussung der Gleichgewichtslagen. Erweiterte Säure-Basen Konzepte: Lewis Säuren und Basen, HSAB-Konzept von Pearson.
- Experimentelle Methoden zur Bestimmung von Gleichgewichtskonstanten: Konzentrationen und Aktivitäten; Potentiometrische und spektrophotometrische Methoden.
- Merkmale und Eigenschaften von Aquaionen: Strukturelle Parameter, Stabilität, Redoxpotentiale, Acidität, Hydrolytische Vernetzung.
- Struktur-Stabilitäts-Korrelationen: entropisch und enthalpisch stabilisierte Komplexe, Chelateffekt, makrozyzklischer Effekt, Lineare Freie Energiebeziehungen.
- Reaktionsmechanismen: Ligandaustausch (A, D, I), Elektronenübertragungen (innen- und außensphären Elektronentransfer, Marcus.Theorie.

Vorlesung/Seminar/Übungen AC04 (2,5 CP + 1.5 CP):

- Molekulare Symmetrie: Symmetrieoperationen und Symmetrieelemente, Chiralität, Gruppentheorie, Punktgruppen, Schoenflies-Notation, reduzible und irreduzible Matrix-Darstellungen;
- Kristallfeld und Ligandenfeld-Theorie: die d-Orbitale in einem Ligandenfeld vorgegebener Symmetrie, Spektrochemische Reihe, Elektronenstruktur: High-spin und low-spin-Komplexe, Jahn-Teller-Verzerrung, Stereochemie von Metallkomplexen und deren Abhängigkeit von der Elektronenkonfiguration, Ligandenfeldstabilisierungsenergie und deren Auswirkung auf energetische Parameter, Stabilität, Labilität, elektronische Anregung, d-d-Übergänge, spektroskopische Eigenschaften von Übergangsmetallkomplexen;
- Magnetische Eigenschaften: Übergangsmetallkomplexe im magnetischen Feld, Temperaturabhängigkeit, das Magnetische Moment, Spin-Magnetismus und Bahnmagnetismus, ferro- und antiferromagnetische Kopplungen.

Praktikum ACALa (2 CP):

 Aufklärung komplexer Gleichgewichtssysteme in wässriger Lösung und Bestimmung der Stabilität von Metallkomplexen in wässriger Lösung

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Hollemann, Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, W. de Gruyer Verlag J. Burgess, *Ions in Solution, Basic Principles of Chemical Interactions*, Horwood Publishing; J. E. Huheey, E. A. Keiter, R. L. Keiter, *Anorganische Chemie*, Walter de Gruyter L. H. Gade, *Koordinationschemie*, Wiley-VCH;

Maximale Teilnehmerzahl: ACALa: 20 pro Kurs, 2 Kurse

Organische (OCILa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	·	jährlich	1 Semester	V/Ü5	7

Modulverantwortliche/r	Kazmaier	Kazmaier		
Dozent/inn/en	Kazmaier			
Zuordnung zum Curriculum	Lehramt Chemie an Schulen (LS1+2, LS1, LAB), Pflicht			
Zulassungsvoraussetzungen zum Modul	Klausur zu AC01			
Prüfungen	benotet: 2 Teilklausuren/Klausur nach Abschluss der Lehrveranstaltung			
Lehrveranstaltungen / SWS	OC01 Einführung in die Organische Chemie 4V, 1Ü, SS			
Arbeitsaufwand	Vorlesung/Übung inkl. Klausuren: 15 Wochen, 5 SWS: Vor- Nachbereitung, Klausuren Summe:	75 h 135 h 210 h (7 CP)		
Modulnote	Mittelwert aus den Noten der Teilklausuren / Note der Abschlussklausur			

Lernziele / Kompetenzen

Die Studierenden sollen:

die Grundlagen der Organischen Chemie kennen lernen

Herstellung, Eigenschaften und Reaktionen der verschiedenen Substanzklassen beherrschen

Reaktionsmechanismen der Organischen Chemie verstehen und anwenden die Nomenklatur organischer Verbindungen erlernen.

Inhalt

Vorlesung/Übungen OC1 (5.5 CP + 1.5 CP):

- Chemische Bindung in organischen Verbindungen: Atombindung, Bindungslängen und Bindungsenergien
- Allgemeine Grundbegriffe der Organischen Chemie: Systematik, Nomenklatur, Isomerie Grundbegriffe organischer Reaktionen
- Gesättigte Kohlenwasserstoffe: Alkane
- Die radikalische Substitutions Reaktion (S_R): Herstellung, Struktur und Stabilität von Radikalen
- Ungesättigte Kohlenwasserstoffe: Alkene, Alkine
- Additionen an Alkene und Alkine: Elektrophile, nucleophile, radikalische Additionen, Cycloadditionen
- Aromatische Kohlenwasserstoffe: Chemische Bindung, Elektronenstrukturen, MO-Theorie, Reaktionen
- Die aromatische Substitution (S_{Ar}): elektrophile, nucleophile Substitution
- Halogenverbindungen
- Die nucleophile Substititon (S_N) am gesättigten C-Atom: S_{N1}, S_{N2}-Mechanismus
- Die Eliminierungsreaktionen (E₁, E₂): α-,β-Eliminierung, Isomerenbildung
- Sauerstoff-Verbindungen: Alkohole, Phenole, Ether
- Schwefelverbindungen: Thiole, Thioether, Sulfonsäuren
- Stickstoff-Verbindungen: Amine, Nitro-, Azo-, Hydrazo-, Diazo-Verbindungen, Diazoniumsalze
- Element-organische Verbindungen: Bildung und Reaktivität, Synthetisch äquivalente Gruppen
- Aldehyde, Ketone und Chinone: Herstellung, Eigenschaften und Verwendung, Redoxreaktionen
- Reaktionen von Aldehyden und Ketonen
- Carbonsäuren: Herstellung, Eigenschaften und Verwendung, Reaktionen
- Derivate der Carbonsäuren: Herstellung, Eigenschaften und Verwendung, Reaktionen
- Reaktionen von Carbonsäurederivaten an der Carbonylgruppe, in α -Stellung zur Carbonylgruppe
- Kohlensäure und Derivate: Herstellung
- Heterocyclen: Nomenklatur, Heteroaliphaten, Heteroaromaten, Retrosynthese, Synthese von Heterocyclen
- Stereochemie: Stereoisomere, Molekülchiralität, Schreibweisen und Nomenklatur
 - Kohlenhydrate: Monosaccharide, Disaccharide, Oligo- und Polysaccharide
- Aminosäuren, Peptide und Proteine

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Latscha, Kazmaier, Klein, Basiswissen Chemie II: Organische Chemie, Springer Verlag 2002

Organische (OCIILa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	·	jährlich	1 Semester	2V+1Ü+6P	9

Modulverantwortlicher	Jauch				
Dozenten	Wenz, Jauch				
Zuordnung zum Curriculum	Lehramt Chemie an Schulen (LS1+2, LS1, LAB), Pflicht				
Zulassungsvoraussetzungen zum Modul/	Klausur zu AC01 Voraussetzung für die Teilnahme am Praktikum OCGLa ist die bestandene Klausur zur Vorlesung OC01				
Prüfungen	benotet: Klausur nach Abschluss der Vorlesung				
Lehrveranstaltungen / SWS	OC02 Reaktionsmechanismen der Organischen Chemie 2V, 1Ü, WS OCGLa Grundpraktikum Organische Chemie für Lehramtsstudierende 6P, SS				
Arbeitsaufwand	Vorlesung und Übungen inkl. Klausuren: 15 Wochen, 3 SWS: 45 h Vor-, Nachbereitung, Klausuren Praktikum 18 Tage à 5 h inkl. Vor- und Nachbereitung Summe: 150 h (5 CP) 270 h (9 CP)				
Modulnote	Note der Abschlussklausur				

Lernziele / Kompetenzen

Die Studierenden sollen:

- die Grundlagen Organischer Reaktionen verstehen
- Synthesen der verschiedenen Substanzklassen beherrschen
 - Reaktionsmechanismen der Organischen Chemie verstehen und im Experiment umsetzen
- Synthese und Umwandlung funktioneller Gruppe beherrschen

Inhalt

Vorlesung/Übung OC02 (4 CP)

- Einleitung Klassifizierung von Reaktionen in der Organischen Chemie, Oxidationsstufen des Kohlenstoffs
- Radikalische Substitution Chlorierung, Bindungsenergien, Radikalkettenreaktionen, Regioselektivität, Bromierung, Hammond Prinzip
- Nucleophile Substitution SN2, SN1, Stereoselektivität, ambidente Nucleophile
- Eliminierung E1, E2, Konkurrenz Substitution/Eliminierung, Regioselektivität, E1CB, syn-Eliminierungen
- Addition AE, AR, Regio- und Stereoselektivität, Cycloadditionen
- Substitution am Aromaten, SE, Halogenierung, Substituenteneinflüsse, Regioselektivität, Sulfonierung, Nitrierung, Reduktion von Nitroverbindungen, Sandmeyer Reaktion
- Carbonylreaktionen Reaktionen von Nucleophilen mit Aldehyden und Ketonen, bzw. mit Säurederivaten
- Reaktionen C-H acider Verbindungen mit Alkylhalogeniden, Aldehyden und Ketonen, Säurederivaten, vinylogen Carbonylverbindungen,
- Stickstoffverbindungen, Nitro-, Nitroso, Azo-, Azoxy-, Azid-, Hydrazon-, Hydrazinverbindungen

Praktikum (5 CP)

- Durchführung vorwiegend einstufiger Präparate aus den Themengebieten: Addition, Eliminierung, Nucleophile Substitution, Elektrophile Substitution, Elektrophile Aromatensubstitution, Carbonylreaktionen, Radikalreaktionen, Oxidationen und Reduktionen,
- Reinigung und Charakterisierung der hergestellten Verbindungen durch: Destillation, Kristallisation, Schmelzpunktbestimmung, Bestimmung des Brechungsindex, IR-Spektroskopie
- Durchführung von Demonstrations- und Schülerexperimenten aus der Organischen Chemie

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Clayden, Greeves, Wothers, Organic Chemistry, Oxford

Becker, Organikum, Wiley-VCH

Maximale Teilnehmerzahl: OCGLa: 15 pro Kurs, 2 Kurse

Physikalisch	PCLa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	1 Semester	2V+2Ü	5

Modulverantwortliche/r	Hempelmann		
Dozent/inn/en	Hempelmann, Natter		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Lehramt Chemie an Schulen (LS1+2), Pflicht		
Zugangsvoraussetzungen	AlLa		
Prüfungen	Testate: schriftliche Tests zur Vorlesung, benotet: Klausur nach Abschluss der Lehrveranstaltung		
Lehrveranstaltungen / SWS	PC02 Thermodynamik, 2V, 2Ü, SS		
Arbeitsaufwand	PC02 Vorlesung mit Übung: 15 Wochen, 4 SWS 60 h Vor- und Nachbereitung 60 h Klausurvorbereitung 30 h zus. 150 h (5 CP) Summe: 150 h (5 CP)		
Modulnote	Note der Abschlussklausur		

Lernziele / Kompetenzen

Die Studierenden sollen:

- ightharpoonup Die Grundzüge der Thermodynamik und die wesentlichen thermodynamischen Größen ΔU , ΔH , ΔS , ΔG und ΔF beherrschen,
- > mit Phasen, Phasengleichgewichte und Phasendiagramme umgehen können,
- > chemische Gleichgewichte mit Mitteln der Thermodynamik quantitativ beschreiben können,
- die Grundzüge der Gleichgewichtselektrochemie kennen.

