Extrapolation and Prediction of User Behaviour from Wireless Home Automation Communication

Frederik Möllers
Sebastian Seitz
Andreas Hellmann
Christoph Sorge
(Wireless) Home Automation

- System performs everyday tasks
 - Locking doors, regulating heating and lighting, controlling blinds …

- Remote control and full automation

- Increasingly popular: Wireless systems
 - Benefits: Low installation effort/cost, no structural changes required
 - But: Wireless network – everyone can listen and send
 - Do state-of-the art systems use encryption / authentication?
 - Are there problems that persist?
Our Experiment

- 2 volunteers
- HomeMatic systems (default: no encryption, authentication only for door locks)
- Setup (placed inside the property)
 - Raspberry Pi
 - CC1101 USB Lite with culfw firmware
- 36 and 24 days of capturing data
- Analysis with custom software
 - 3 modules
 - Sniffer: Record data
 - Cleaner: Remove unnecessary data and organize the rest
 - Analyzer: Display data in human-readable form
Our Experiment – Methods

- **Identifying devices**
 - Apply regular expressions to messages
 - Plausibility checks (e.g. temperature values)

- **Recognizing patterns**
 - Visualization of data
 - Directed graph of connected devices
 - 2D-graphs of statuses / commands over time

- **Finding correlations**
 - Sliding window (occurrences of message pairs)

- **Identifying automation rules**
 - Commands sent at approx. the same time (almost) every day
Candidate 1

- Regular home installation
- 45,679 messages from 23 devices

- Some devices are remote controlled
 - Clear user interaction \rightarrow presence / absence
Candidate 1 – Temperature / Humidity Sensors

- One temperature/humidity sensor outside the house
- Another one in living room
 - Heating controlled manually
 - Seldomly ventilated for more than 10 minutes
Candidate 1 – Tri-State Sensors

- Tri-state sensor on front door
 - Exact leaving / arrival times!

- Other results
 - Alarm function with bedroom lights
 - Automatic blind control with dawn / dusk times
Candidate 2

- 2 connected installations: Office and home
- 34,707 messages from 20 devices

- More devices are remote controlled or paired
 - Information about automation rules and user interaction
 - Remote control messages only in one location → presence / absence

- Automatic heating control
 - Heating turned off at night and on weekends, on in the morning
Encryption

• We've seen how much information is leaked
• What about encryption?
• Headers not encrypted: Nodes might still be identified
 • Communication partners
 • Frequency of communication
 • Tri-state sensors and locks only report state changes
 • State can be inferred
• Headers encrypted:
 • Amount of communication indicates presence
 • Additional power consumption
Summary / Outlook

- Current systems leak high amount of personal information
- Encryption is important
 - So is authentication – thermostats can be controlled
 - But there is more to do
- Need to hide communication
 - Create dummy traffic
 - How to determine when to send dummy messages?
 - Be energy efficient!
Questions?

frederik.moellers@uni-saarland.de
BidCos Protocol

- 868.3 MHz
- Layer 0&1: TI CC1100
- Layer 2: BidCos (no higher layers)

<table>
<thead>
<tr>
<th>Length</th>
<th>Counter</th>
<th>Control</th>
<th>Type</th>
<th>Sender</th>
<th>Receiver</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>Length</td>
</tr>
</tbody>
</table>
Corellation Analysis – Sliding Window

- Configurable parameters:
 - Minimum frequency
 - Number of times a single message (4) occurs
 - Minimum support
 - Number of times a message (4) is preceded by its counterpart (1/2/3)
 - Window size
Identifying Automation Rules

- **Steps**
 - Collect messages with same content
 - Discard dates (keep times)
 - Sort by time in ascending order
 - Find large number of events at roughly the same time

- **Configurable parameters**
 - Minimum frequency
 - Number of times the message occurs
 - Maximum deviation from rule
 - Time a message timestamp can deviate from the rule's time
 - Maximum time difference between messages from same rule
 - Should be $\leq \text{max. deviation} \times 2$
Candidate 2 – KeyMatic Door Locks

- KeyMatic door locks
 - Similar to a sensor on the door
 - Tells when door is locked/unlocked
 - Possible DoS targets
External Image Sources

- **Slide 2**

- **Slide 3**