Heft 62

M. Zell, A.-W. Scheer

Simulation als Entscheidungsunterstützungsinstrument in CIM

September 1989
Inhaltsverzeichnis

1. Integrierte Informationssysteme in CIM
2. Grundlagen der Simulation
 2.1. Systeme
 2.2. Entwicklungstendenzen
3. Entscheidungsorientierte Gestaltung von Informationssystemen in CIM
 3.1. Interaktive, graphikunterstützte Simulationsverfahren
 3.2. Gestaltung von Benutzeroberflächen
4. Einsatzschwerpunkte der Simulation in CIM
 4.1. Simulation in der strategischen Unternehmensplanung
 4.2. Simulation in den technischen CIM-Informationssystemen
 4.2.1. Fabrikdesign
 4.2.1.1. Fertigungssysteme
 4.2.1.2. Montagesysteme
 4.2.1.3. Materialflussysteme
 4.2.2. Produktentwurf und Konstruktion
 4.2.3. Arbeitsplanung
 4.2.4. Steuerung operativer Systeme
 4.3. Simulation in den betriebswirtschaftlich-planerischen CIM-Informationssystemen
 4.3.1. Langfristig operative Planung
 4.3.2. Mittel- bis langfristige Produktionsplanung
 4.3.3. Kurzfristige Fertigungssteuerung
 4.3.3.1. Voraussetzungen der Einbindung der Simulation in Fertigungsleitstände
 4.3.3.2. Möglichkeiten der Einbindung der Simulation in Fertigungsleitstände
 4.3.3.3. Konzeption eines simulationsgestützten Steuerungssystems
5. Bedeutung der Animation als dynamische Visualisierung von Simulationsabläufen
 5.1. Nutzeneffekte der Animation
 5.2. Gefahren der Animation
 5.3. Beurteilungskriterien für graphisch animierte Simulationen
6. Nutzung von Simulations- und Animationstechniken in der kurzfristigen Fertigungssteuerung am Beispiel eines Prototypen
7. Integration wissensbasiertem Systeme und Simulation
 7.1. Ansätze für eine Integration von wissensbasierten Systemen und Simulation
 7.2. Kopplung von wissensbasierten Systemen und Simulation am Beispiel der kurzfristigen Fertigungssteuerung
8. Simulation als zentraler Bestandteil integrierter Informationssysteme in CIM

Literaturverzeichnis
1. Integrierte Informationssysteme in CIM

Abb. 1: Integrierte Informationssysteme [2]

Dabei besteht die Integration zum einen in der einheitlichen Gestaltung funktionsübergreifender Informationssysteme (horizontale Integration), zum anderen in der Gewährleistung der Durchgängigkeit des Datenflusses von unten nach oben, indem die auf der Ebene der mengenorientierten operativen Systeme ermittelten Daten durch entsprechende Formen der Verdichtung für wertorientierte Abrechnungssysteme bis hin zu Planungs- und Entscheidungsunterstützungssystemen bereitgestellt werden (vertikale Integration).

Beim Aufbau eines computergestützten Informationssystems sind als wesentliche Komponenten die für die Entscheidungsfindung zugrundeliegende Datenbasis und die darauf aufsetzenden Anwendungsprogramme (Modelle, Methoden, Anwendungs-, Anfrage- und Auswertungssysteme, wissensbasierte Systeme) zu betrachten [3].

Diese Komponenten kommunizieren über eine Anwenderschnittstelle mit dem Entscheidungsträger, wie auch aus Abbildung 2 ersichtlich wird.

Abb. 2: Aufbau eines Informationssystems

Eine im Rahmen betriebswirtschaftlicher Informationssysteme häufig diskutierte Methode zur Problemlösung ist die Simulation [4]. Im folgenden soll der Einsatz simulativer Methoden zur Entscheidungsunterstützung in CIM-Systemen analysiert und Ansätze für eine anwenderorientierte Gestaltung aufgezeigt werden.

2. Grundlagen der Simulation

Unter **Simulation** versteht man den Entwurf eines mathematischen Modells für ein real vorhandenes System, anhand dessen Experimente durchgeführt werden, die Rückschlüsse auf das Verhalten des realen Systems zulassen [5]. Die VDI-Richtlinie 3633 definiert den Begriff Simulation wie folgt:

"Simulation ist die Nachbildung eines dynamischen Prozesses in einem Modell, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit übertragbar sind."