Inhalt

PC02 Vorlesung PC02 mit Übung (5 CP):

- o Ideales Gas, Reales Gas, Kinetische Gastheorie,
- Erster Hauptsatz (Grundlagen und wiss. Anwendungen),
- o Zweiter Hauptsatz (Grundlagen und Wissenschaftliche Anwendungen),
- o dritter Hauptsatz,
- Kreisprozesse und Wirkungsgrad,
- o Gleichgewichtsbedingungen,
- Phasengleichgewichte und Trennmethoden,
- $\circ \quad \text{Grenzfl\"{a}chen, Oberfl\"{a}chenspannung, Benetzung}$
- Mischphasenthermodynamik, Phasendiagramme
- o Kolligative Eigenschaften: Ebullioskopie, Kryoskopie, Osmotischer Druck,
- o Chemisches Gleichgewicht, Adsorptionsisothermen, Säure-Base-Gleichgewichte,
- o Grundzüge der Debye-Hückel-Theorie wässriger Elektrolyte, Gleichgewichtselektrochemie

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: P.W. Atkins, Physikalische Chemie; G. Wedler, Lehrbuch der Physikalischen Chemie Th. Engel, Ph. Reid, Physikalische Chemie

Grundlagen (AnLa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	2 Semester	11	8

Modulverantwortliche/r	Kautenburger				
Dozent/inn/en	Kautenburger				
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Pflicht				
Zulassungsvoraussetzungen zum Modul	Voraussetzung für die Teilnahme am Praktikum AnGLa ist die Klausur zur Vorlesung An01				
Testate	Klausur zur Vorlesung, Protokoll und Kolloquium zum Praktikum				
Prüfungen	Klausur zu An01 und Kolloquium zu AnGLa				
Lehrveranstaltungen / Methoden	An01 Grundlagen der Analytischen Chemie, 2V,1Ü, WS				
	AnGLa Grundpraktikum Analytische Chemie, 8P, SS				
Arbeitsaufwand	Vorlesung/Übung inkl. Klausur 15 Wochen (3 SWS): 45 h Vor- Nachbereitung, Klausur 75 h (zus. 4 CP) Praktikum inkl. Kolloquium (6 Wochen à 20 h) 120 h (4 CP) Summe: 240 h (8 CP)				
Modulnote	Note der Klausur				

Lernziele / Kompetenzen

Die Studierenden sollen:

- ein Verständnis für qualitative und quantitative analytische Fragestellungen entwickeln, zwischen den unterschiedlichen Teilbereichen der Analytik unterscheiden können,
- Kenntnisse über die Stufen und Durchführung eines analytischen Prozesses erwerben,
- Kenntnisse über analytische Kenngrößen und deren statistische Bewertung erwerben,
- Geräte und Instrumente für die Durchführung von chemischen Analysen kennen lernen,
- die Grundprinzipien nasschemischer und einfacher instrumenteller Analysenmethoden beherrschen,
- die Prinzipien von chemischen und physikalischen Trenn- und Anreicherungsmethoden verstehen,
 Richtlinien der Protokollierung und guten Laborpraxis beherrschen,
- guantitative Analysen vollständig durchführen, protokollieren und auswerten können.

Inhalt

Vorlesung (3 CP):

- Grundbegriffe der chemischen Analytik, Aufgabenstellungen einer chemischen Analyse,
- analytischer Prozess: Probenahme, Probenvorbereitung, Messung, Auswertung,
- Messung von Masse und Volumen, Konzentrationsmaße
- Haupt-, Neben-, Spurenbestandteile,
- Kenngrößen analytischer Methoden: Mengen- und Konzentrationsangaben, Messwert, Analysenwert, Analysenfunktion, Standardabweichung, Vertrauensbereich, Kalibrierung
- Anwendung chemischer Reaktion für quantitative Analysen,
- Gravimetrie, Fällungsreaktionen, Anwendungen,
- Volumetrie, Titrationskurven, Indikationsmethoden,
- Acidimetrie,
- Gravimetrie, Fällungstitrationen,
- Redoxtitrationen,
- Lambert-Beersches Gesetz und Photometrie,
- Nernstsche Gleichung und Potentiometrie.
- Faradaysches Gesetz und Coulometrie,
- Ziele und Charakterisierung einer Trennoperation, Trennfaktor und Wiederfindungsfaktor,
- Trennung durch Elektrolyse, Abscheidungsspannung, Zersetzungsspannung,
- Nernst'sches Verteilungsgesetz und Extraktion,
- multiplikative Verteilung, Chromatographie.

Übungen (1 CP):

- Übungsbeispiele zu Massenwirkungsgesetz, pH-Wert-Berechnung, Titrationskurven, Löslichkeitsprodukt,
- Angabe und Berechnungen von Konzentrationen, Umrechnung von Konzentrationsangaben, Herstellung von Lösungen,
- Übungsbeispiele zu Lambert-Beerschem Gesetz, Nernstscher Gleichung, Faradayschem Gesetz,
- Übungsbeispiele zu Langmuir-Adsorptionsisotherme, Henryschem Gesetz, Nernstschem Gesetz,
- Erstellen von Analysenfunktionen, Berechnung von Analysen- und Messwerten,
- Berechnung von Mittelwert, Standardabweichung und Vertrauensbereich einer Messserie.

AnGLa Praktikum (4 CP):

- Säure-Base Titration und komplexometrische Titration (z. B. Bestimmung der temporären und Gesamtwasserhärte)
- Gravimetrie (z. B. Bestimmung von Ni oder Ba)
- Potentiometrische Titration (z. B. Fällungstitration von Halogeniden)
- Redoxtitrationen (z. B. CSB-Bestimmung mit Dichromat)
- Flammenphotometrie
- Potentiometrie (z. B. Kalibrierung eines pH-Meters, Bestimmung eines pH-Wertes)
- Chromatographische Trennung und Identifizierung (z. B. Papier- oder Dünnschichtchromatographie)
- Ionenaustausch (z. B. Bestimmung des Gesamtsalzgehaltes oder Anreicherung von Metallionen)
- Wasseranalytik: Probenahme, pH-Wert, Leitfähigkeit, Glührückstand, Wasserhärte, chemischer Sauerstoffbedarf, Gesamtsalzgehalt, Sauerstoffgehalt, CSB, Ionenchromatographie, Photometrie

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: M. Otto, Analytische Chemie, Wiley-VCH, 2011 (4. Auflage)

Anmeldung: zum Praktikum AnGLa zu Semesterbeginn erforderlich

Kapazität: AnGLa max. 40 pro Kurs, 1 Kurs

Industrielle A	TCLa				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	3				

Modulverantwortliche/r	Kickelbick, Scheschkewitz				
Dozent/inn/en	Gonzalez-Gallardo, Schäfer				
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Pflicht				
Zulassungsvoraussetzungen zum Modul	AlLa, OCILa				
Prüfungen	Klausur zur Vorlesung				
Lehrveranstaltungen / Methoden	TC08 Industrielle Aspekte der Chemie, 2V, SS				
Arbeitsaufwand	Vorlesung inkl. Klausur: 15 Wochen (2 SWS): Vor- Nachbereitung, Klausur Summe: 90 h (3 CP)				
Modulnote	Note der Klausur				

Lernziele / Kompetenzen

Die Studierenden sollen:

- ein Grundwissen für die technische Herstellung von wichtigen Erzeugnissen der chemischen Industrie erhalten.
- Verständnis für die Bedeutung chemischer Rohstoffe und deren limitierter Verfügbarkeit entwickeln.
- Verständnis für die Bedeutung fossiler Rohstoffen für die Energieversorgung und die chemische Industrie entwickeln
- zwischen umweltfreundlichen und umweltbelastenden Verfahren unterscheiden können
 Kenntnisse über Erzeugung der Ausgangstoffe für wichtige Materialien im täglichen Leben (Kunststoffe, Bausstoffe, Dünger, elektronische Materialien, Metalle etc.) erwerben.

Inhalt

Vorlesung Industrielle Aspekte der Chemie (3 CP):

- Einführung in die Verfahrensentwicklung
- Energie, Rohstoffe, Technologie
- Ökonomische und ökologische Betrachtungen
- Stoffflüsse und Stoffkreisläufe
- krebserregende Stoffe natürliche und künstliche
- Petrochemie
- Kohlechemie
- Polymerchemie
- Herstellung von bedeutsamen organischen Zwischenprodukten
- Düngemittel und Bauchemie
- Stahl und Metalle
- Silizium, Silikone
- Säuren, Herstellung und Verwendung
- Halogenderivate

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Büchner, Schliebs, Winter, Büchel, Industrial Inorganic Chemistry, Wiley-VCH, 2000

Weissermel, Arpe, Industrial Organic Chemistry, Wiley-VCH, 2003

Spezielle Kap	SLa					
Studiensem.	Studiensem. Regelstudiensem Turnus Dauer SWS					
		jährlich	2 Semester	48	3-6	

Modulverantwortliche/r	Jung		
Dozent/inn/en	Jung		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LaB), Pflicht LS1+2: SLa01+SLa02, 6 CP LS1, LaB: Sla01, 3 CP		
Zulassungsvoraussetzungen zum Modul	AlLa, OCILa		
Leistungskontrollen	Regelmäßige Teilnahme am Seminar, Vortrag inklusive Vortragsunterlagen (Handout)		
Lehrveranstaltungen / Methoden	SLa01 Seminar Spezielle Kapitel der Chemie für Lehramtsstudierende 1 SLa02 Seminar Spezielle Kapitel der Chemie für Lehramtsstudierende 2 (nur LS1+2)		
Arbeitsaufwand	Seminar: 15 Wochen (2 SWS): Vortragsvorbereitung Seminar: (nur LS1+2 und LPS1) 15 Wochen (2 SWS): Vortragsvorbereitung Summe:	30 h 60 h (zus. 3 CP) 30 h 60 h (zus. 3 CP) 90 h/180 h (3 CP/6 CP)	
Modulnote	unbenotet		

Lernziele / Kompetenzen

Die Studierenden sollen:

- fortgeschrittene und aktuelle Themenbereiche der Chemie kennen lernen, verstehen und diskutieren
- einschlägige Literatur zu einem Thema selbstständig suchen und auswählen können fachwissenschaftliche Inhalte didaktisch reduzieren und rekonstruieren können

ein Referat vorbereiten, vortragen diskutieren und bewerten können

Inhalt

Seminar (3 CP):

- für ein vorgegebenes Thema wird ein Vortrag vom Studierenden vorbereitet und im Plenum abgehalten und im Anschluss diskutiert.
- die Präsentation wird im Hinblick auf den fachlichen Inhalt und die didaktische Qualität ausgewertet und diskutiert
- gegebenenfalls wird der Vortrag vom betreuenden Dozenten in das erweiterte Umfeld der Chemie eingebettet

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: wird selbst ausgewählt unter Mithilfe des betreuenden Dozenten

Anmeldung: bis Beginn der Vorlesungszeit unter Vorlage der erfüllten Zulassungsvoraussetzungen

Sicherheitsaspekte der Chemie					S
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
		jährlich	1 Semester	2V	3

Modulverantwortliche/r	Natter		
Dozent/inn/en	Natter, Völzing		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Pflicht Bachelorstudiengang Chemie, Pflicht		
Zulassungsvoraussetzungen zum Modul	AlLa, OCILa		
Prüfungen	Klausuren zu den Vorlesungen		
Lehrveranstaltungen / Methoden	TX Toxikologie 1V, SS Ges Gefahrstoff- und Gesetzeskunde 1	V, SS	
Arbeitsaufwand	Vorlesung inkl. Klausur (Tx): 15 Wochen (1 SWS): Vor- und Nachbereitung Vorlesung inkl. Klausur (Ges) 15 Wochen (1 SWS): Vor-, Nachbereitung Summe:	15 h 30 h (zus. 1.5 CP) 15 h 30 h (zus. 1.5 CP) 90 h (3 CP)	
Modulnote	unbenotet		

Lernziele / Kompetenzen

Die Studierenden sollen:

- die Begriffe Gifte, Vergiftungen, Giftwirkung und Gift-Wirkungsort kennen lernen
- Grundlagen der toxischen Wirkung von Chemikalien und Naturstoffen kennen lernen
- Umwelt- und Labor relevante toxische Stoffklassen und geeignete Schutzmaßnahmen kennen
- die gesetzlichen Grundlagen im Umgang mit Gefahrstoffen sowie die rechtlichen Konsequenzen bei Verstößen gegen das Chemikalienrecht kennen
- den sichere Umgang mit Gefahrstoffen, die Einstufung, Kennzeichnung und Lagerung kennen
- gefahrstoffrechtliche Kenngrößen erlernen

Inhalt

Vorlesung Tx (1.5 CP):

- Grundbegriffe der Toxikologie
- Quellen toxischer Stoffe, Expositionsformen
- Mechanismen toxischer Wirkungen
- Aufnahme, Verteilung, Stoffwechsel, Ausscheidung von Giftstoffen
- Erfassung toxischer Wirkungen
- Epidemiologie, Vergiftungsbehandlung
- Toxikologie von Umwelt- und Industriechemikalien
- Genussgifte, Toxine, Strahlung, Nanotoxikologie

Vorlesung Ges (1.5 CP):

- Chemikaliengesetz, Gefahrstoffverordnung, Chemikalienverbotsverordnung
- Europäische Richtlinien (Alt- und Neustoffe)
- Rechtsnormen (Wasserhaushaltsgesetz, FCKW-Halonverordnung, KrW- und Abfallgesetz, Gefahrgut)
- Technische Regeln f
 ür Gefahrstoffe (TRGS)
- Toxikologische Aspekte (Grenzwerte, Kenngrößen, Einwirkungsart, Gefahrenabwehr)
- Chemikalienstrafrecht (Straftaten und Ordnungswidrigkeiten)
- Biozide, Pflanzenschutzmittel (gesetzl. Grundlagen, Typen, Anwendung, Wirkung, sicherer Umgang, Gefahrenabwehr, Einstufung und Kennzeichnung)
- Insektizide, Bakterizide, Akarizide, Verpackung, Anwendung

