DIENSTBLATT DER HOCHSCHULEN DES SAARLANDES

2023	ausgegeben zu Saarbrücken, 12. Oktober 2023	Nr. 45

UNIVERSITÄT D	ES S	SAARL	ANDES			Seite
Studienordnung Werkstofftechnik			Bachelor-Studiengang	Materialwissenschaft	und	270

Studienordnung für den Bachelor-Studiengang Materialwissenschaft und Werkstofftechnik

Vom 16. Februar 2023

Die Naturwissenschaftlich-Technische Fakultät der Universität des Saarlandes hat auf Grund von § 60 des Saarländischen Hochschulgesetzes vom 30. November 2016 (Amtsbl. I S. 1080), zuletzt geändert durch Artikel 3 des Gesetzes vom 8. Dezember 2022 (Amtsbl. I S. 1566) und auf der Grundlage der Gemeinsamen Prüfungsordnung der Naturwissenschaftlich-Technischen Fakultät und des Zentrums für Human- und Molekularbiologie (ZHMB) der Universität des Saarlandes für Bachelor- und Master-Studiengänge vom 4. November 2021 (Dienstbl. S. 272) folgende Studienordnung für den Bachelor-Studiengang Materialwissenschaft und Werkstofftechnik erlassen, die nach Zustimmung des Senats der Universität des Saarlandes hiermit verkündet wird.

§ 1 Geltungsbereich

Diese Studienordnung regelt Inhalt und Aufbau des Bachelor-Studiengangs Materialwissenschaft und Werkstofftechnik auf der Grundlage der Gemeinsamen Prüfungsordnung der Naturwissenschaftlich-Technischen Fakultät und des Zentrums für Human- und Molekularbiologie (ZHMB) der Universität des Saarlandes für Bachelor- und Master-Studiengänge vom 4. November 2021 (Dienstbl. 2022, Nr. 22, S. 272). Zuständig für die Organisation von Lehre, Studium und Prüfungen in diesem Studiengang an der Universität des Saarlandes ist die Naturwissenschaftlich-Technische Fakultät.

§ 2 Ziele des Studiums und Berufsfeldbezug

Dieser Studiengang verfolgt das Ziel, Studierende, aufbauend auf naturwissenschaftlichen Grundlagen, möglichst schnell zur Lösung technischer und naturwissenschaftlicher Problemstellungen mit modernen wissenschaftlichen und technischen Lösungsmethoden zu befähigen und damit eine praxisorientierte Berufsfähigkeit zu erreichen. Diese Zielstellung Grundausbildung in den ingenieurwissenschaftlichen erfordert eine solide naturwissenschaftlichen Kernfächern. Dabei müssen auch die Fähigkeiten zum Erkennen wesentlicher Zusammenhänge eines komplexen Sachverhalts entwickelt werden, sodass neue technische Probleme mithilfe des Grundlagenwissens gelöst werden können. Daneben spielt auch die Vermittlung von berufsrelevanten Schlüsselgualifikationen wie gute Kommunikations- und Teamfähigkeit sowie die Fähigkeit zum selbstständigen Einarbeiten in neue Themengebiete und eine effektive Arbeitsorganisation eine wichtige Rolle. Im Bachelor-Studiengang werden daher frühzeitig diejenigen Methoden und Fertigkeiten vermittelt, die heute den Standard in der Ingenieurwissenschaft bilden. Insbesondere wird von den Studierenden erwartet, in einem Industrie- bzw. Auslandspraktikum vor Ort Erfahrungen für die spätere Berufspraxis zu sammeln.

§ 3 Studienbeginn und Studiendauer

- (1) Das Studium kann jeweils zum Wintersemester eines Jahres aufgenommen werden.
- (2) Die Regelstudienzeit beträgt 6 Semester.