Die Durchführung der Simulation läuft nach einem Phasenschema ab [6]:

1. **Problemformulierung**: Analyse des zu lösenden Problems und Festlegen der Zielsetzungen.
2. **Sammlung von Daten**: Identifizierung und Erfassung der relevanten Daten.
4. **Verifikation**: Gewährleistung, daß ein erstelltes Computermodell wie beabsichtigt abläuft.
5. **Validierung**: Sicherstellung, daß das Modell in ausreichender Weise mit dem realen System übereinstimmt.
6. **Planung von Analysen**: Festlegen der durchzuführenden Experimente, Definition von Daten und Parametern.
8. **Auswertung der Resultate**: Umsetzung der Ergebnisse in aussagefähige Kennzahlen und graphische bzw. statistische Aufbereitung.
9. **Entscheidung und Durchführung**: Anwendung einer simulierten Strategie im realen System.

2.1. Systeme

Auf dem Markt existieren zahlreiche Softwareprodukte für Simulationsanwendungen, die sich über ein breites Spektrum an Rechnern vom Mikrocomputer bis zum Großrechner erstrecken. Ein Überblick der vorhandenen Software findet sich z.B. alljährlich in der Zeitschrift "Simulation" [7].

Die Systeme lassen sich nach unterschiedlichen Kriterien klassifizieren, wie es z.B. von Haider/Banks dargestellt wird [8]. Abbildung 3 zeigt diese Klassifizierung:

Abb. 3: Klassifikation von Simulationssystemen

Auf der Ebene der Modellstruktur orientiert sich die Vorgehensweise in drei Richtungen:
- die ereignisorientierte Simulation, bei der ein Modell als Folge von Ereignissen, zu denen sich Zustände ändern, beschrieben wird,
- die prozessorientierte Simulation, wobei ein System als Folge immer wiederkehrender Prozesse beschrieben wird, die dann vom System in entsprechende Ereignisse umgesetzt werden,
- die aktivitätsorientierte Simulation, bei der Aktivitäten mit Start- und Endbedingungen definiert werden, die im Verlauf der Simulation überprüft werden.
2.2. Entwicklungstendenzen

Als wesentliche Nachteile bestehender Simulationssysteme haben sich erwiesen:

- hoher Aufwand bei der Erstellung einer Simulationsstudie,
- fehlende Integration in betriebliche Informationssysteme,
- mangelnde Interaktivität bei der Durchführung der Simulation,
- fehlende Aufbereitung der komplexen Simulationsergebnisse.

Im Hinblick auf diese bestehenden Mängel haben sich in den letzten Jahren Ansätze ergeben, wie die Simulationstechnik auf die Bedürfnisse der Anwender zugeschnitten werden kann. Dabei wird den genannten Nachteilen wie folgt begegnet:

- Aufbereitung der Simulationsergebnisse: Die Darstellung der Simulationsresultate in standardmäßigen Summary-Reports wird den Anforderungen an eine benutzerfreundliche Darstellung nicht gerecht. Hier werden zum einen verstärkt statische Graphikauswertungen (Gantt-Diagramme, Histogramme, Tortendiagramme) in die Systeme integriert, zum anderen steigt die Qualität und Leistungsfähigkeit von Visualisierungssystemen zur graphisch-dynamischen Darstellung des Simulationsablaufs (Animation) ständig an.

3. Entscheidungsorientierte Gestaltung von Informationssystemen in CIM

Die bei der Gestaltung von CIM-Systemen angestrebte Daten- und Funktionsintegration führt einerseits zu einer Beschleunigung und Rationalisierung der organisatorischen und technischen Abläufe, andererseits erhöht sich für den Anwender durch die Notwendigkeit von bereichsübergreifenden Entscheidungsfindungen die Komplexität der für ihn relevanten Daten- und Informationsflüsse [12]. Mit der Entwicklung hochintegrierter Anwendungssysteme kann die bisher vordergründig verfolgte Funktionalität nicht mehr die alleinige Zielsetzung beim Systementwurf sein, sondern muß um den Aspekt der Benutzbarkeit durch den Menschen erweitert werden [13]. Daraus ergeben sich folgende Anforderungen an eine entscheidungsorientierte Gestaltung von Informationssystemen:

- Entwicklung einheitlicher Benutzeroberflächen, die ein schnelles Hineindenken auch für nur gelegentliche Benutzer ermöglichen,
- Interaktive Gestaltung der Informationsgewinnungs- und Planungsprozesse auf der Basis verdichteter, hinsichtlich des Informationsbedarfs des Anwenders aufbereiteter Daten,
- Bereitstellung eines Planungsinstrumentariums zur Realisierung individueller und vorgegebener Zielsetzungen durch problemorientierte Strategien.

3.1. Interaktive, graphikunterstützte Simulationsverfahren

Abb. 4: Entscheidungsorientierte Simulation

Der Prozeß der Bildung von Zielsetzungen setzt das Erkennen der für eine Unternehmung relevanten Probleme und entsprechende Informationen über die wichtigsten Einflußgrößen voraus [14]. Zielsetzungen können fest vorgegeben oder vom Entscheidungsträger individuell verfolgt werden, wobei diesem die Auswahl der Zielsetzung obliegt.