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Dekant, Vamvakas, Toxikologie für Chemiker, Biologen und Pharmazeuten, Spektrum Akademischer Verlag, 2004

H.F. Bender, Sicherer Umgang mit Gefahrstoffen, Wiley-VCH 2005, 3. Auflage, ISBN: 3527312544 H. Hörath, Gefährliche Stoffe und Zubereitungen, Wissenschaftliche Verlagsges. 2002, ISBN: 3804718507

Anmeldung (Ges): http://www.uni-saarland.de/fak8/hempelmann/Ges home/GES.htm

Es besteht die Möglichkeit mit bestandener Klausur die behördliche "Sachkunde nach §5 der Chemikalienverbotsverordnung" zu erlangen. Hierzu ist zusätzlich der Nachweis von fachspezifischen Kenntnissen durch den erfolgreichen Abschluss der Module AlLa, OCILa, OCILa und BCLa erforderlich

8. Wahl-Pflicht-Module der Fachwissenschaft

Als Wahlpflichtfächer können gewählt werden:

- Analytische Chemie für Fortgeschrittene
- ➤ Anorganische Chemie für Fortgeschrittene
- Mathematik
- > Werkstoffchemie
- Organische Chemie für Fortgeschrittene
- > Physik
- ➤ Physikalische Chemie für Fortgeschrittene
- > Werkstoffchemie

<u>Umfang:</u>

- Lehramt für Sekundarstufe I und II (LS1+2): 14 CP
- Lehramt für Sekundarstufe I (LS1): 10 CP
- Lehramt für Berufschule (LaB): 10 CP

Die Lehrveranstaltungen der Wahlpflichtmodule sollten zwischen dem 5. und 10. Semester absolviert werden. Die für das Wahlpflichtmodul gewählten Bausteine sollen einen inhaltlichen/fachlichen Schwerpunkt bilden. Daher ist es auch möglich, Modulbausteine aus verschiedenen Wahlpflichtfächern zu kombinieren, solange ein inhaltlicher Zusammenhang gegeben ist.

Wahlpflichtmodul zusammengesetzt aus Modulbausteinen					xxw
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	5 Semester	4V/Ü + 12P	10-14

Modulverantwortliche/r	Professoren der Chemie		
Dozent/inn/en	Dozenten der Chemie		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht		
Zulassungsvoraussetzungen zum Modul	abhängig von den gewählten Modulen (siehe § 5 des fachspez. Anhangs zur Studienordnung und zur Prüfungsordnung im Fach Chemie)		
Prüfungen	Klausuren zu Vorlesungen, Protokolle und Kolloquien zu Praktika		
Lehrveranstaltungen / Methoden	Aus der vom Prüfungsausschuss festgelegten Liste werden Vorlesungen/Praktika im Gesamtausmaß von 10 CP (LS1 und LaB) bzw. 14 CP (LS1+2) zu einem thematisch zusammenhängenden Wahlpflichtmodul kombiniert.		
Arbeitsaufwand	Summe: LS1+2: 420 h (14 CP) LS1, LaB: 300 h (10 CP)		
Modulnote	Nach Creditpoints gewichteter Mittelwert der Noten der einzelnen Lehrveranstaltungen		

Lernziele / Kompetenzen

Die Studierenden sollen:

- in einem Fach der Chemie (Anorganische Chemie, Organische Chemie, Physikalische Chemie, Analytische Chemie, Technische Chemie, Biochemie, Werkstoffchemie, Theoretische Chemie) vertiefte Kenntnisse und praktische Fertigkeiten erwerben
- Ziel ist es, die Lehramtstudierenden in einem Teilgebiet der Chemie mit der Literatursuche und dem selbständigen wissenschaftlichen Arbeiten vertraut zu machen

Inhalt

siehe Inhaltsangaben der Modulbausteine

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Anmeldung:

Maximale Teilnehmerzahl(en): siehe Angaben der Modulbausteine

Wahl-Modulbausteine Analytische Chemie für Fortgeschrittene:

Modulbaustein	Lehrveranstaltungen	Credit Points
AnW01	An02 + AnA	3+4=7
AnW02	An03 + AnE	1+2=3
AnW03	An05 + An07	3 + 3 =6

Modulbaustein AnW01					AnW
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	2 Semester	2V+5P	7

Modulverantwortliche/r	Volmer		
Dozent/inn/en	Volmer		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht An02, AnA: Bachelorstudiengang Chemie, Pflicht		
Zulassungsvoraussetzungen zum Modul	AlLa, AnLa Voraussetzung für die Teilnahme am Praktikum AnA sind die Testate zur Vorlesung An02		
Prüfungen	Klausur zur Vorlesung, Protokoll und Kolloquium zum Praktikum		
Lehrveranstaltungen / SWS	An02 Chemical Separations, 2V, SS		
	AnA Praktikum Instrumentelle Analytik, 5P, WS		
Arbeitsaufwand	Vorlesung inkl. Klausur: 15 Wochen, 2 SWS: Vor- Nachbereitung, Klausur Praktikum inkl. Kolloquium: 6 Wochen à 20 h	30 h 60 h (zus. 3 CP) 120 h (4 CP)	
	Summe: 210 h (7 CP)		
Modulbausteinnote	Note der Klausur zur Vorlesung		

Lernziele / Kompetenzen

Die Studierenden sollen:

- die theoretischen Grundlagen und Anwendungsbereiche optischer, massenspektrometrischer und elektrochemischer Messprinzipien kennen lernen,
- den Aufbau und die Funktionsweise von Instrumenten zur optischen Spektroskopie, Massenspektrometrie und elektrochemischen Analyse beherrschen,
- die theoretischen Grundlagen chromatographischer Trennprozesse beherrschen,
- Instrumentierung f
 ür chromatographische Analysen verstehen,
- Beispiele für chromatographische Trennsysteme und Anwendungen nennen können,
- theoretische Grundlagen und Anwendungen elektrophoretischer Trennsysteme kennen lernen instrumentelle Analysen vollständig durchführen, protokollieren und ausführen können.

Inhalt

Vorlesung (3 CP):

- Grundlagen der Spektroskopie, elektromagnetisches Spektrum, Wechselwirkung mit Materie,
 Lichtbrechung, -Streuung, -Reflexion, -Absorption, Molekülspektren
- Instrumentierung f
 ür optische Spektroskopie, Strahlungsquellen, Mono- und Polychromatoren, Detektoren.
- Schwingungsspektroskopie, Schwingungs- und Rotationsspektren, Infrarot- und Ramanspektroskopie, Instrumentierung und Anwendungen
- UV-Vis Spektroskopie, Elektronenübergänge, Instrumentierung und Anwendungen,
- Fluoreszenz- und Phosphoreszenzanalyse
- Massenspektrometrie, Massenspektrum und analytische Informationen, einfache Ionisierungsmethoden und Massenanalysatoren, Instrumentierung und Anwendungen,
- Theorien des chromatographischen Trennprozesses, kinetische Theorie, Bodentheorie, dynamische Theorie, chromatographische Parameter
- qualitative und quantitative Analyse, Kalibrierung, externer und Additionsstandard,
- Gaschromatographie, Trennsysteme, Instrumentierung, Detektoren, Säulentypen, Anwendungen,
- Flüssigchromatographie, Trennsysteme, Instrumentierung, Detektoren, Anwendungen, Hochleistungs-Flüssigchromatographie, Dünnschicht-Chromatographie, Chromatographie mit überkritischen Fluiden, Anwendungen
- Theorie des elektrophoretischen Trennprozesses, Migration, Mobilität, Migration in Gelen
- Zonenelektrophorese, Isotachophorese, isoelektrische Fokussierung
- Kapillarelektrophorese, Gelelektrophorese, Anwendungen,
- theoretische Grundlagen elektrochemischer Verfahren, Elektroden und galvanische Zellen, elektrolytische Leitfähigkeit,
- Konduktometrie, Voltammetrie, Polarographie, Amperometrie, Dead-Stop Verfahren, ionenselektive Elektroden

Praktikum (4 CP):

- HPLC, Kenngrößen, qualitative und quantitative Analyse (z. B. Phenole, Coffein),
- GC-MS, Kenngrößen, Kovacs Indices, Massenspektrometrie, qualitative und quantitative Analyse (z. B. Phenole, Pestizide),
- Kapillarelektrophorese, Kenngrößen, qualitative und quantitative Analyse (z. B. Anionen),
- Polarographie (z. B. Kationen), Amperometrie, Dead-Stop, Coulometrie
- Infrarot Spektrometrie (z. B. Gasanalyse),

Weitere Informationen

Unterrichtssprache: Deutsch oder Englisch

Literaturhinweise: M. Otto, Analytische Chemie, Wiley-VCH, 2006, Skoog, Leary, Instrumentelle Analytik, Springer Verlag 1997

Anmeldung: Anmeldung zum Praktikum AnA zu Semesterbeginn erforderlich

Maximale Teilnehmerzahl(en):

10 pro Kurs für AnA, 1 Kurs

Begründung: niedrigere Gruppengröße aufgrund des Arbeitens mit empfindlichen wissenschaftlichen Messgeräten (Chromatographen, Massenspektrometer, Kapillarelektrophorese, Atomabsorptionsspektrometer)

Modulbaustei	AnW				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	2 Semester	1V+3P	3

Modulverantwortliche/r	Kautenburger			
Dozent/inn/en	Kautenburger			
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht			
Zulassungsvoraussetzungen zum Modul	AlLa, AnLa Voraussetzung für die Teilnahme am Praktikum AnE sind die Testate zur Vorlesung An03			
Prüfungen	Klausur zur Vorlesung, Protokoll und Kolloquium zum Praktikum			
Lehrveranstaltungen / SWS	An03 Elementanalytik, 1V, SS			
	AnE Praktikum Elementanalytik, 3P, SS			
Arbeitsaufwand	Vorlesung/Übung inkl. Klausur: 15 Wochen (1 SWS): 15 h Vor- Nachbereitung, Klausur 15 h (1 CP) Praktikum inkl. Kolloquium 3 Wochen à 20 h 60 h (2 CP) Summe: 90 h (3 CP)			
Modulbausteinnote	Nach Creditpoints gewichteter Mittelwert der Noten der einzelnen Lehrveranstaltungen			

Lernziele / Kompetenzen

Die Studierenden sollen:

- die theoretischen Grundlagen und Anwendungsbereiche atomspektroskopischer und elektrochemischer Messprinzipien kennen lernen
- den Aufbau und die Funktionsweise von Instrumenten zur Atomspektrometrie und elektrochemischen Analyse beherrschen,
- instrumentelle Analysen vollständig durchführen, protokollieren und ausführen können.

Inhalt

Vorlesung (1 CP):

- Grundlagen der Spektroskopie, elektromagnetisches Spektrum, Wechselwirkung mit Materie, Lichtbrechung, -Streuung, -Reflexion, -Absorption, Atomspektren
- Atomisierung, Mechanismen (thermisch, Plasma, Bogen und Funken), Atomisatoren, Störungen
- Detektionsmethoden: Photometrie, Massenspektrometrie
- Atomabsorptionsspektrometrie Instrumentierung und Anwendungen
- Flammen-Atomemissions-Spektrometrie: Instrumentierung und Anwendungen
- Atomspektrometrie mit Plasmaanregung: ICP-OES, ICP-MS

Praktikum (1 CP)

- Elementanalytik (z. B. Atomabsorptionsspektrometrie, Flammenemissionsspektrometrie, ICP-OES, ICP-MS)

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise: M. Otto, Analytische Chemie, Wiley-VCH, 2006, Skoog, Leary, Instrumentelle Analytik, Springer Verlag 1997

Anmeldung: Anmeldung zum Praktikum AnE zu Semesterbeginn erforderlich

Maximale Teilnehmerzahl(en):

10 pro Kurs für AnE, 1 Kurs

Begründung: niedrigere Gruppengröße aufgrund des Arbeitens mit empfindlichen wissenschaftlichen Messgeräten

Modulbaustei	AnW					
Studiensem.	ECTS-Punkte					
5-10	5-10 10 jährlich 2 Semester 4V					

Modulverantwortliche/r	Volmer			
Dozent/inn/en	Volmer			
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LAG, LAH, LAR, LAB), Wahlpflicht			
Zulassungsvoraussetzungen zum Modul	AnLa, AnLa			
Prüfungen	Abschlussklausur zu den Vorlesungen			
Lehrveranstaltungen / Methoden	An05 Bioanalytik, 2V, WS An07 Fortgeschrittene Methoden der Instrumentellen Analytik, 2V, WS			
Arbeitsaufwand	Vorlesung inkl. Klausur: (An05) 15 Wochen, 2 SWS: Vor- Nachbereitung, Klausur Vorlesung inkl. Klausur: (An07) 15 Wochen, 2 SWS: Vor- Nachbereitung, Klausur 30 h 30 h 60 h (zus. 3 CP) Summe: 180 h (6 CP)			
Modulbausteinnote	Note der Abschlussklausur			