§ 4 Art der Lehrveranstaltungen

Das Lehrangebot wird durch Lehrveranstaltungen folgender Art vermittelt:

- 1. Vorlesungen (V, Regelgruppengröße = 100): Vorlesungen dienen zur Einführung in ein Fachgebiet und eröffnen den Weg zur Aneignung und Vertiefung der erforderlichen Kenntnisse durch ein ergänzendes Selbststudium. Sie vermitteln sowohl einen Überblick über das Fachgebiet als auch die Grundlagen für das Verständnis von Materialeigenschaften, Methoden und speziellen Techniken und geben Hinweise auf weiterführende Literatur.
- 2. Übungen (Ü, Regelgruppengröße = 20): Sie finden überwiegend als Ergänzungsveranstaltungen zu Vorlesungen in kleineren Gruppen statt. Sie geben den Studierenden durch Bearbeitung exemplarischer Probleme die Gelegenheit zur Anwendung und Vertiefung des in der Vorlesung behandelten Stoffes sowie zur Selbstkontrolle des Wissensstandes. Die Teilnahme ist in der Regel die Voraussetzung für einen Leistungsnachweis.
- 3. Seminare (S, Regelgruppengröße = 15): Veranstaltungen mit begrenzter Teilnehmerzahl zum aktiven, gemeinsamen Erarbeiten oder zum Austausch von Arbeitsergebnissen in Form von Referaten und Diskussionen. Sie dienen der Vertiefung der Ausbildung in einem Fachgebiet, dem Erlernen der Vortragstechnik sowie der Anleitung zu kritischer Sachdiskussion von Forschungsergebnissen.
- 4. Praktika (P, Regelgruppengröße = 10):
 In einem Praktikum werden Versuche und Projekte angeboten, die in die spezifische Arbeitsweise der betreffenden Studienfächer einführen. Die den Versuchen zugrunde liegenden theoretischen Kenntnisse erwirbt man sich durch Vorlesungen, begleitende Übungen und eigene vorbereitende Literaturstudien. Experimente bieten den Studierenden die Gelegenheit, allein oder in kleinen Gruppen unter Anleitung die Handhabung der für die Studienrichtung typischen Geräte, Laboreinrichtungen und Systeme einzuüben. Man lernt hier einerseits die Zusammenhänge zwischen Theorie und Praxis durch eigene selbstständige Arbeit kennen, andererseits wird die Gruppenarbeit gefördert. Praktika dienen insbesondere auch der Vorbereitung auf spätere experimentelle fachwissenschaftliche Arbeiten. Die Teilnahme an Praktika kann vom Nachweis über die erfolgreiche Teilnahme an zugehörigen Vorlesungen und Übungen abhängig gemacht werden.

§ 5 Aufbau und Inhalte des Studiums

Zunächst erhalten die Studierenden eine solide Ausbildung in den Grundlagenfächern Mathematik, Chemie und Physik. Darauf aufbauend bereiten die ingenieurwissenschaftlichen naturwissenschaftlichen Kernfächer Mechanik, Werkstoffeigenschaften Thermodynamik eine breitere Basis. Darüber hinaus werden Kenntnisse in den Fortgeschrittenenvorlesungen vermittelt. Später lernen die Studierenden die Beziehungen zwischen Struktur. Eigenschaft und Verarbeitung von Materialien als auch die theoretischen und angewandten Grundlagen von Produktionsprozessen und Technologie von Metallen, Polymeren sowie Glas und Keramik. Alle Lehrveranstaltungen sind modularisiert. Detaillierte Informationen zu den Inhalten der Module und Modulelemente werden im Modulhandbuch beschrieben, das in geeigneter Form bekannt gegeben wird. Änderungen an den Festlegungen des Modulhandbuchs, die nicht in dieser Studienordnung geregelt sind, sind dem zuständigen Studiendekan / der zuständigen Studiendekanin anzuzeigen und in geeigneter Form zu dokumentieren.