Aufgrund der zur Verfügung stehenden Aktionsparameter werden Strat
ggien zur optimalen Zielerreichung gebildet. Der Anwender kann hier durch die Bereitstellung ausgewählter, zielorientierter Strat
ggien unterstützt werden oder Anleitungen für die Auswahl einer Strategie erhalten.

Zu erwartende Konsequenzen einer Strategie werden anhand von Bewertungskriterien aufgezeigt, die der Anwender festlegt. Die im Rahmen einer simulativen Analyse der Strategie anfallenden Daten müssen dazu in entsprechender Form aufbereitet werden.

Somit kann auf der Basis anwenderorientierter Simulationsverfahren eine Entscheidungsgrundlage bereitgestellt werden, die den Ausgangspunkt für einen effizienten Entscheidungsprozeß bildet.

3.2. Gestaltung von Benutzeroberflächen

Die Darstellung der Informationen erfolgte zunächst in Form von numerischen Listen, die in der Regel einen hohen Informationsgehalt in wenigen verständlichen Zahlenkolonnen aufweisen und deshalb dem mit dem System weniger vertrauten Anwender nicht sofort eingänglich sind. Bei dem Einsatz von Primitivgraphik in Form von Punkten oder Strichen als nächster Stufe wird durch die geringen Möglichkeiten der Darstellung und die wenig ansprechende Form der Präsentation kein wesentlicher Fortschritt erzielt [16].

Als letzter Schritt bietet sich der Einsatz von Prozeßvisualisierungstechniken (Animation) an, die es dem Anwender ermöglichen, tatsächliche oder simulierte Abläufe am Bildschirm in bewegten Bildern und Farbgraphik zu verfolgen. Durch Integration von CAD- und Simulations- bzw. Animationssystemen lassen sich die Vorteile anspruchsvoller CAD-Graphiken, beispielsweise zur Abbildung des Layouts eines Fertigungsbereichs, auch in der Planung nutzen [18].

4. Einsatzschwerpunkte der Simulation in CIM

Das CIM-Konzept als integrierte Informationsverarbeitung für betriebswirtschaftliche und technische Aufgaben läßt sich wie in Abbildung 6 darstellen. Dabei spielen für eine Vielzahl der angezeigten Funktionen simulative Ansätze eine wesentliche Rolle bei der Entscheidungsfindung, wie in der Abbildung angedeutet wird.

Abb. 6: Simulationsansätze in CIM

Auf die innerhalb der einzelnen Funktionsebenen vorhandenen Einsatzmöglichkeiten für die Simulation wird im folgenden näher eingegangen.
4.1. Simulation in der strategischen Unternehmensplanung

![Vorgangskettendiagramm](image)

Abb. 7: Vorgangskettendiagramm [20]

Ebenso wie bei der Gestaltung unternehmensbezogener Informationsflüsse Rationalisierungseffekte erzielt werden, lassen sich auch im Bereich der Gestaltung technischer Produktionssysteme durch organisatorische Änderungen Vereinfachungen erzielen. Hier ist insbesondere ein Trend zur Dezentralisierung erkennbar, d.h. zur Bildung kleinerer Fertigungsbereiche, die weitgehend autonom arbeiten. Durch die Anordnung der Maschinen nach dem Objektprinzip sowie der Beachtung einer materialflußgerechten Anordnung von Fertigungsbereichen läßt sich der innerbetriebliche Materialfluß vereinfachen und damit die Durchlaufzeiten verkürzen. Mittels Simulationsmodellen lassen sich beispielsweise die Auswirkung einer Umstellung von Werkstattfertigung auf eine Fertigung mit verstärktem Anteil an Fertigungsinseln ermitteln.
4.2. Simulation in den technischen CIM-Informationssystemen

Im Bereich der technischen Informationssysteme stellt die Simulation im Zusammenhang mit graphischen Unterstützungsmethoden ein wichtiges Hilfsmittel zur Entscheidungsunterstützung dar.

4.2.1. Fabrikdesign

Bei komplexen Produktionssystemen oder ganzen Fabriken empfiehlt sich eine Zerlegung in einzelne, relativ unabhängige Teilmodule, die für sich als Modell abgebildet werden können. Diese Teilmodule können im Rahmen einer Fabriksimulation zu einem Gesamtmodell zusammengefaßt werden [23].

4.2.1.1. Fertigungssysteme

Hinsichtlich der fertigungstechnologischen Ausprägung lassen sich unterschiedliche Formen von Fertigungssystemen feststellen, beispielsweise:

- Konventionelle Maschinen,
- Drehzelle,
- Bearbeitungszentrum,
- Flexible Fertigungszelle,
- Flexibles Fertigungssystem.