Lernziele / Kompetenzen

An05:

- Verständnis der Eigenschaften biologischer Moleküle in Bezug auf die Anwendbarkeit verschiedener Methoden zu deren Trennung, Isolierung und Strukturaufklärung
- Verständnis der Besonderheiten biologischer Makromoleküle bei der Trennung und Strukturanalyse
- Analyse von Biomolekülen in biologischen Matrices unter Anwendung biochemischer und instrumenteller Analysenverfahren
- Literatursuche und selbständiges Erarbeiten von bioanlytischen Methoden, praktische Arbeiten, Einführung in Sicherheitsvorschriften und die Benützung wissenschaftlicher Geräte

An07:

- Verständnis analytischer Problemstellungen in den Bereichen Umwelt, Lebensmittel, Industrie, Naturstoffe
- kritische Bewertung verschiedener Analysenmethoden im Hinblick auf die Anwendbarkeit für die relevanten Stoffklassen in den unterschiedlichen chemischen Umgebungen
- Entwicklung geeigneter Analystenstrategien anhand eines vorgegebenen Problems
- Selbständige Bearbeitung analytischer Problemstellungen aus den Bereichen Umwelt, Lebensmittel. Industrie
- Literatursuche und Auswahl geeigneter Analysenverfahren
- selbständige Durchführung der Analysen, Erstellung von Analysenberichten, Bewertung der Ergebnisse

Inhalt

Vorlesung An05 (3 CP):

- Physikalisch-chemische Eigenschaften von Biomolekülen
- Anwendbarkeit dieser Eigenschaften zu deren Trennung durch verschiedene Trennmechanismen (Chromatographie, Elektrophorese) und Strukturanalyse (nasschemische Methoden, Kernresonanzspektroskopie, Massenspektrometrie)
- Methoden der Bioanalytik: Chromatographie, Elektrophorese, Gelektrophorese,
 Kapillarelektrophorese, ESI- und MALDI-Massenspektrometrie, Micro- und Nano-HPLC,
 Kopplungsmethoden, mehrdimensionale Trennungen, enzymatische Methoden
- Proteinanalytik: chromatographische und elektrophoretische Trennung und Analyse, Peptide-Mapping, Detektion posttranslatorischer Modifikationen, ESI-Massenspektrometrie und MALDI-Massenspektrometrie von Peptiden und Proteinen, Proteinsequenzanalyse, 3-D-Strukturinformation aus NMR, Röngenstrukturanalyse
- bioinformatische Werkzeuge in der Proteomanalyse
- Anwendungen in der Proteomanalyse
- Nukleinsäureanalytik: chromatographische und elektrophoretische Trennung und Analyse, Restriktionsverdaue und Polymerase-Kettenreaktion, ESI-Massenspektrometrie und MALDI-Massenspektrometrie von Nukleinsäuren
- DNA-Sequenzanalyse, Methoden zur Detektion von Mutationen
- bioinformatische Werkzeuge in der Genomanalyse
- Anwendungen in der Forensik und medizinischen Diagnostik
- Kohlenhydratanalyse: Zuckerbausteinbestimmung, chromatographische und elektrophoretische Trennung, Massenspektrometrie
- Analyse von Polysacchariden und Glycoproteinen

Vorlesung An07 (3 CP):

- Umweltanalytik: Gesetzliche Grundlagen, umweltanalytische Analysenmethoden (Spektroskopie, Gaschromatographie, Flüssigkeitschromatographie, Massenspektrometie, Atomspektrometrie), Inhalts- bzw. Problemstoffe (Toxizität, Wirkung), Entsorgung von Problemstoffen, Probennahme/Probenvorvereitung, Analysen-/Messverfahren, und ausgewählte Beispiele für folgende Matrices: Grund- und Oberflächengewässer, Abwasser, Abfall, Boden, Sedimente, Luft, Abgase
- Lebensmittelanalytik: Einführung, Wasser (K-F Titration, GC, Trocknungsmethoden), Gesamtstickstoff, Aminosäuren/Peptide/Proteine (Hydrolyse, chromatographische und elektophoretische Analysenverfahren, proteolytische Spaltungen, immunologische Verfahren, MS), Kohlenhydrate (Photometrie, enzymatische Verfahren, Sensoren, chromatographische und elektrophoretische Analysenverfahren, Polysaccharide, Ballaststoffe und Dickungsmittel), Lipide (Extraktionsverfahren, Identifizierung der Fettsäuren und Lipidzusammensetzung durch Chromatographie, Elektophorese und gekoppelte Methoden), Nukleinsäuren (Polymerase-Kettenreaktion, Southern-Blotting, DNA-Chips), Vitamine (Extraktion, Photometrie, Chromatographie, Elektrophorese), Aromaanalytik (Gewinnung, Sensorik, Charakterisierung durch Identifizierung der Einzelkomponenten, Aromaverdünnungsanalyse).
- Industrielle Analytik: Analytik in technischen Prozessen, Prozessmodellierung, analytische Methoden für Prozessanalytik (Sensoren, Schnelltests, Trennverfahren, radiochemische Methoden), chromatographische Trennungen im präparativen Maßstab (Thermodynamik, Upscaling, Anlagentechnik), Polymeranalytik

Weitere Informationen

Unterrichtssprache: Deutsch oder Englisch

Literaturhinweise: Lottspeich, Bioanalytik, Spektrum Akademischer Verlag 2006 Hein, Kunze, Umweltanalytik mit Spektroskopie und Chromatographie, Wiley-VCH 2004

Wahl-Modulbausteine Anorganische Chemie für Fortgeschrittene:

Modulbaustein	Lehrveranstaltungen	Credit Points
ACW01	AC03+AC04	8
ACW02	AC05	4
ACW03	AC06	3
ACW04	AC08	3

Modulbauste	ACW				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	•	jährlich	2 Semester	V6	8

Modulverantwortliche/r	Hegetschweiler			
Dozent/inn/en	Hegetschweiler, Morgenstern			
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Lehramt Chemie an Schulen (LS1, LAB), Wahlpflicht			
Zulassungsvoraussetzungen zum Modul	AlLa			
Prüfungen	Abschlussklausur			
Lehrveranstaltungen / Methoden	Vorlesung/Übung AC03 Reaktionen und Reaktionsmechanismen in Lösung, 2 + 1 SWS, WS Vorlesung/Übung/Seminar AC04 Chemie der Nebengruppenelemente, 1 + 1 + 1 SWS, SS			
Arbeitsaufwand	VorlesungÜbungen AC03: 15 Wochen, 3 SWS Vor- Nachbereitung, Klausur Vorlesung/Übungen/Seminar AC04: 15 Wochen, 3 SWS Vor- Nachbereitung, Klausur 75 h (zus. 4 CP) Summe: 240 h (8 CP)			
Modulbausteinnote	Note der Abschlussklausur			

Lernziele / Kompetenzen

Die Studierenden sollen:

- Prinzipien herausarbeiten
- Zusammenhänge über das Periodensystem erkennen
- In die chemische Experimentiertechnik eingeführt werden
- Wichtige Stoffe und Reaktionen im Praktikum kennen lernen
- Die schriftliche Protokollierung von Versuchen einüben
- Quantitative Beziehungen zur Beschreibung chemischer Vorgänge kennen lernen
- vertiefte Kenntnisse über wichtige Reaktionstypen in der anorganischen Chemie erwerben,
- die kinetischen und thermodynamischen Parameter von Lösungsreaktionen kennen,
- wichtige Reaktionsmechanismen kennen und verstehen,
- komplexe Gleichgewichtssysteme diskutieren und berechnen können,
- die strukturellen Eigenheiten von Metallkomplexen kennen und diskutieren können,
- die Konzepte der Gruppentheorie und Darstellungstheorie zur Beschreibung der Elektronenstruktur von Übergangsmetallkomplexen verwenden können
- sich einen Überblick über die vielseitige Phänomenologie der Metallkomplexe aneignen.

Inhalt

<u>Vorlesung/Übungen AC03 (2,5 + 1.5 CP):</u>

- Koordinationschemische Grundlagen: Klassifikation von Metallzentren und Liganden, Koordinationszahl, Koordinationsgeometrie, Solvatation, Ionenbeweglichkeit in Lösung;
- Thermodynamische Grundlagen: Solvatationsenergie, Gitterenergie, Born-Haber-Kreisprozesse (ΔΗ, ΔS, ΔG);
- Wichtige Lösemittel und deren physikalische und chemische Eigenschaften;
- Grundlegende Reaktionstypen in Lösung: Protonenübertragungen (pH, Hammettsche Aciditätsfunktion, Supersäuren und Basen), Komplexbildung, Löslichkeitsgleichgewichte, Elektronenübertragungen, Kombination verschiedener Reaktionstypen und gegenseitige Beeinflussung der Gleichgewichtslagen. Erweiterte Säure-Basen Konzepte: Lewis Säuren und Basen, HSAB-Konzept von Pearson.
- Experimentelle Methoden zur Bestimmung von Gleichgewichtskonstanten: Konzentrationen und Aktivitäten; Potentiometrische und spektrophotometrische Methoden.
- Merkmale und Eigenschaften von Aquaionen: Strukturelle Parameter, Stabilität, Redoxpotentiale, Acidität, Hydrolytische Vernetzung.
- Struktur-Stabilitäts-Korrelationen: entropisch und enthalpisch stabilisierte Komplexe, Chelateffekt, makrozyzklischer Effekt, Lineare Freie Energiebeziehungen.
- Reaktionsmechanismen: Ligandaustausch (A, D, I), Elektronenübertragungen (innen- und außensphären Elektronentransfer, Marcus. Theorie.

<u>Vorlesung/Seminar/Übungen AC04 (2,5 CP + 1.5 CP):</u>

- Molekulare Symmetrie: Symmetrieoperationen und Symmetrieelemente, Chiralität, Gruppentheorie, Punktgruppen, Schoenflies-Notation, reduzible und irreduzible Matrix-Darstellungen;
- Kristallfeld und Ligandenfeld-Theorie: die d-Orbitale in einem Ligandenfeld vorgegebener Symmetrie, Spektrochemische Reihe, Elektronenstruktur: High-spin und low-spin-Komplexe, Jahn-Teller-Verzerrung, Stereochemie von Metallkomplexen und deren Abhängigkeit von der Elektronenkonfiguration, Ligandenfeldstabilisierungsenergie und deren Auswirkung auf energetische Parameter, Stabilität, Labilität, elektronische Anregung, d-d-Übergänge, spektroskopische Eigenschaften von Übergangsmetallkomplexen;
- <u>Magnetische Eigenschaften: Übergangsmetallkomplexe im magnetischen Feld,</u>

 <u>Temperaturabhängigkeit, das Magnetische Moment, Spin-Magnetismus und Bahnmagnetismus,</u>

 <u>ferro- und antiferromagnetische Kopplungen.</u>

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Hollemann, Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, W. de Gruyer Verlag J. Burgess, *Ions in Solution, Basic Principles of Chemical Interactions*, Horwood Publishing; J. E. Huheey, E. A. Keiter, R. L. Keiter, *Anorganische Chemie*, Walter de Gruyter L. H. Gade, *Koordinationschemie*, Wiley-VCH;

Modulbaustei	ACW				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	3V	4

Modulverantwortliche/r	Kickelbick		
Dozent/inn/en	Kickelbick		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht AC04: Bachelorstudiengang Chemie, Pflicht		
Zulassungsvoraussetzungen zum Modul	AlLa		
Prüfungen	Klausur zur Vorlesung		
Lehrveranstaltungen / Methoden	AC05 Festkörperchemie und Strukturchemie 3V, WS		
Arbeitsaufwand	Vorlesung: 15 Wochen (3 SWS): Vor- Nachbereitung, Klausur Summe: 45 h 75 h 120 h (4 CP)		
Modulbausteinnote	Note der Klausur		

Lernziele / Kompetenzen

Die Studierenden sollen:

- Strukturelemente von Festkörpern kennen
- Den Bezug anorganischer Verbindungen zu deren technischer Bedeutung erfahren
- Die Prinzipien der Herstellung und Charakterisierung von Festkörpern lernen
- Geräte und Instrumente für die Durchführung von chemischen Analysen anorganischer Verbindungen kennen lernen,
- die Grundprinzipien der Speziation in wässriger Lösung beherrschen

Inhalt

Vorlesung AC05 (4 CP)