§ 6 Studien- und Prüfungsleistungen

- (1) Im Rahmen des Studiums des Bachelor-Studiengangs Materialwissenschaft und Werkstofftechnik müssen Studien- und Prüfungsleistungen im Umfang von insgesamt 180 CP erbracht werden.
- (2) Die Studien- und Prüfungsleistungen müssen aus den drei folgenden Bereichen erbracht werden.
- 1. Pflichtbereich
- 2. Wahlpflichtbereich MINT (mindestens 10 CP)
- 3. Wahlbereich
- (3) Aus dem Pflichtbereich sind grundsätzlich alle Module zu belegen.
- (4) Die Teilnahme an der berufspraktischen Tätigkeit ist durch eine Bescheinigung des durchführenden Betriebs und einen Arbeitsbericht nachzuweisen. Zum Industriepraktikum beschließt und veröffentlicht der Prüfungsausschuss Richtlinien für die berufspraktische Tätigkeit, auch über die Anrechnung von Praxiszeiten, z.B. im Rahmen des Wehr- oder Zivildienstes. Zuständig für die Angelegenheiten der berufspraktischen Tätigkeit ist die von der Naturwissenschaftlich-Technischen Fakultät hierzu beauftragte Person. Es wird empfohlen, die Grundpraxis vor Beginn des Studiums abzuleisten.
- (5) Die Module des Wahlpflichtbereichs MINT-Fächer sind in Absatz 9 dargestellt. Aus diesem Bereich sind mindestens 10 CP zu erwerben. Der Prüfungsausschuss kann auf Antrag diesen Bereich sowohl um Module der Fakultäten MI (Mathematik und Informatik) und NT der Universität des Saarlandes als auch um Module erweitern, für die Leistungen während eines Auslandsaufenthalts erbracht wurden (vgl. § 8).
- (6) Im Wahlbereich können u.a. Leistungen der Bereiche Schlüsselkompetenzen, Ökonomie und Recht sowie Sprachkurse eingebracht werden. Gemäß § 9 der gemeinsamen Prüfungsordnung der Naturwissenschaftlich-Technischen Fakultät und des Zentrums für Human- und Molekularbiologie (ZHMB) können einzeln bis zu 3 CP aus ehrenamtlichem/bürgerlichem Engagement und bis zu 6 CP aus Gremien- und Mentorentätigkeit bzw. aus der Tätigkeit als Tutor/in auf Antrag von Studierenden in der Summe bis zu 6 CP anerkannt werden. Leistungsnachweise zentraler Einrichtungen oder durchführender Fachrichtungen der Universität des Saarlandes können bis zu 6 CP aus dem Bereich Ökonomie/Jura und bis zu 6 CP aus Sprachkursen anerkannt werden. Die Struktur des Wahlbereichs ist in Absatz 10 dargestellt.
- (7) Studienleistungen, die im Geltungsbereich früherer oder anderer Studienordnungen erbracht wurden, können mit Zustimmung des Prüfungsausschusses anerkannt werden.

(8) Module des Pflichtbereichs

Legende RSS: Regelstudiensemester, gibt als Orientierungshilfe den Zeitraum an, in

dem das Modul als innerhalb der Regelstudienzeit abgeschlossen gilt

Typ: Veranstaltungstyp, V, Ü, S, P nach § 4 SWS: Präsenz in Semesterwochenstunden