Da die Planung flexibler Fertigungssysteme aufgrund der hohen Komplexität der zu berücksichtigenden Abläufe ein besonders wichtiges Einsatzgebiet für die Simulation darstellt, soll dieser Bereich exemplarisch betrachtet werden.

"Unter einem flexiblen Fertigungssystem (FFS) versteht man eine Gruppe numerisch gesteuerter Werkzeugmaschinen, die über ein gemeinsames Werkstücktransportsystem und ein zentrales Steuerungssystem miteinander verbunden sind" [24].

Es besteht somit die Möglichkeit zu
- einer mehrstufigen Bearbeitung im Auftragsmix,
- hauptzeitparallelem Rüsten,
- bedienerarmem und bedienerlosem Betrieb.

Die Bearbeitung wird von mehreren unterschiedlichen (sich ergänzenden) oder gleichartigen (sich ersetzenden) NC-Maschinen durchgeführt. Damit läßt sich ein großes Teilespektrum auf dem System bearbeiten.

Ein flexibles Fertigungssystem ist nicht auf Mindestlosgrößen angewiesen, sondern verarbeitet auch einzelne Werkstücke in beliebiger Reihenfolge. Damit ist das flexible Fertigungssystem die flexibelste Form einer automatisierten Fertigung. Abbildung 8 zeigt die Bestandteile eines flexiblen Fertigungssystems:

Abb. 8: Flexibles Fertigungssystem [25]

Die Simulation kann als ein Hilfsmittel sowohl für die Planung neuer flexibler Fertigungssysteme, die Rationalisierung bestehender Systeme aufgrund einer Schwachstellenanalyse sowie zur Planung unterschiedlicher Steuerungssystematiken herangezogen werden [26]. Die Einflussgrößen, die bei der Gestaltung eines flexiblen Fertigungssystems einwirken, lassen sich in systembezogene und ablauforganisatorische Komponenten einteilen.

Simulationsparameter liegen somit in den stationären Modellkomponenten, wie z.B.
- Anzahl und Zusammenstellung der einzelnen Maschinen,
- Zahl der Spannstationen,
- Zahl der Pufferplätze,
- Gestaltung und Dimensionierung des Transportsystems,

sowie im Bereich der dynamischen Modellkomponenten, wie:
- Zahl und Art der Aufträge,
- Gestaltung der Arbeitsplätze,
- Einschleusungsstrategien,
- Abfertigungsregelungen.

Dabei werden unterschiedliche, teilweise miteinander konkurrierende Zielsetzungen angestrebt. Als Zielsetzungen kommen in Frage:
- Maximierung der Auslastung des Systems,
- Minimierung der Durchlaufzeiten für zu bearbeitende Aufträge,
- Vermeidung von Leerzeiten,
- Minimierung von Beständen,
- Minimierung von Rüstzeiten.

Durch Variation der Parameter lassen sich die Auswirkungen der Einflussgrößen auf die genannten Zielsetzungen ermitteln und hinsichtlich einer optimalen Systemgestaltung analysieren.

4.2.1.2. Montagesysteme

4.2.1.3. Materialflußsysteme

Aufgrund der Stellung der Logistik als Querschnittsfunktion lassen sich bezüglich der Einsatzmöglichkeiten der Simulation Ansätze auf unterschiedlichen Unternehmensebenen ableiten. Kuhn [28] unterteilt im Hinblick auf die Gestaltung logistischer Systeme in:

- Fabrikstrukturplanung,
- Systemplanung,
- Detailgestaltung.

Dabei bezieht sich die Fabrikstrukturplanung auf die materialflußmäßigen Zusammenhänge zwischen einzelnen Unternehmensbereichen. Die Simulation wirkt hier unterstützend bei der Anordnung von Betriebsbereichen sowie bei der Gestaltung und Dimensionierung der betrieblichen Infrastruktur.

Entscheidungsparameter sind dabei:

- Gestaltung von Transportwegen,
- Lagerdimensionierung,
- Auswahl von Transportmitteln.

Bei der Planung logistischer Systeme (Transport-, Lagersysteme) stehen Fragen der Auslegung und Steuerung der Systeme im Vordergrund. Zielsetzung ist dabei, die Funktionalität zu gewährleisten und die Leistungsfähigkeit des Systems den gestellten Anforderungen anzupassen. Hierbei lassen sich die Auswirkungen folgender Einflußgrößen simulativ ermitteln:

- Gestaltung der Fahrwege,
- Zahl der Fahrzeuge,
- Fahrzeuggeschwindigkeit,
- Puffergrößen.

Im Zuge der flexiblen Automatisierung ist insbesondere die Planung fahrerloser Transportsysteme zur Verkettung von Produktionsanlagen ein wichtiges Anwendungsgebiet für die Simulation.