- Grundbegriffe der Kristallographie, Darstellung und Erläuterung einfacher Kristallstrukturen (vom Typ A, AB, AB₂, AB₃, A₂B₃, ABX₃, AB₂X₄, A₂BX₄ und verwandter Systeme)
- Regeln und Gesetze zum Verständnis des strukturellen Aufbaus kristalliner Materie
 Struktur-Eigenschaftsbeziehungen
- Methoden der Präparation in Festkörper-, Schmelz- und Transportreaktionen
- Methoden der Charakterisierung von Festkörpern mit thermoanalytischen, spektroskopischen und röntgenographischen Methoden

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:
U. Müller, Anorganische Strukturchemie, Verlag Teubner
R. West, Solid State Chemistry, Wiley Verlag
R. Tilley, Understanding Solid,s Wiley Verlag

Modulbaustei	ACW				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V	3

Modulverantwortliche/r	Scheschkewitz		
Dozent/inn/en	Scheschkewitz		
Zuordnung zum Curriculum	Chemie Lehramt an Schulen (LAG, LAH, LAR, LAB), Wahlpflicht AC05: Bachelorstudiengang Chemie, Pflicht		
Zulassungsvoraussetzungen zum Modul	AlLa		
Prüfungen	Klausur zur Vorlesung		
Lehrveranstaltungen / Methoden	AC06 Molekülchemie und Metallorganische Chemie 1V + 1S, WS		
Arbeitsaufwand	15 Wochen, 2 SWS:	30 h	
	Vor- Nachbereitung, Klausur	60 h	
	Summe:	90 h (3 CP)	
Modulbausteinnote	Note der Klausur		

Lernziele / Kompetenzen

Die Studierenden sollen:

- Verständnis für Konzepte der Hauptgruppenchemie in Synthese, struktureller und spektroskopischer Charakterisierung sowie Tendenzen in den Eigenschaften von Verbindungen der Hauptgruppenelemente entwickeln
- Verständnis der Chemie der Nebengruppenmetalle entwickeln
- Tiefgehende Kenntnis der Stoffchemie der Hauptgruppenelemente erwerben
- Verständnis der grundlegenden Strukturprinzipien der Elementmodifikationen und wichtigsten Verbindungsklassen (Halogenide, Sauerstoff- und Stickstoffverbindungen, Hydride, Organische Derivate) entwickeln
- Umgang mit empfindlichen Substanzen in der anorganisch-chemischen Synthese
 - Extraktion von relevanten Daten und Zitaten aus der anorganisch-chemischen Literatur
- Verfassen wissenschaftlicher Abhandlungen

Inhalt

Vorlesung AC06 (3 CP)

- Molekülchemie der Nichtmetalle
 - o Abgrenzung zu Metallen
 - Stabilität von Oxidationsstufen; Mehrfachbindungen; Hypervalenz
 - o Koordinationszahl und Gestalt von Molekülen (u.A. VSEPR-Modell)
 - Elementmodifikationen (B, C, Si, N, P, As, O, S, Se, Te, Po, Halogene)
 - o Wasserstoffverbindungen von P, S
 - o Halogenide (von B, C, Si, N, P, O, S, der Halogene und Edelgasen)
 - Oxide und Sauerstoffsäuren (von B. Si. N. P. S)
- Molekülchemie der Metalle
 - Einordnung im PSE (Metallcharakter, Elektronegativität, Schrägbeziehung, Elektronenmangelverbindungen)
 - s-Block Metalle: Halogenide (ionisch, kovalent); Sauerstoffverbindungen: Suboxide, Alkoxide; Stickstoffverbindungen; Hydride
- organische Verbindungen der Hauptgruppenmetalle
 - Metall-Kohlenstoff-Bindung (Stabilität, Inertheit, Nomenklatur)
 - s-Block Metalle (Li-Organyle, Erdalkali-Alkyle, Grignard-Verbindungen; Cyclopentadienylverbindungen)
- organische Chemie von Übergangsmetallen
 - Beteiligung von Metall-d-Orbitalen an Bindungen
 - \circ Liganden als Elektronendonoren und –akzeptoren (σ/π)
 - Carbonyle, Alken-/Alkin-Komplexe, cyclische Perimeter (Cyclopentadienyl-, Benzol-Komplexe, Sandwich-Komplexe)
 - o Cluster-Chemie und Isolobal-Analogie
- organische Chemie von Halbmetallen
 - o Borane (Cluster-Strukturen, Elektronenzählregeln)
 - o Wasserstoffverbindungen und Derivate von Si, Ge
 - Elektronenmangelverbindungen (Mehrzentrenbindung, Clusterbildung)

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Inorganic Chemistry: Principles of Structure and Reactivity; Huheey; J. E.; Keiter; E. A.; Keiter; R. L. Longman: 4. ed.,1993.

Lehrbuch der Anorganischen Chemie; Holleman; A. F.; Wiberg; E. Gruyter: 1995.

Modulbaustei	ACW				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
7-9	10	jährlich	1 Semester	3V	3

Modulverantwortliche/r	Hegetschweiler	
Dozent/inn/en	Hegetschweiler, Morgenstern	
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht	
Zulassungsvoraussetzungen zum Modul	AlLa	
Prüfungen	Klausur zur Vorlesung	
Lehrveranstaltungen / Methoden	AC08 Bioanorganische Chemie 2V, WS	
Arbeitsaufwand	15 Wochen, 2 SWS: Vor- Nachbereitung, Klausur Summe:	30 h 60 h 90 h (3 CP)
Modulbausteinnote	Note der Klausur	

Lernziele / Kompetenzen

Kenntnisse der Bedeutung anorganischer, insbesondere metallischer Elemente in biologischen Systemen und Prozessen aneignen.

Inhalt

Vorlesung AC08 (3 CP)

Biologische Bedeutung anorganischer Elemente: Bulk- und Spurenelemente Elektrolyte: ungleiche Verteilung von K und Na, Ionenkanäle und Ionenpumpen.

Biologische Liganden für Schwermetallkationen: Aminosäuren und Peptide, Tetrapyrrol-Liganden, Nukleobasen und Nukleotide, Zucker und Kohlehydrate.

O₂-Transport und Speicherung: Hämoglobin und Myoglobin, Hämerythrin und Hämocyanin Sauerstoffmetabolismus und Atmungskette: Cytochrome, Katalayse, Superoxiddismuthase und Peroxidasen, "giftiger" Sauerstoff: oxidativer Stress, NO, OH-Radikale und Peroxynitrit. Eisentransport und Speicherung: Transferrin und Ferritin.

Enzym-Katalyse am Beispiel Kohlensäure - Kohlendioxid: Carboanhydrase. Biologische Stickstoff-Fixierung: Nitrogenasen, Mo-Fe-S-Proteine.

Biomineralisation: Knochen und Zähne, Mg- und Ca-Stoffwechsel.

Speicherkrankheiten: Cu- und Fe-Überladung, Schwermetallvergiftungen, Therapie mit selektiven Metallkomplexbildnern ("Chelat-Therapie").

Kontrastmittel in der medizinischen Diagnostik. Kernspintomographie als bildgebendes Verfahren, Gd-Komplexe als paramagnetische Kontrastmittel, medizinisch wichtige Radionuklide (Tc).

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

(1) W. Kaim, B. Schwederski, *Bioanorganische Chemie*, Teubner.(2) S. J. Lippard, J. M. Berg, *Bioanorganische Chemie*, Spektrum Verlag.

Wahl-Modulbausteine Organische Chemie für Fortgeschrittene:

Modulbaustein	Lehrveranstaltungen	Credit Points
OCW01	OC04	4
OCW02	OC05	3
OCW03	OC09	3
OCW04	OC10	3
OCW05	MC01	2

Modulbaustein OCW01					ocw
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	3 V /Ü	4

Modulverantwortliche/r	Jauch		
Dozent/inn/en	Jauch		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht		
Zulassungsvoraussetzungen zum Modul	OCILa		
Prüfungen	Klausur am Ende der Vorlesung		
Lehrveranstaltungen / Methoden	OC04 Synthese und Umwandlung von Funktionellen Gruppen 2V, 1Ü, SS		
Arbeitsaufwand	Vorlesung/Übung incl. Klausuren: 15 Wochen/3 SWS: 45h Vor-/Nachbereitung/Klausuren 75 h Summe: 120 h (4 CP)		
Modulbausteinnote	Note der Klausur		

Lernziele / Kompetenzen

Die Studierenden sollen:

funktionelle Gruppen in der OC kennen

wissen, wie diese funktionellen Gruppen synthetisiert und ineinander umgewandelt werden wissen, wie man funktionelle Gruppen erfolgreich in der Synthese einsetzt

Inhalt

- Halogene
- Doppelbindungen
- Dreifachbindungen
- Alkohole, Diole
- Ether, Epoxid, Oxetan
- Aldehyd, Keton, Halbacetal, Acetal
- α,β-ungesättigter Aldehyd/Keton
- Hydroxyaldehyde, Hydroxyketone
- Carbonsäure, Ester, Anhydrid, Säurechlorid, Amid, Nitril, Isonitril
- Hydroxysäuren
- Amine, Aminoalkohole
- Aminosäuren
- Diazoverbindung, Diazoniumionen, Azoverbindungen
- Hydroxylamine, Hydrazine
- Imine, Oxime, Hydrazone
- Gliederung einzelner Abschnitte: Reaktion/Reagenzien, Mechanismus, Anwendungsbeispiel aus Naturstoffsynthese

Weitere Informatione Unterrichtssprache:	n	
Literaturhinweise:		

Modulbaustein OCW02				ocw	
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V	3

Modulverantwortliche/r	Jauch	
Dozent/inn/en	Jauch	
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht OC05: Masterstudiengang Chemie, Pflicht	
Zulassungsvoraussetzungen zum Modul	OCILa	
Prüfungen	Klausur am Ende der Vorlesung	
Lehrveranstaltungen / Methoden	OC05 Aromatenchemie, 2 V, WS	
Arbeitsaufwand	Vorlesung/incl. Klausuren 15 Wochen/2 SWS Vor-/Nachbereitung/Klausuren Summe:	30 h 60 h 90h (3 CP)
Modulbausteinnote	Note der Klausur	

Lernziele / Kompetenzen

Die Studierenden sollen:

- Eigenschaften des aromatischen Zustandes kennen
- Reaktionen von aromatischen Verbindungen kennen
- Aufbaureaktionen von aromatischen Verbindungen kennen

Inhalt

- Aromatizität und Antiaromatizität, Benzolproblem
- MO-Theorie von Aromaten, Hückel
- NMR, Ringstromeffekt
- Valenzisomere von Benzol
- Cyclobutadien, Cyclooctatetraen
- monocyclischen und polycyclischen aromatische Verbindungen
- Reaktionen von Aromaten und Heteroaromaten elektrophile und nucleophile aromatische Substitution, übergangsmetallkatalysierte Reaktionen
- Aufbaureaktionen von Aromaten

Weitere Informationen Unterrichtssprache:
Literaturhinweise:
Maximale Teilnehmerzahl(en):

Modulbaustein OCW03				ocw	
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V	3

Modulverantwortliche/r	Jauch		
Dozent/inn/en	Jauch		
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht OC10: Masterstudiengang Chemie, Wahlpflicht		
Zulassungsvoraussetzungen zum Modul	OCILa		
Prüfungen	Klausur am Ende der Vorlesung		
Lehrveranstaltungen / Methoden	OC09 Stereoselektive Synthese, 2V, SS		
Arbeitsaufwand	Vorlesung/incl. Klausuren 15 Wochen/2 SWS Vor-/Nachbereitung/Klausuren Summe: 90h (3 CP)		
Modulbausteinnote	Note der Klausur		

Lernziele / Kompetenzen

Die Studierenden sollen:

stereochemische Verhältnisse in Molekülen beschreiben können (statische Stereochemie) stereochemische Verhältnisse bei Reaktionen beschreiben können (dynamische Stereochemie)

wichtige stereoselektive Reaktionen kennen

Inhalt

- Grundbegriffe
- Isomere
- Symmetrie und Chrialität
- Prochiralität
- Selektivität
- Selektivitätssteuerung
- wichtige stereoselektive Reaktionen
- Enantiomeranalytik

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Modulbaustein OCW04				ocw	
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V	3

Modulverantwortliche/r	Jauch	
Dozent/inn/en	Speicher	
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht	
Zulassungsvoraussetzungen zum Modul	OCILa	
Prüfungen	Klausur am Ende der Vorlesung	
Lehrveranstaltungen / Methoden	OC10 Heterocyclen, 2V, SS	
Arbeitsaufwand	Vorlesung/integrierte Übungen incl. Klausur: 15 Wochen/2 SWS 30 h Vor-/Nachbereitung/Klausuren 60 h Summe: 90h (3 CP)	
Modulbausteinnote	Note der Klausur	

Lernziele / Kompetenzen

Die Studierenden sollen:

- die wichtigsten heterocyclischen Ringsysteme, ihre Eigenschaften und Reaktionsweisen kennen
 Herstellungsverfahren/Synthesen für diese Ringsysteme kennen
 - wichtige heterocyclische Naturstoffe und weitere Relevanzen kennen

Inhalt

- 1 Einführung
- 2 Systematische Nomenklatur
- 3 Dreiring-Heterocyclen (Oxirane, Thiirane, Azirine, Aziridine, Dioxirane, Oxaziridine)
- 4 Vierring-Heterocyclen (Oxetane, Azetidine und Derivate)
- 5 Fünfring-Heterocyclen
- 5.1 Sauerstoffhaltige Fünfringe (Furane, Tetrahydrofurane)
- 5.2 Schwefelhaltige Fünfringe (Thiophene und Derivate)
- 5.3 N-haltige Fünfring-Heterocyclen (Pyrrol, Indol, Pyrrolidine)
- 5.4 Fünfring-Heterocyclen mit mehreren Heteroatomen (Oxazole, Isoxazole, Thiazole, Isothiazole, Imidazole, Pyrazole, Triazole, Tetrazole)
- 6. Sechsring-Heterocyclen
- 6.1 Sauerstoffhaltige mit 1 Heteroatom (Pyrylium-Salze, 2H-Pyrane, 4H-Pyrane, Di- und Tetrahydropyrane)
- 6.2 Stickstoffhaltige Sechsring-Heterocyclen mit 1 Heteroatom (Pyridine, Chinoline, Isochinoline, Dibenzopyridine, Piperidine)
- 6.3 Sechsring-Heterocyclen mit mehreren Heteroatomen (1,4-Dioxan, Pyridazine, Pyrimidine, Purine, Pyrazin, Pteridine)

Weitere Informationen Unterrichtssprache: Deutsch	
Literaturhinweise:	

Modulbaustein OCW05					ocw
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V	3

Modulverantwortliche/r	Jauch	
Dozent/inn/en	Wenz	
Zuordnung zum Curriculum	Chemie Lehramt an Schulen (LS1+2, LS2	1, LAB), Wahlpflicht
[Pflicht, Wahlpflicht, Wahlbereich]	MC01: Bachelorstudiengang Chemie, Pfli	icht
Zulassungsvoraussetzungen zum Modul	OCILa	
Prüfungen	Klausur am Ende der Vorlesung	
Lehrveranstaltungen / Methoden	MC01 Synthese von Polymeren 2V, WS	
Arbeitsaufwand	Vorlesung/Übung incl. Klausuren	
	15 Wochen/2 SWS	30h
	Vor-/Nachbereitung/Klausuren	60h
	Summe:	90h (3 CP)
Modulbausteinnote	Note der Klausur	

Lernziele / Kompetenzen

Die Studierenden sollen:

- Die Synthese der wichtigsten Gebrauchspolymere beherrschen.
- Die wichtigsten Polymerisationsmechanismen kennenlernen.
- Den Einfluß des Synthesemechanismus auf die Taktizität des Polymeren verstehen.
- Struktur-Eigenschaftsbeziehungen kennenlernen.

Inhalt

- Polyolefine durch radikalische Polymerisation
- Polyolefine durch Ziegler-Natta Polymerisation, Taktizität
- Polybutadien, Polyisopren durch anionische Polymerisation
- Polystyrol durch radikalische bzw. anionische Polymerisation, Emulsions- und Suspensionspolymerisation
- Polyacrylate durch radikalische und anionische und lebende radikalische Polymerisation
- Polyvinylchlorid, Polyvinylfluoride durch radikalische Polymerisation
- Polyvinylether, Polyvinylester durch radikalische Polymerisation
- Leitfähige Polymere durch koordinative und Elektro-Polymersation
- Aliphatische Polyether, durch ringöffnende Polymerisation
- Polyester durch Polykondensation
- Polyamide durch Polykondensation bzw. ringöffnende Polymerisation, flüssigkristalline Polymere
- Polyurethane durch Polyaddition
- Cellulosederivate durch polymeranaloge Umsetzung

Weitere Informationen

Unterrichtssprache: Deutsch, Englisch nur auf Wunsch der Studierenden

Literaturhinweise:

Skriptum

B. Tieke, Makromolekulare Chemie, Wiley-VCH 2003

Physik					PhLa
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	3 Semester	8	11

Modulverantwortliche/r	Studiendekan/in			
Dozent/inn/en	Dozenten der Physik			
Zuordnung zum Curriculum	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht			
Zulassungsvoraussetzungen zum Modul				
Zulassungvoraussetzungen zur Modulprüfung	Klausuren zu den Vorlesungen, Protokolle und Kolloquien zum Praktikum			
Prüfungen	Klausur nach den Lehrveranstaltungen			
Lehrveranstaltungen / SWS	P01 Elementare Einführung in die Physik I, 2 V, 1 Ü, WS P02 Elementare Einführung in die Physik II, 2 V, 1 Ü, SS PG Physikalisches Praktikum für Lehramtsstudierende, 4P, SS			
Arbeitsaufwand	Vorlesungen: P01 15 Wochen, 3 SWS: Vor- Nachbereitung, Klausur P02 15 Wochen, 3 SWS: Vor- Nachbereitung, Klausur PG Praktikum: 10 Wochen à 9 h Summe: 45 h 75 h (zus. 4 CP) 45 h 75 h (zus. 4 CP) 90 h (3 CP) 330 h (11 CP)			
Modulbausteinnote	Mittelwert der beiden Klausurnoten			

Lernziele / Kompetenzen

Die Studierenden sollen:

- Sicheres und strukturiertes Wissen zu den unten genannten physikalischen Themenbereichen erwerben
- Kenntnis von Schlüsselexperimenten und experimentellen Techniken/Messmethoden nachweisen
 Fähigkeit zur Anwendung und quantitativen Behandlung einschlägiger Probleme erwerben
 Anwendung mathematischer Formalismen zur Lösung physikalischer Problemstellungen üben
- Erfahrungen im selbständigen Experimentieren, Messplanung, Datenaufnahme, Auswertung, Fehlerbehandlung, Protokollierung, Diskussion sammeln

Inhalt

Vorlesung/Übung (8 CP):

- Physikalische Grundlagen:

Mechanik, Elektrik, Optik, Akustik, Wärmelehre, Schwingungen und Wellen; wichtige physikalische Grundgrößen und Gesetze.

Mechanik:

Newtonsche Mechanik, Kinematik, Dynamik, Erhaltungssätze, Stoßgesetze, Schwingungen, Rotation, Gravitation, Himmelsmechanik; ideale Flüssigkeiten,

Wärmelehre:

Ideales Gas, Zustandsänderung, Gleichgewicht/Nichtgleichgewicht, Entropie, Kreisprozesse, Phasenum-wandlung, reale Gase

Schwingungen und Wellen:

Klassifikation von Wellen, Akustik, Ebene Wellen, Polarisation, Einführung in die Optik

Elektrizitätslehre:

Elektrostatik, Magnetostatik, Feldbegriff, statische Felder, zeitlich veränderliche Felder, Induktion, Elektromotoren, Schwingkreis, elektromagnetische Wellen

Praktikum (3 CP)

- Einführung in die Fehlerrechnung (systematische und statistische Fehler, Fehlerfortpflanzung)

Mechanik (z.B. Schwingungen, elastische Materialeigenschaften)

Wärmelehre (z.B. Temperaturmessung, Wärmeleitung)

Elektrizitätslehre (z.B. Gleich- und Wechselströme, Magnetismus)

Optik (z.B. Beugung, Emission von Licht)

Radioaktivität (z.B. Nachweis von Strahlung, Absorption von Stahlung, Umweltradioaktivität)

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Halliday, Resnick, Walker, Koch, "Physik", Wiley-VCH, Berlin, 2005

Eichler, H. J.; Kronfeldt, H.-D.; Sahm, J.: "Das Neue Physikalische Grundpraktikum", Springer, Berlin, 2006

Geschke, D. [Hrsg.]: "Physikalisches Praktikum", Teubner, Stuttgart, 2001

Walcher, W.: "Praktikum der Physik", Teubner, Stuttgart, 2006

Versuchsanleitungen und weitere Informationen zum Praktikum unter:

http://grundpraktikum.physik.uni-saarland.de/

Anmeldung: Anmeldung zum Praktikum PG zu Semesterbeginn erforderlich

Maximale Teilnehmerzahl:

PG: 20 pro Kurs, 2 Kurse

Wahl-Modulbausteine Physikalische Chemie für Fortgeschrittene:

Modulbaustein	Lehrveranstaltungen	Credit Points
PCW01	PC03	5
PCW02	Sp01	5

Modulbaustein PCW01					PCW
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	V2+Ü2	5

Modulverantwortliche/r	Springborg	
Dozent/inn/en	Springborg	
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, I PC04: Bachelorstudiengang Chemie, Pflich	•
Zulassungsvoraussetzungen zum Modul	AlLa, MaLa	
Prüfungen	Klausur zur Vorlesung	
Lehrveranstaltungen / Methoden	PC04 Quantenchemie, 2V,2Ü, WS	
Arbeitsaufwand	PC04 mit Übung: 15 Wochen, 4 SWS Vor- und Nachbereitung Klausurvorbereitung Summe	60 h 60 h 30 h 150 h (5 CP)
Modulbausteinnote	Note der Klausur	

Lernziele / Kompetenzen

Entwicklung des Verständnisses für:

- quantentheoretische Grundlagen der Chemie

Funktionsweise zugänglicher Computerprogramme zur Berechnung von Moleküleigenschaften

Inhalt

Vorlesung und Übung PC04 (5 CP):

- Das Versagen der klassischen Physik
- Die Quantentheorie und die Schrödinger Gleichung
- Die quantenmechanische Wellenfunktion
- Teilchen im Kasten, harmonische Oszillator, Tunneleffekt, H-Atom
- Störungstheorie und Variationsprinzip
- Born-Oppenheimer, Hartree-Fock, Basissätze, Korrelationseffekte, Dichtefunktionaltheorie, empirische und ab initio Verfahren
- Computerrechnungen mit Gaussian

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Thomas Engel und Philip Reid: *Physikalische Chemie*, Pearson Studium, 2006 Gerd Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim 1997

Peter W. Atkins, Physikalische Chemie, Wiley-VCH, Weinheim 1996

Modulbaustein PCW02					PCW
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	V2+Ü2	5

Modulverantwortliche/r	Springborg	
Dozent/inn/en	Jung	
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1 Sp01: Bachelorstudiengang Chemie, Pflich	
Zulassungsvoraussetzungen zum Modul	AlLa, MaLa	
Prüfungen	Klausur zur Vorlesung	
Lehrveranstaltungen / Methoden	Sp01 Spektroskopie, 2V,2Ü, SS	
Arbeitsaufwand	Sp01 mit Übung: 15 Wochen, 4 SWS Vor- und Nachbereitung Klausurvorbereitung Summe	60 h 60 h 30 h 150 h (5 CP)
Modulbausteinnote	Note der Klausur	

Lernziele / Kompetenzen

Entwicklung des Verständnis für:

- Grundlagen und Aussagekraft der gängigen spektroskopischen Techniken

Quantitative Auswertung einfacher Spektren

Inhalt

Vorlesung und Übung Sp01 (5 CP):

- Prinzipien der Wechselwirkung Licht-Materie (auch zeitabhängige Störungstheorie): Unterschiede Absorptions-, Photoemissions- und Elektronenemissionstechniken; Streumethoden;
- Magnetische Resonanzmethoden: NMR, ESR; Fouriertransformation
- Schwingungsspektroskopie: IR- und Ramanspektroskopie, Normalschwingungen, Gruppentheorie
 Elektronenspektroskopie: Kernelektronenspektroskopie (XPS, XANES/EXAFS, Auger...),

Valenzelektronenspektroskopie (UPS, UV/Vis, Fluoreszenz/Phosphoreszenz),

- Laser als spektroskopisches Hilfsmittel, zeitaufgelöste Spektroskopie
- Beugungsmethoden: Röntgen-, Neutronen- und Elektronenbeugung, Experimentelle Realisation

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Thomas Engel und Philip Reid: *Physikalische Chemie*, Pearson Studium, 2006 Gerd Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim 1997

Peter W. Atkins, Physikalische Chemie, Wiley-VCH, Weinheim 1996

Wahl-Modulbausteine Werkstoffchemie:

Modulbaustein	Lehrveranstaltungen	Credit Points
WC01	WC01	4
WC02	WC02	4
WC02	WCGLa	2

Modulbaustein WC01					wcw
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V, 1Ü	4

Modulverantwortliche/r	Hempelmann				
Dozent/inn/en	Hampalmann Netter				
Dozenvinn/en	Hempelmann, Natter				
Zuordnung zum Curriculum	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht				
[Pflicht, Wahlpflicht, Wahlbereich]					
Zulassungsvoraussetzungen	MaLa, AlLa, OCILa				
zum Modul					
Prüfungen	Klausur zur Vorlesung				
Lehrveranstaltungen / Methoden	WC01 Werkstoff- und Bauchemie, 2V und 1Ü, WS				
Arbeitsaufwand	WC01 mit Übung:				
Albeitsaulwalla	15 Wochen, 3 SWS: 45 h				
	Vor- und Nachbereitung, Klausur 75 h				
	Summe: 120 h (4 CP)				
Modulbausteinnote	Note der Klausur				

Lernziele / Kompetenzen

Die Studierenden sollen:

- kondensierte Phasen strukturell beschreiben können: Flüssigkeit, Glas, Feststoff, flüssigkristalline Phasen
- Gitterdefekten klassifizieren können und deren Bedeutung für makroskopische Eigenschaften einschätzen können
- Verständnis für den Zusammenhang zwischen mikroskopischer bzw. mesoskopischer Struktur,
 Wechselwirkungen und makroskopischen Eigenschaften erlangen
- Anhand der diskutierten Eigenschaften die Relevanz von kondensierten Phasen für technische Anwendungen und Prozesse des täglichen Lebens erkennen

Inhalt

Werkstoff- und Bauchemie (4 CP)

- Neue Werkstoffe,
- Phasenbestand, Bildungsmechanismen und Abbindeverhalten von Bauwerkstoffen
- Umwelteinwirkung auf Bauwerkstoffe
- Umweltauswirkungen von Bauwerkstoffen, Baustoffkorrosion,
- Galvanotechnik und elektrochemische Korrosion, Batterien und Brennstoffzellen,
- Metallische Werkstoffe, mechanische Eigenschaften, Duktilität, Härte und Abriebfestigkeit,
- Keramische Werkstoffe und Glas,
- Halbleiter und chemische Grundlagen der Mikroelektronik.