Note: Art der Prüfung und Benotung

b: benotet; ub: unbenotet

Modul	Modulelement	RSS	Тур	sws	СР	Turnus	Prüfungs- leistung
Mathematik für Ingenieure I	Mathematik für Ingenieure I	1	V+Ü	4+2	9	WiSe	Klausur (b)
Physik für MWWT 1	Physik für MWWT 1	1	V+Ü	2+2	6	WiSe	Klausur (b)
Statik für MWWT	Statik für MWWT	1	V+Ü	2+2	6	WiSe	Klausur (b)
Einführung in die Materialwissenschaft	Einführung in die Materialwissenschaft	1	V+Ü	2+1	4	WiSe	Klausur (b)
	Allgemeine Chemie (Nebenfach)	1	V+Ü	2+0,5	4	WiSe	Klausur (b)
Chemie	Grundpraktikum Allgemeine Chemie (Nebenfach)	2	Р	3	2	SoSe	Protokolle und Kolloquium (ub)
Mathematik für Ingenieure II	Mathematik für Ingenieure II	2	V+Ü	4+2	9	SoSe	Klausur (b)
Wissenschaftliche Datenverarbeitung 1	Wissenschaftliche Datenverarbeitung 1	2	V+Ü	1+2	3	SoSe	Klausur (b)
Physik für MWWT 2	Physik für MWWT 2	2	V+Ü	2+2	6	SoSe	Klausur (b)
Elastostatik für MWWT	Elastostatik für MWWT	2	V+Ü	2+2	6	SoSe	Klausur (b)
Praktikum A	Praktikum 1	2	Р	2	3	SoSe	Protokolle und Kolloquium (ub)
Transam, v	Praktikum 2	3	Р	2	3	WiSe	Protokolle und Kolloquium (ub)
Wissenschaftliche Datenverarbeitung 2	Wissenschaftliche Datenverarbeitung 2	3	V+Ü	1+2	3	WiSe	Klausur (b)
Grundlagen der Thermodynamik	Grundlagen der Thermodynamik	3	V+Ü	2+2	6	WiSe	Klausur (b)
Systementwicklungs- methodik 1	Systementwicklungs- methodik 1	3	V+Ü	2+2	5	WiSe	Klausur (b)
Experimentelle Grundlagen der Mikroskopie und Spektroskopie	Experimentelle Grundlagen der Mikroskopie und Spektroskopie	3	V+Ü /P	2 +2	6	WiSe	Klausur (b)
Mathematik für Ingenieure III	Mathematik für Ingenieure III	4	V+Ü	4+2	9	SoSe	Klausur (b)
Physik für MWWT 3	Physik für MWWT 3	4	V+Ü	2+1	4	SoSe	Klausur (b)

Modul	Modulelement	RSS	Тур	sws	СР	Turnus	Prüfungs- leistung
Polymerwerkstoffe	Polymerwerkstoffe 1	4	٧	2	3	SoSe	Klausur (b)
T Gymorworketene	Polymerwerkstoffe 2	4	٧	2	3	SoSe	Klausur (b)
Werkstoffphysik 1	Werkstoffphysik 1	4	V+Ü	3+3	9	SoSe	Klausur (b)
Praktikum B	Praktikum B1	4	Р	2	3	SoSe	Protokolle und Kolloquium (ub)
Praktikum b	Praktikum B2 - Projektpraktikum	5	Р	4	6	WiSe	Protokolle und Kolloquium (ub)
Fertigungstechnik	Fertigungstechnik	5	V+Ü +P	2+2+	6	WiSe	Klausur (b) und Protokolle und Kolloquium
Werkstoffverhalten	Mechanische Eigenschaften	5	V	2	3	WiSe	Klausur (b)
	Konstitutionslehre	5	٧	2	3	WiSe	Klausur (b)
Beugungsverfahren	Beugungsverfahren	5	V+Ü +P	2+1+ 1	5	WiSe	Klausur (b) und Protokolle
Anorganische	Glas und Keramik	6	٧	2	3	SoSe	Klausur (b)
Werkstoffe	Metall	6	٧	2	3	SoSe	Klausur (b)
Einführung in die Funktionswerkstoffe	Einführung in die Funktionswerkstoffe	6	V+Ü	2+2	5	SoSe	Klausur (b)
Industriepraktikum	Fachpraktikum	1-6	Р		6	WiSe, Sose	Bescheini- gung und Arbeits- bericht (ub)
Bachelor-Arbeit	Bachelor-Arbeit	6	Ab- schl uss- arbe it		12	SoSe	Schriftliche Arbeit (b)

(9) Module des Wahlpflichtbereichs MINT

Legende RSS: Regelstudiensemester, gibt als Orientierungshilfe den Zeitraum an, in

dem das Modul als innerhalb der Regelstudienzeit abgeschlossen gilt

Typ: Veranstaltungstyp, V, Ü, S, P nach § 4 SWS: Präsenz in Semesterwochenstunden