Bezüglich der Detailgestaltung des betrachteten Systems können sich spezielle Problemstellungen ergeben, die durch Simulation gelöst werden können, wie z.B. [29]:
- Fahrkurskreuzungen,
- Gestaltung von Block- und Pulkstrecken,
- Kollisionsvermeidungen.

4.2.2. Produktentwurf und Konstruktion

Abb. 9: Ablauf einer FE-Bauteilberechnung [32]

4.2.3. Arbeitsplanung

Bei der Arbeitsplanung werden zunehmend graphikunterstützte Simulationsverfahren zur Erleichterung der Erstellung von NC-Programmen bereitgestellt. Dabei wird der Ablauf der NC-Bearbeitung durch den Einsatz der Simulationstechnik im Rechner abgebildet, wodurch die Möglichkeit besteht, ein NC-Programm in Echtzeit zu simulieren und parallel dazu eine realitätsnahe Animation des Fertigungsablaufs am Bildschirm zu erzeugen. Spur/Krause sehen in einer graphikunterstützten Simulation für numerisch gesteuerte Werkzeugmaschinen folgende Vorteile [33]:

- Die Sicherheit der Planungsergebnisse kann durch die schnelle visuelle Auffassungsgabe des Menschen für graphische Darstellungen in Verbindung mit den Vorteilen der Datenverarbeitung erhöht werden. Beispielsweise kann bei der NC-Programmierung das in vielen Fällen noch notwendige Testen des Programms an der Maschine entfallen.
- Graphisch dargestellte Zwischenergebnisse der Simulation lassen eine sichere Kontrolle und Steuerung des Ablaufs zu und führen zu leicht überschaubaren Planungsschritten.
- Lichtgriffel oder Fadenkreuz erlauben die Definition von Koordinatenwerten auf dem Bildschirm sowie das Positionieren, Verschieben oder Löschen von Werkzeugen, Werkstücken oder Spannmitteln.

Abbildung 10 zeigt eine graphische Oberfläche zur Simulation in der NC-Programmierung:

![Diagramm zur Simulation](attachment:image)

Abb. 10: Graphische Simulation von NC-Programmen [34]

4.2.4. Steuerung operativer Systeme

4.3. Simulation in den betriebswirtschaftlich-planerischen CIM-Informationssystemen

4.3.1. Langfristig operative Planung

4.3.2. Mittel- bis langfristige Produktionsplanung

In der mittel- bis langfristigen Produktionsplanung sind Entscheidungen über die Zusammensetzung des Produktionsprogramms und die Gestaltung des Produktionsvollzugs zu treffen.

Ein häufig anzutreffendes Problem ist beispielsweise die Erfassung von Kundenaufträgen im Vertriebsbereich. Den Kunden, der einen Auftrag zu vergeben hat, interessiert, wann sein Auftrag fertig sein kann, während es für den Vertrieb wichtig ist, zu wissen, ob der vom Kunden gewünschte Endtermin gehalten werden kann und wo es gegebenfalls zu Verzögerungen kommt. In diesem Bereich kann eine Unterstützung durch eine Simulation der für den Auftragsdurchlauf relevanten Vorgangskette und eine Visualisierung, beispielsweise in Form eines Netzplans, erfolgen, wie auch aus Abbildung 11 hervorgeht:

Abb. 11: Netzplan für einen Kundenauftrag

Im Rahmen der Primärbedarfsplanung als Ermittlung der herzustellenden Produktionsmengen werden innerhalb der Produktionsplanung und -steuerung wesentliche Parameter für die nachfolgende Termin- und Kapazitätsplanung festgelegt. Ein Mangel bestehender PPS-Systeme ist es, daß diese Stufe nur sehr wenig ausgeprägt ist. So fehlen neben geeigneten Prognoseverfahren insbesondere auch Simulationsmodelle zum rechtzeitigen Erkennen von Material- und Kapazitätsengpässen [40]. Durch eine Simulation unterschiedlicher Produktionsprogrammzusammensetzungen auf Basis verdichteter Daten läßt sich die Planungsqualität bereits in dieser Phase entscheidend verbessern.

Im Bereich der Kapazitäts- und Zeitwirtschaft werden in vielen PPS-Systemen außerst aufwendige heuristische Verfahren eingesetzt, die jedoch hinsichtlich der zur Verfügung gestellten Lösungen oft nicht den Erwartungen entsprechen [41]. Eine Ursache dafür ist, daß bereits auf einer mittelfristigen Planungsebene mit festen Zeitvorgaben für Bearbeitungs- und Übergangszeiten gerechnet wird, die zu realitätsfremden Ergebnissen führen können.