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

W. Schatt und H. Worch, Werkstoffwissenschaft, Dt. Verlag für Grundstoffindustrie, Stuttgart 1996

H. Knoblauch und U. Schneider, Bauchemie, Werner-Verlag, Düsseldorf 1995

C.H. Hamann und W. Vielstich, *Elektrochemie*, Wiley-VCH, 1998

Modulbaustei	wcw				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	2V, 1Ü	4

Modulverantwortliche/r	Hempelmann			
Dozent/inn/en	Hempelmann, Natter			
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht			
Zulassungsvoraussetzungen zum Modul	MaLa, AlLa, OCILa			
Prüfungen	Klausur zur Vorlesung			
Lehrveranstaltungen / Methoden	WC02 Kolloid- und Nanochemie, 2V und 1 Ü, SS			
Arbeitsaufwand	WC02 mit Übung: 15 Wochen, 3 SWS 45 h Vor- und Nachbereitung, Klausur 75 h Summe 120 h (4 CP)			
Modulbausteinnote	Note der Klausur			

Lernziele / Kompetenzen

Die Studierenden sollen:

- Verständnis für supramolekulare Strukturen und Mesostrukturen erlangen: (Bio)-Polymere, Flüssigkristalle, Emulsionen, Kolloide
- Den Einfluss von mesoskopischer Struktur auf physikalische und chemische Eigenschaften erkennen (Grenzflächeneffekte, Quantum-Size Effekte, Reaktivität)
- Verständnis für den Zusammenhang zwischen mikroskopischer bzw. mesoskopischer Struktur,
 Wechselwirkungen und makroskopischen Eigenschaften erlangen
- Anhand der diskutierten Eigenschaften die Relevanz von kondensierten Phasen für technische Anwendungen und Prozesse des täglichen Lebens erkennen

Inhalt

Kolloid- und Nanochemie (4 CP)

- Kolloide im Überblick,
- Grenzflächenphänomene,
- Kolloidale Stabilität,
- Herstellung von Kolloiden und Nanomaterialien (Fällung, Sol-Gel-Prozess, Templatsynthesen),
- Teilchengrößenbestimmung durch Mikroskopie: TEM, REM, STM, AFM,
- Teilchengrößenbestimmung durch Streumethoden: XRD, SAXS, PCS,
- Rheologie, Farben & Lacke, Klebstoffe,
- Waschmittel und Emulsionen,
- Flüssigkristalle,
- Ferrofluide.

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Hans-Dieter Dörfler, *Grenzflächen- und kolloid-disperse Systeme*, Springer, Berlin 2002 Terence Cosgrove (Hrsg.), *Colloid Science*, Blackwell Publ., Bristol 2005

H. Yildirim Erbil, *Surface Chemistry of Solid and Liquid Interfaces*, Blackwell Publ., Bristol 2006 G.A. Ozin und A.C. Arsenault, *Nanochemistry: A Chemical Approach to Nanomaterials*, RSC Publishing, Cambridge 2005

Modulbaustei	wcw				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
5-10	10	jährlich	1 Semester	4P	2

Modulverantwortliche/r	Hempelmann
Dozent/inn/en	Hempelmann, Natter
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Wahlpflicht
Zulassungsvoraussetzungen zum Modul	MaLa, AlLa, OCIL
	Voraussetzung für die Teilnahme am Praktikum WCGLa sind die Testate zu den Vorlesungen WC01, WC02.
Prüfungen	Protokolle und Kolloquium
Lehrveranstaltungen / Methoden	WCGLa Grundpraktikum Werkstoffchemie für Lehramtsstudierende, 4P, SS
Arbeitsaufwand	Praktikum inkl. Kolloquium 3 Wochen á 20 h 60 h (2 CP)
Modulbausteinnote	Mittelwert der Noten der Protokolle und des Kolloquiums

Lernziele / Kompetenzen

Die Studierenden sollen:

- kondensierte Phasen strukturell beschreiben k\u00f6nnen: Fl\u00fcssigkeit, Glas, Feststoff, fl\u00fcssigkristalline Phasen
- Verständnis für supramolekulare Strukturen und Mesostrukturen erlangen: (Bio)-Polymere, Flüssigkristalle, Emulsionen, Kolloide
- Den Einfluss von mesoskopischer Struktur auf physikalische und chemische Eigenschaften erkennen (Grenzflächeneffekte, Quantum-Size Effekte, Reaktivität)
- Verständnis für den Zusammenhang zwischen mikroskopischer bzw. mesoskopischer Struktur,
 Wechselwirkungen und makroskopischen Eigenschaften erlangen
- Anhand der diskutierten Eigenschaften die Relevanz von kondensierten Phasen für technische Anwendungen und Prozesse des täglichen Lebens erkennen

Inhalt

Grundpraktikum Werkstoffchemie (2 CP)

- Gepulste Elektrodeposition und XRD-Korngrößenbestimmung,
- Elektrokatalysatoren und Brennstoffzellen,
- Herstellung von Legierungen aus der Schmelze und XRD-Phasenanalyse,
- Emulsionspolymerisation, Dynamische Lichtstreuung,
- Messung der Oberflächenspannung,
- Rheologie.

Maximale Teilnehmerzahl:

12 pro Kurs, 1 Kurs

Begründung: Arbeiten mit komplexen physikalischen Messgeräten

9. Module der Fachdidaktik

Die Module der Fachdidaktik sind so ausgelegt, dass für alle Schultypen derselbe Stundenumfang vorgesehen ist. Die Differenzierung der Studiengänge bezüglich der verschiedenen Schultypen erfolgt über die Lehrinhalte und Aufgabenstellungen in den fachdidaktischen Schulpraktika und in den fachdidaktischen Lehrveranstaltungen.

	leitendes facho Nachbereitung		Schulpraktiku	ım	FDI
Studiensemester	ECTS-Punkte				
	•	2x jährlich	1 Semester	2S+8P	7 CP

Modulverantwortliche/r	Hempelmann	Hempelmann			
Dozent/inn/en	Üstüntas, betreuendes Lehrpersonal an den Schulen				
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Pflicht				
Zulassungsvoraussetzungen zum Modul	Erfolgreiche Absolvierung des Orientierungspraktikums				
zum Modul	Fachinhalte der Klassenstufe 8	3 (Schulbücher)			
Prüfungen/Anforderungen	Benoteter Praktikumsbericht				
Lehrveranstaltungen / SWS	FD01 Einführungsseminar zum fachdidaktischen Schulpraktikum, S2				
	FDA Fachdidaktisches Schulpraktikum 8P				
Arbeitsaufwand	Seminar 15 Wochen,2 SWS: Vor- Nachbereitung	30 h 60 h			
	Praktikum 15 Wochen à 8 h	120 h			
	Summe:	210 h (7 CP)			
Modulnote	Note des Praktikumsberichtes				

Lernziele / Kompetenzen

- Exemplarisch den Lehrplan der Klassenstufe 8 der Zielschulform kennenlernen.
- Anwendung fachdidaktischer Kriterien und Methoden
- "Kompetenzorientiertes Unterrichten unter Beachtung der Bildungsstandards des Faches Chemie (MSA)"
- Erweiterung des didaktisch-methodischen Handlungsrepertoires
- Überprüfung der Eignung und Neigung für den Lehrerberuf

Inhalt

- hospitierende Teilnahme am Unterricht/ Unterrichtsbeobachtung
- vorstrukturierter Praktikumsbericht, der benotet wird
- Kennenlernen der Bildungsstandards des MSA für das Fach Chemie

Weitere Informationen

Unterrichtssprache: deutsch

Betreuung

- durch Dozierende der vor- und nachbereitenden Veranstaltungen (Schulbesuche)
- durch Lehrpersonal in den Schulen

Ort/Verteilung:

- Schulen des Landes, die dem angestrebten Lehramt entsprechen
- Zuweisung von 4-er Teams durch das Zentrum für Lehrerbildung in Absprache mit den Dozierenden der vorbereitenden Veranstaltungen

Anmeldung: Anmeldung zum Praktikum spätestens zu Semesterbeginn beim Dozenten für Fachdidaktik und beim Zentrum für Lehrerbildung erforderlich

Max. Teilnehmerzahl:

15 pro Kurs, 2 Kurse pro Studienjahr

Chemische F	FDII				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
		jährlich	2 Semester	S2+ P8	6

Modulverantwortliche/r	Hempelmann				
Dozent/inn/en	Völkle und Mitarbeiter				
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1, LS1+2, LAB), Pflicht				
Zulassungsvoraussetzungen zum Modul	AlLa, OCILa, OCIILa, FDI				
Prüfungen	benoteter Experimentalvortrag, ben Praktika, benotete Kolloquien	otete Protokolle zu den			
Lehrveranstaltungen	WS: FGLa Seminar und Praktikum 4P	für Lehramtsstudierende 1S +			
	SS: CFD Seminar und Fachdidaktis Lehramtsstudierende 1S + 4P	sches Praktikum für			
Arbeitsaufwand	FGLa				
	Seminar (1 CP):				
	15 Wochen, 1 SWS	15 h			
	Vor- Nachbereitung	15 h			
	Praktikum (2 CP)				
	15 Wochen à 4h	60 h			
	CFD				
	Seminar und Praktikum (4 CP)	4-1			
	15 Wochen Seminar, 1 SWS	15 h			
	15 Wochen Praktikum à 4h	60 h			
	Vor- Nachbereitung,	15 h			
	Summe:	180 h (6 CP)			
Modulnote	Nach Creditpoints gewichteter Mittelwert der Noten der Protokolle, des Experimentalvortrags und der Kolloquien				

Lernziel

Inhalte des Fachstudiums für die Vorbereitung, Durchführung und Bewertung von Unterricht nutzen.

Gesamtkonzept:

- Versuche zu grundlegenden Themengebieten der anorganischen, organischen, physikalischen Chemie sowie Biochemie und Analytik auswählen, vorbereiten und üben.
- Experimentalvorträge zu bestimmten Themen der Chemie konzipieren und halten
- Versuchsauswahl für die Experimentalvorträge und das Vortragskonzept fundiert begründen
- Theoretische Hintergründe der Versuche erläutern
- Vorträge unter didaktischen Gesichtspunkten an den Kenntnisstand von Zuhörern anpassen.
- Vorträge zu Seminararbeiten zusammenfassen.

Inhalte:

Seminar Einführung zum Fortgeschrittenenpraktikum (1 CP), (D = Dozent, S = StudentIn)

- Allgemeine Einführung ins Experimentieren (D)
- Sicherheitsaspekte (D)
- Konzept eines Experimentalvortrags über einen bestimmten Themenbereich erstellen und präsentieren (S)
- Versuche beschreiben und Versuchsauswahl begründen (S).
- Theorie zu den Versuchen erläutern (S).
- Vortragsthemas in einen wissenschaftlichen Kontext einbinden (S).
- Experimente als Demonstrations- und Praktikumsversuche beschreiben (S).
- Handout zu den Vortragskonzepten erstellen (S).
- Vortragskonzept zu einer Seminararbeit zusammenfassen (S).