Note: Art der Prüfung und Benotung b: benotet; ub: unbenotet

Modul	Modulelement	RSS	Тур	SW S	СР	Turnus	Prüfungs- leistung
Organische Chemie und Biochemie (Nebenfach)	Organische Chemie und Biochemie (Nebenfach)	1	V+Ü	2+1	5	WiSe	Klausur (b)
Dynamik und Kinetik	Dynamik und Kinetik	3	V+Ü	2+2	5	WiSe	Klausur (b)
Festigkeitslehre	Festigkeitslehre	3	V+Ü	2+2	5	WiSe	Klausur (b)
Dynamik	Dynamik	4	V+Ü	2+2	5	WiSe	Klausur (b)
Messtechnik und Sensorik	Messtechnik und Sensorik	4	V+Ü	3+1	6	SoSe	Klausur (b)
Physikalische Chemie 2	Physikalische Chemie 2	4	V+Ü	2+2	5	SoSe	Klausur (b)
Maschinenelemente und -konstruktion	Maschinenelemente und -konstruktion	5	V+Ü	2+2	5	WiSe	Klausur (b)
Einführung in die Finite Elemente Methode	Einführung in die Finite Elemente Methode	5	V+Ü	2+2	5	WiSe	Klausur (b)
Elements of Data Science and Artificial Intelligence	Elements of Data Science and Artificial Intelligence	5	V+Ü	4+2	9	WiSe	Klausur (b)
Aktorik und Sensorik mit intelligenten Materialsystemen	Aktorik und Sensorik mit intelligenten Materialsystemen	5	V+Ü	2+1	4	WiSe	Klausur (b)
Empirische und statistische Modellbildung	Empirische und statistische Modellbildung	6	V+Ü	2+1	4	WiSe	Klausur (b)
Smarte Materialsysteme – hands on	Smarte Materialsysteme – hands on	6	V+Ü	2+1	4	SoSe	Klausur (b)
Einführung in die Materialchemie	Einführung in die Materialchemie	6	V+Ü	2+1	4	SoSe	Klausur (b)

(10) Module des Wahlbereichs

Legende RSS: Regelstudiensemester, gibt als Orientierungshilfe den Zeitraum an, in

dem das Modul als innerhalb der Regelstudienzeit abgeschlossen gilt

Typ: Veranstaltungstyp, V, Ü, S, P nach § 4 SWS: Präsenz in Semesterwochenstunden

Note: Art der Prüfung und Benotung b: benotet; ub: unbenotet

Modul	Modulelement	RSS	Тур	sws	СР	Tur- nus	Prüfungs- leistung
Schlüssel- kompetenzen	Schlüssel- kompetenzen	6	V+Ü	0-6	max. 6	WiSe, Sose	Bescheini- gung (b) oder (ub)
Sprachkurs	Sprachkurs	6	Ü	0-6	max. 6	WiSe, Sose	Bescheini- gung (b) oder (ub)
Ökonomie / Recht	Ökonomie / Recht	6	V+Ü	0-6	max. 6	WiSe, Sose	Bescheinigung (b) oder (ub)

§ 7 Zulassungsvoraussetzungen zu Modulen

- (1) Zur Tutortätigkeit wird nur zugelassen, wer das zu betreuende oder ein äquivalentes Modulelement bereits erfolgreich abgeschlossen hat. Die Zulassung zur Bachelor-Arbeit regelt § 18 der gemeinsamen Prüfungsordnung.
- (2) Zulassungsvoraussetzungen bestehen zu den folgenden Modulen bzw. Elementen:

Modul / Element	Zulassungsvoraussetzungen: Nachweis über den erfolgreichen Abschluss von:
Praktikum A1 (Modulelement)	Mindestens 2 aus: Mathematik 1, Physik 1 und Statik
Praktikum A2 (Modulelement)	Jeweils mindestens 1 aus: Mathematik 1,2 und Physik 1,2 und Technische Mechanik 1,2
Praktikum B1 (Modulelement)	Praktikum A
Praktikum B2 - Projektpraktikum	Praktikum B1
Bachelor-Arbeit	Praktikum B