Aufgrund der reduzierten Planungskomplexität bietet sich auf dieser Ebene der Einsatz interaktiver Simulationsverfahren an. Dabei bestehen die wesentlichen Parameter in der zeitlichen Struktur des Auftragsnetzes, der bei der Zuordnung von Fertigungsaufträgen zu dezentralen Bereichen eingeplanten Pufferzeiten (dispositive Spielräume) und der kapazitatsmäßigen Belastung der Fertigungsbereiche.

Die aufgrund der Simulation ermittelten Planungsstrategien bilden für eine nachfolgende dezentrale Fertigungssteuerung in den einzelnen Bereichen Vorgaben, innerhalb derer für diese Dispositionsfreirheiten in Form von kurzfristigen Steuerungsstrategien bestehen. Für die Durchführung simulativer Planungen auf der mittelfristigen Kapazitätsplanungsebene ist eine Betriebsdatenerfassung zur Ermittlung der über den dispositiven Spielraum hinausgehenden Abweichungen in den dezentralen Bereichen erforderlich, um auf dieser Ebene mit aktuellen Daten simulieren zu können. Aus diesen Anforderungen ergibt sich das in Abbildung 12 dargestellte Konzept einer integrierten Simulation bei einer verteilten Produktionsplanung und -steuerung.

![Diagramm](image-url)
4.3.3. Kurzfristige Fertigungssteuerung

Auf der anderen Seite wird heute in der wissenschaftlichen Diskussion verstärkt über die Einsatzmöglichkeiten der Simulation für die kurzfristige Fertigungssteuerung diskutiert. Wie jedoch die Simulation innerhalb eines Systems zur Fertigungssteuerung aussehen soll bzw. wie sie eingebunden werden kann, wird in der Literatur und Praxis auf unterschiedliche Weise gelöst.

4.3.3.1. Voraussetzungen der Einbindung der Simulation in Fertigungsleitstände

Um ein Simulationssystem in ein Leitstandskonzept zu integrieren, sind grundsätzlich bestimmte Anforderungen zu erfüllen [43]:

- Die im Simulationsmodell beschriebenen Abläufe müssen eine den Anforderungen des Leitstandes entsprechende Abbildungsgenauigkeit besitzen.
- Der Leitstand muß die von der Simulation benötigten Daten in geeigneter Form bereitstellen, ebenso müssen die im Simulationslauf erzeugten Daten vom Leitstand übernommen werden können.
- Es muß eine komfortable, möglichst graphische Oberfläche existieren, die es dem Benutzer ermöglicht, von der Leitstandsebene aus auf Parameter des Simulationsmodells zuzugreifen.
- Es muß eine Auswahl an möglichen Strategien bereitgestellt werden, die der Benutzer mittels der Simulation testen kann.
- Aktuelle BDE-Daten, wie z.B. der Ausfall einer Maschine, müssen der Simulation sofort zur Verfügung stehen.
- Auswertungen des Simulationssystems müssen in geeigneter Form vom Leitstand visualisiert werden, z.B. als graphische Maschinenbelegungspläne.
- Vom Leitstand müssen alternative Bewertungsmöglichkeiten für die simulierten Fertigungsabläufe bereitgestellt werden.

4.3.3.2. Möglichkeiten der Einbindung der Simulation in Fertigungsleitstände

Für die Einbindung simulativer Verfahren in Fertigungsleitstände lassen sich folgende Möglichkeiten unterscheiden, die auch aus Abbildung 13 hervorgehen:

Abb. 13: Integrationsansätze Fertigungsleitstand-Simulation
1. Ansatz: Einbindung einer Simulationsfunktion zur Analyse der vom Leitstand bereitgestellten Daten

2. Ansatz: Übernahme von Leitstanddaten durch einen an die Fertigungsumgebung angepaßten Simulator

In diesem Fall findet eine Trennung zwischen Aufgaben des Leitstandes und Aufgaben des Simulators statt. Dem Leitstand obliegt im wesentlichen die Verwaltung der für die Fertigungssteuerung relevanten Daten. Die eigentlichen Terminierungsvorgänge werden durch einen an den Fertigungsleitstand gekoppelten Simulator durchgeführt, der die Simulationsergebnisse in Form von Ressourcenbelegungen an den Leitstand zurückmeldet. Für die Integration eines Simulators in einen Fertigungsleitstand lassen sich im wesentlichen zwei Möglichkeiten unterscheiden:

- Integration eines Systems zur simulativen Reihenfolgeplanung in den Fertigungsleitstand

Mittlerweile existieren unterschiedliche Spezialsimulatoren zur Reihenfolgeplanung in der Fertigung. Ein Überblick über solche Systeme findet sich beispielsweise bei Schmidt, R. [44]. Bei diesen Systemen ist folgende Vorgehensweise erkennbar:

Der Leitstand stellt die für die Durchführung einer Reihenfolgesimulation benötigten Daten zur Verfügung. Dies sind im wesentlichen:

- Auftragspektrum für die zu simulierende Periode,
- Arbeitspläne,
- Maschinendaten,
- aktuelle Betriebsdaten (z.B. Störungen).

