Investigation of stochastic noise in DIC measurements

Digital Image Correlation in mechanics

The use of digital image correlation (DIC) as optical measurement method was developed in 1985 and is widely spread in the community of mechanical testing. The DIC provides a simple tool for determining local and global strains on the specimen surface. Nevertheless the error and noise in DIC often stays uninvestigated. Therefore this study on stochastic noise and minimization of errors in DIC was processed.

Principle of DIC

- Optical measurement method
 - No contact needed
 - Based on digital images in different deformation states
- Strain determination from images
 - Irregular, high contrast pattern on specimen
 - Calculation of equalization direct to reference or incremental

Noise measurement

- Idea of static attempts
 - No movement of the specimen
 - DIC measured displacement must be equal to zero
 - All measured displacements unequal to zero are noises

Rigid body movement (RBM) in DIC

- Errors in DIC caused by floor vibrations
 - User related
 - Environment related
 - RBM remove with ISTRA4D® as an integrated tool (RBMR)
- Experimental procedure
 - High level of floor vibration by someone jumping next to test rig
 - DIC with and without usage of RBMR

Linking measuring methods

- Use of a calibration target
 - Known material parameters
 - Known maximum displacement
 - Force calculated from beam theory $F = \frac{4wEbh^3}{I_3}$
- Measuring force by S-bracket force sensor
- Measuring displacement by DIC
 - Exporting displacement at 3 points
 - Calculating bending of the beam
- Comparison measured force and theoretical force
 - Strong agreement of the forces

Conclusion and future work

- Static attempts improves DIC results
 - Error to 4% of a pixel
 - Lighting with biggest influence
 - Improvements transferable to RBM
- Linking of the measuring methods shows high quality of all measurements
- Future experiments
 - Investigation of open cell metal foam
 - 3 point bending on a single strut
 - Full field strain measurement possible

Example: Influence of lighting – brightness level

M. Reis, S. Diebels & A. Jung
martin.reis@uni-saarland.de
http://www.ltm.uni-saarland.de
November 2018