§ 8 Auslandsaufenthalt

Allen Studierenden des Kernbereich-Bachelor-Studiengangs Materialwissenschaft und Werkstofftechnik wird ein Auslandsstudium empfohlen. Die Studierenden sollten an einer Beratung zur Durchführung des Auslandsstudiums teilnehmen, ggf. einen vorbereitenden Sprachkurs belegen und im Vorfeld über ein Learning Agreement die Anerkennung von Studienleistungen klären. Studien- und Prüfungsleistungen, die im Ausland erbracht wurden, werden gemäß § 17 der gemeinsamen Prüfungsordnung anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen, die sie ersetzen sollen, nachgewiesen wird. Module, die keine Entsprechung in dieser Studienordnung besitzen, können je nach erworbenen Kompetenzen im Wahlpflichtbereich MINT Fächer oder im Wahlbereich aufgenommen werden. Über Studienmöglichkeiten, Austauschprogramme, Stipendien und Formalitäten informieren sowohl das International Office als auch die Lehrenden der Fachrichtung Materialwissenschaft und Werkstofftechnik. Aufgrund langer

Antragsfristen und Bearbeitungszeiten bei ausländischen Universitäten sowie Stipendiengebern sollte die Anmeldung für ein Auslandsstudium in der Regel ein Jahr vor Antritt des Auslandaufenthalts erfolgen.

§ 9 Studienplan und Modulhandbuch

- (1) Der Studiendekan/Die Studiendekanin erstellt für jeden Studiengang auf der Grundlage der Studienordnung einen Studienplan, der der Studienordnung als Empfehlung an die Studierenden für einen sachgerechten Aufbau des Studiums hinzuzufügen ist. Dieser wird in geeigneter Form bekannt gegeben.
- (2) Der Studienplan enthält nähere Angaben über die Art und den Umfang der Module, Angaben zum Zeitablauf sowie Empfehlungen zum Aufbau des Studiums. Das jeweils aktuelle Modulangebot in den verschiedenen Bereichen nach § 6 Absatz 1 wird im Vorlesungsverzeichnis des jeweiligen Semesters bekannt gegeben.
- (3) Detaillierte Informationen zu den Inhalten der Module und Modulelemente sowie die jeweilige Art der Prüfung werden im Modulhandbuch beschrieben, das in geeigneter Form bekannt gegeben wird. Änderungen an den Festlegungen des Modulhandbuchs, die nicht in dieser Studienordnung geregelt sind, sind dem zuständigen Studiendekan/ der zuständigen Studiendekanin anzuzeigen und in geeigneter Form zu dokumentieren.

§ 10 Studienberatung

- (1) Die Zentrale Studienberatung der Universität des Saarlandes berät Interessierte und Studierende über Inhalt, Aufbau und Anforderungen eines Studiums. Darüber hinaus gibt es Beratungsangebote bei Entscheidungsproblemen, bei Fragen der Studienplanung und Studienorganisation.
- (2) Fragen zu Studienanforderungen und Zulassungsvoraussetzungen, zur Studienplanung und -organisation beantwortet der Fachstudienberater/die Fachstudienberaterin für den Bachelor-Studiengang Materialwissenschaft und Werkstofftechnik.
- (3) Für spezifische Rückfragen zu einzelnen Modulen stehen die Modulverantwortlichen zur Verfügung.

§ 11 Inkrafttreten

Diese Ordnung tritt am Tage nach ihrer Bekanntmachung im Dienstblatt der Hochschulen des Saarlandes in Kraft. Sie ist verbindlich für alle Studierende, welche nach diesem Zeitpunkt mit dem Studium der Materialwissenschaft und Werkstofftechnik beginnen. Studierende, die vor dem Inkrafttreten der Studienordnung bereits in den Bachelor-Studiengang Materialwissenschaft und Werkstofftechnik eingeschrieben waren, können auf Wunsch in den neuen Studiengang wechseln.

Saarbrücken, 25. September 2023

Der Universitätspräsident

(Univ.-Prof. Dr. Manfred Schmitt)