Ausgehend von diesen Daten hat der Benutzer die Möglichkeit, unterschiedliche Auftragsreihenfolgen zu testen, wobei eine mehr oder weniger starke Unterstützung in Richtung Optimierung durch das Verfahren gegeben wird.

Einsatz ereignisorientierter Simulatoren für die Fertigungssteuerung

Der bei der Kopplung zwischen Fertigungsleitstand und Simulation stattfindende Datenaustausch geht zusammengefaßt ans Abbildung 14 hervor.

Abb. 14: Zusammenhang Fertigungsleitstand - Simulation
4.3.3.3. Konzeption eines simulationsgestützten Steuerungssystems

Der Ablauf der Fertigungssteuerung ist als ein Prozeß zu verstehen, innerhalb dessen der Anwender unter Nutzung von Rechnerleistung und Graphikkapazitäten in Zusammenarbeit mit dem Steuerungssystem eine zufriedenstellende Lösung erarbeitet.

Wie Simulations- und Animationstechniken diesbezüglich in ein Fertigungssteuerungskonzept integriert werden können, zeigt Abbildung 15.

Abb. 15: Integration von Simulations- und Animationstechniken in die Fertigungssteuerung
Im Rahmen einer auf den erfaßten Betriebsdaten aufbauenden Prozeßvisualisierung erhält der Benutzer einen Überblick über den aktuellen Stand seiner Fertigung; insbesondere ist er durch die realitätsnahe graphische Darstellung in der Lage, schon frühzeitig Problembereiche, wie zum Beispiel das Auftreten eines Engpasses, zu erkennen. Ausgehend von der sich aus den aktuellen Betriebsdaten ergebenden Ist-Situation können individuelle Strategien zur Terminierung des noch ausstehenden Auftragsspektrums, zur Auflösung von Engepfissen oder zur Behebung sonstiger Konfliktsituationen angestoßen werden, die sich im Zeitraffer auf derselben graphischen Oberfläche simulieren lassen. Diese Vorgehensweise kann als iterativer Prozeß gestaltet werden, indem Systemzustände zu bestimmten Simulationszeitpunkten festgehalten und neue Strategien, aufbauend auf den bisherigen Simulationsergebnissen, angestoßen werden. Zusätzlich zu der dynamischen Darstellung des Fertigungsablaufs im Rahmen einer Animation, aus dem der Anwender Erkenntnisse über die Auswirkungen der gewählten Strategie ziehen kann, werden eine Vielzahl von Simulationsergebnissen für die weitere Analyse bereitgestellt (Durchlaufzeiten, Längen von Warteschlangen, Maschinenauslastungen, Maschinenausfälle), die beispielsweise in Form von Maschinenbelegungsplänen, Auslastungsgraden, Durchlaufzeitdiagrammen oder Störfrequenzen dargestellt werden können. Für eine allgemeine Beurteilung einer Strategie bietet sich die Erfassung der ablaufabhängigen Kosten als Bewertungsmaßstab an [47]. Hierbei wird versucht, durch Erfassung der strategieabhängigen kostenrelevanten Daten einen verständlichen und objektiven Bewertungsmaßstab zu finden.

Durch interaktive Variation der Simulationsparameter (z.B. Auftragsprioritäten, Alternativbearbeitungen) lassen sich unterschiedliche Planalternativen generieren, die für die Analyse festgehalten werden. Die Bewertung der Alternativen erfolgt durch eine Verdichtung der entscheidungsrelevanten Daten nach unterschiedlichen Zielkriterien, die die Grundlage für die Entscheidung des Anwenders bilden. So sind als Zielkriterien neben den ablaufabhängigen Kosten beispielsweise die mittleren Durchlaufzeiten oder die Summe der Terminüberschreitungen möglich.

Der Anwender ist innerhalb dieses Konzeptes in die Vorgänge der Auswahl zu simulierender Steuerungsstrategien, der Auswertung von Strategien und den Vergleich von Alternativen eingebunden und besitzt in diesen Bereichen Entscheidungsspielräume.

5. Bedeutung der Animation als dynamische Visualisierung von Simulationsabläufen

Der Begriff der Computer-Animation stammt aus dem Bereich der graphischen Datenverarbeitung und steht allgemein für die Darstellung von bewegten Bildern oder Objekten im Zeitablauf.
Diese Technik wird mittlerweile im Zusammenhang mit entsprechenden Simulationssystemen verstärkt für die Lösung technisch-betriebswirtschaftlicher Problemstellungen, insbesondere im Bereich der Planung, Steuerung und Überwachung von Produktionssystemen und logistischen Systemen, genutzt. Hier bietet die Animation eine neue Form der Darstellung von Simulationsergebnissen, die die bisher üblichen Statistiken und statischen Graphiken, wie Histogramme oder Tortendiagramme, in sinnvoller Weise ergänzt.