Fortgeschrittenenprakum für Lehramtsstudierende (2 CP)

Die Themen sollen die Inhalte des Studiums abbilden und deutlich über die Lehrplaninhalte der Schulen hinausgehen:

- Laborgerät sicher handhaben.
- vorhandene Versuche üben.
- zwei Demonstrationsversuche zu einem bestimmten Thema konzipieren.
- detaillierten Anleitungen zu selbst entwickelten Versuchen erstellen.
- Fachwissen durch einen Experimentalvortrag weitergeben.
- Experimentierkompetenzen in einem Lernzirkel an die Kommilitonen weitergeben.
- Experimentalvortrag zu einer Seminararbeit zusammenfassen.
- Glas bearbeiten
- Chemikalien fachgerecht handhaben und entsorgen

möglicheThemen

- Reinstoffe, Gemenge, Trennverfahren
- Struktur der Atome und chemische Bindung
- lonenverbindungen, Molekülverbindungen
- Modelle, Modellvorstellungen (z. B. zu Atombau, Kristallstrukturen, Molekülmodelle, Simulationsmodelle)
- Festkörper
- Stöchiometrie
- Aggregatzustände und Gasgesetze
- Energie und Entropie
- Chemisches Gleichgewicht
- Reaktionsgeschwindigkeit
- Spektroskopische Methoden
- Säure-Base- Konzepte und Säure-Base-Reaktionen
- Redoxreaktionen
- Chemie der Hauptgruppen-Elemente (Metalle, Nichtmetalle)
- Chemie der Übergangselemente (Koordinationschemie)
- Technisch bedeutsame anorganische und organische Stoffe und Verfahren
- Struktur anorganischer und organische Verbindungen unter Berücksichtigung der Stereostruktur
- Ausgewählte anorganische und organische Verbindungsklassen
- einfache Reaktionen anorganischer und organischer Verbindungen
- Struktur-Wirkungs-Beziehungen
- Grundlagen von analytischen Prozessen und deren Durchführung
- Aspekte der technischen Herstellung und Anwendung chemischer Verbindungen
- grundlegende Strukturen von biologischen Molekülen sowie biochemische Reaktionen und Stoffwechselwege
- Grundlagen der Toxikologie, Sicherheitsaspekte und Umweltschutz

<u>Seminar Chemische Fachdidaktik (1 CP)</u> (D = Dozent, S = StudentIn)

- Einführung in die Fachdidaktik (D)
- Konzept eines Experimentalvortrag über ein bestimmtes Thema unter didaktischen Gesichtspunkten erstellen, vorstellen und begründen (S).
- Vortragskonzept falls erforderlich modifizieren und erweitern (S).

aktuelle Aspekte der Chemie auf Eignung für den Unterricht bewerten (S).

Praktikum Chemische Fachdidaktik (2 CP)

- Versuche f
 ür einen Experimentalvortrag ausw
 ählen, vorbereiten und
 üben
- Experimentalvortrag über ein bestimmtes Unterrichtsthema unter didaktischen Gesichtspunkten erstellen und halten.
- Geeignete Medien (Tafel, Kamera, Computer, Projektor....) auswählen und verwenden
- Vortragsrelevante fachdidaktische Aspekte beschreiben und erläutern
- Vortragsthema nach unterschiedlichen Unterrichtskonzepten aufbereiten
- Vortragsinhalte und –präsentation an verschiedene Schulformen unter Berücksichtigung von Schülervorstellungen anpassen.
- Geeignete Themen für Schülerpraktika unter Berücksichtigung von Schülervorstellungen auswählen und einen Schülerversuch vorschlagen.
- Lernerfolgskontrollen erstellen.

Weitere Informationen

Unterrichtssprache: deutsch

Literaturauswahl:

allgemeine und spezielle Literatur zum Hintergrundwissen und zur Durchführung von Demonstrationsexperimenten:

H. Beyer: Lehrbuch der Organischen Chemie, S. Hirzel Verlag, Leipzig (neueste Auflage).

F. Holleman, E. Wiberg: Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, New York (neueste Auflage).

Ewald Blasius, Gerhart Jander, Lehrbuch der analytischen und präparativen anorganischen Chemie, 16., überarb. Aufl. 2006. XXIV, Hirzel, Stuttgart, 2006

Basiswissen der Chemie 2: Organische Chemie / Latscha, H. P.; Klein, H. A.; Kazmaier, U. Organische Chemie Basiswissen II, Springer Verlag, Berlin

Elisabeth Dane, Franz Wille, Hartmut Laatsch, Kleines chemisches Praktikum 9., neubearb. Aufl., Wiley-VCH Verlag, 1996

- J. Falbe und M. Regitz (Hrsg.): Römpp Chemie-Lexikon, Georg Thieme Verlag, Stuttgart 1990.
- H. Naumer, W. Heller: Untersuchungsmethoden in der Chemie, Georg Thieme, Stuttgart 1990.
- G. Vollmer, M. Franz: Chemische Produkte im Alltag. Thieme, Stuttgart/New York 1985.
- W. Roesky, Möckel, Chemische Kabinettstücke. Spektakuläre Experimente und geistreiche Zitate, Wiley-VCH GmbH, Weinheim, 1996

Georg Wagner, Chemie in faszinierenden Experimenten, 9., unveränd. Auflage, Aulis, Köln, 1997,

Georg Schwedt, Experimente mit Supermarktprodukten. Eine chemische Warenkunde (inkl. CD-ROM), 204 Seiten - Wiley-VCH, September 2001

Georg Schwedt, Noch mehr Experimente mit Supermarktprodukten. Das Periodensystem als Wegweiser, 248 Seiten - Wiley-VCH, Juni 2003

sowie optional: Chemie-Schulbücher und die zugehörigen Lehrerbücher für die entsprechenden Schulstufen im Saarland.

Literatur zur Didaktik derChemie/Fachdidaktik

- P. Pfeifer, B. Lutz, H.-J. Bader, Konkrete Fachdidaktik Chemie, Oldenbourg Schulbuchverlag München 2002
- V. Woest, Den Chemieunterricht neu Denken, Leuchtturm Verlag Alsbach 1997
- H. Lindemann, Einführung in die Didaktik der Chemie, Staccato Verlag, Düsseldorf 1999
- H.-J. Becker, W. Glöckner, F. Hoffmann, G. Jüngel, Fachdidaktik Chemie, Aulis VerlagDeubner&Co, Köln 1980

Anmeldung: Anmeldung zum Praktikum FGPLa und zu CFD erforderlich

Max. Teilnehmerzahl:

15 pro Kurs, 2 Kurse pro Studienjahr

Forschendes	FDIII				
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte
	·	2 x jährlich	1 Semester	1S+4P	3

Modulverantwortliche/r	Hempelmann				
Dozent/inn/en	Munnia und Mitarbeiter				
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Pflicht				
Zulassungsvoraussetzungen zum Modul	AlLa, OCILa				
	Fachinhalte der Klassen 8 -12 (Schulbücher)				
Prüfungen	Protokoll und Kolloquium				
Lehrveranstaltungen / Methoden	FL Forschendes Lernen und Experimentieren, 1S				
	FLP Chemisches Experimentieren im SaarLa	ab, 3P			
Arbeitsaufwand	Seminar inkl. Kolloquium				
	15 Wochen, 1 SWS:	15 h			
	Vor- und Nachbereitung, Vortrag	15 h			
		30 h (zus. 1 CP)			
	Praktikum inkl. Kolloquium				
	6 Termine à 4 h im NanoBioLab, 3 Termine à Saarlab-Laboren	à 7 h in anderen			
	inkl. Vor- und Nachbereitung 60 h (2 CP)				
	Summe:	90 h (3 CP)			
Modulnote	Mittelwert der Noten des Protokolls und des	Kolloquiums			

Ziel

Konzeption ergebnisoffenen Aufgabenstellungen, ihre Integration in den Chemieunterricht sowie Betreuung von Schüler/-innen beim "Forschenden Experimentieren".

Inhalt

Seminar (1 CP)

- Geeignete Inhalte für "Forschendes Experimentieren"
- Konzeption und Bewertung von Aufgabenstellungen
- Korrektur von Fehlvorstellungen durch Forschendes Experimentieren
- Vorbereitung der Schülerbetreuung
- Schülervorstellungen zu den Aufgabenstellungen
- Lösungsstrategien von SchülerInnen beim "Forschenden Experimentieren"
- Lernvoraussetzungen für einzelne Aufgabenstellungen
- Einbettung der Praktika in den laufenden Unterricht
- Aufgabenstellung für Forschendes Experimentieren konzipieren
- Zielsetzung und Vorgehensweise einiger Schülerlabore

Pratikum (2 CP)

Betreuung von SchülerInnen beim "Forschenden Experimentieren" im NanoBioLab (6 Termine nach Absprache) und in anderen Laboren des Saarlabverbunds (3 Termine nach Absprache):

- Gesprächsführung bei schrittweiser Hilfestellung an Kenntnisstand, Motivation und Alter der Schüler anpassen.
- Fehlvorstellungen der SchülerInnen beim "Forschendes Experimentieren" erkennen
- Auswirkung von Fehlvorstellungen auf das Verständnis komplexer Zusammenhänge beurteilen.
- Eigene Aufgabenstellungen mit SchülerInnen erproben

Weitere Informationen

Unterrichtssprache: Deutsch

Literaturhinweise:

Konkrete Fachdidaktik, Oldenburg Schulbuchverlag GmbH, München 2002 Chemiedidaktik heute, Springer - Verlag, Berlin u. Heidelberg, 2001 www.lernort-labor.de

Anmeldung zum Praktikum FLP zu Semesterbeginn erforderlich

Maximale Teilnehmerzahl(en):

20 pro Kurs, 2 Kurse pro Studienjahr

	Vierwöchiges fachdidaktisches Schulpraktikum mit Vor- und Nachbereitung					
Studiensem.	Regelstudiensem	Turnus	Dauer	SWS	ECTS-Punkte	
	•	2x jährlich	1 Semester	S2+P12	9	

Modulverantwortliche/r	Hempelmann	
Dozent/inn/en	Trenz, betreuendes Lehrpersonal an den Schulen	
Zuordnung zum Curriculum [Pflicht, Wahlpflicht, Wahlbereich]	Chemie Lehramt an Schulen (LS1+2, LS1, LAB), Pflicht	
Zulassungsvoraussetzungen zum Modul	Modul FDII Fachinhalte der Klassen 9 – 12 (Schulbücher)	
Prüfungen	benoteter Praktikumsbericht	
Lehrveranstaltungen / SWS	FD02 Einführungsseminar zum fachdidaktischen Schulpraktikum, S2 FDB Fachdidaktisches Schulpraktikum 3P	
Arbeitsaufwand	Seminar 15 Wochen, 2 SWS: Vor- Nachbereitung Praktikum (3 SWS) 4 Wochen à 45 h Summe:	30 h 60 h 180 h 270 h (9 CP)
Modulnote	Note des Praktikumsberichtes	

Lernziele / Kompetenzen

- Kennen lernen der und Teilnahme an vielfältigen Tätigkeitsfeldern einer Lehrperson (Unterricht, Konferenzen, Elternarbeit, Schulleben, Schulentwicklung)
- Arbeit mit Bildungsstandards und ausgewählten Kapiteln der Lehrpläne der Klassen 9 12
- Planung, Durchführung, Reflexion von Unterricht(sreihen) unter größerer Selbständigkeit und erhöhten Anforderungen
- Überprüfung der Eignung für den Lehrerberuf

Inhalt

- Teilnahme am gesamten Schulleben/insbesondere das Fach betreffend
- hospitierende Teilnahme am Unterricht/Analyse von Unterricht
- Konzipierung, Erprobung und Reflexion von Unterricht- bzw. Unterrichtssequenzen unter erhöhten Anforderungen
- Arbeiten mit Modellen
- Vorstrukturierter Praktikumsbericht, der benotet wird
- Teilnahme an fachbezogenen Veranstaltungen

Weitere Informationen

Unterrichtssprache: deutsch

Betreuuna

- durch Dozierende der vor- und nachbereitenden Veranstaltungen (Schulbesuche)
- durch Lehrpersonal in den Schulen

Ort/ Verteilung:

- Schulen des Landes, die dem angestrebten Lehramt entsprechen
- Zuweisung durch Das Zentrum für Lehrerbildung im Einvernehmen mit den Dozierenden der vorbereitenden Veranstaltungen

Anmeldung: Anmeldung zum Praktikum spätestens zu Semesterbeginn beim Dozenten für Fachdidaktik und beim Zentrum für Lehrerbildung erforderlich

Max. Teilnehmerzahl:

20 pro Kurs, 2 Kurse pro Studienjahr