"It is said that a picture is worth a thousand words (more than ten thousand, according to the old Chinese proverb), and a picture which moves is often worth at least a thousand static pictures" [48].

Bei der Durchführung einer Simulation dient die Animation dazu, das Verhalten beweglicher Systemelemente sowie die Zustandsveränderungen von Systemelementen durch den Einsatz unterschiedlicher Graphiksymbole und durch Farbwechsel transparent zu gestalten. Bezogen auf eine fertigungstechnische Anwendung, kann es sich bei den beweglichen Objekten beispielsweise um Paletten mit zu bearbeitenden Werkstücken oder um Fördermittel (fahrerlose Transportsysteme, Gabelstapler) handeln.
Hier bietet sich die modellhafte Abbildung komplexer Fertigungssysteme anhand geeigneter Graphikelemente an, um Probleme der Auslegung, Planung, Steuerung und Überwachung dieser Systeme einfacher lösen zu können.

Für die Entwicklung einer animierten Simulationsstudie lassen sich einzelne Phasen definieren:

2. Graphische Darstellung: Es muß die Frage geklärt werden, in welcher Form die abzubildende Information graphisch umgesetzt wird. Hierbei lassen sich Gegensatzpaare definieren, die je nach Intention des Anwenders zu unterschiedlichen Ausprägungen einer Animation führen können, z.B.:
 - realitätsnahe Abbildung - stark abstrahierte Abbildung,
 - hoher Detaillierungsgrad - Beschränkung auf wesentliche Abläufe.

4. Entwurf des dynamischen Teils: Die beweglichen oder veränderbaren Elemente für die Animation werden definiert (z.B. Paletten, die sich innerhalb eines Fertigungssystems bewegen, Betriebsmittel, die ihren Zustand verändern).

5. Verknüpfung der Simulationsereignisse mit der Animation: Es muß sichergestellt werden, daß die innerhalb eines Simulationsmodells errechneten Vorgänge und Ereignisse in einer aussagefähigen Form durch die Animation visualisiert werden. Dazu muß ein Bezug hergestellt werden zwischen den Objekten (Entities) in einem Simulationsmodell und den sie repräsentierenden graphischen Symbolen.

6. Animation: Bei dem eigentlichen Animationsvorgang werden dem Anwender die Simulationsereignisse als Folge von dynamischen Bildern angezeigt, so daß Bewegungsvorgänge und Zustandsveränderungen transparent werden.

7. Auswertung und Analyse: Die durch die Animation optisch aufgenommenen Eindrücke (z.B. Engpaßbildungen, Kollisionen) bilden die Grundlage für eine Bewertung der simulierten Situation.
Während bei einer Vielzahl der vorhandenen Animationssysteme eine weitgehend getrennte Entwicklung des Simulationsmodells und der darauf aufbauenden Animation erfolgt, was zu der Notwendigkeit einer gegenseitigen Abstimmung führt, werden mittlerweile, insbesondere zur Abbildung von Fertigungs- und Materialflussystemen, verstärkt integrierte Systeme entwickelt, die eine graphisch-interaktive Modellerstellung unterstützen. Hierbei setzt der Entwickler eines Simulationsmodells am Bildschirm mit Hilfe vordefinierter Symbole (z.B. Maschinen, Paletten, Transportwege) das Layout des zu simulierenden Bereiches zusammen. Mit Hilfe zusätzlicher, vom System interaktiv abgefragter Informationen wird dann ein Simulationsmodell generiert, wodurch ein wesentlicher Programmieraufwand entfällt. Beispiele für graphisch-interaktive Simulator sind DOSIMIS-3 [49], GISA [50], SIMPLE [51], SIMPLEX/2 [52] und GRAFSIM [53]. Hier bildet das bei der Erstellung des Simulationsmodells erzeugte Layout die Basis für die Animation.

5.1. Nutzeneffekte der Animation

Die Animation im Rahmen einer Simulation ist nicht nur ein graphisches Hilfsmittel zur Präsentation der Simulationsergebnisse, sondern unterstützt auch die anderen Phasen des Simulationsprozesses. Damit läßt sie sich einsetzen zur:

- Verbesserung der Aufbauphasen eines Modells,
- Verbesserung der Kommunikation zwischen dem Simulationsexperten und dem Anwender,
- Verbesserung der Analysemöglichkeiten,
- Verbesserung der Anwender- und Managementpräsentation [54].

In der Praxis hat es sich als sinnvoll erwiesen, begleitend zum Aufbau eines Simulationsmodells eine entsprechende Animation zu erstellen, d.h. Simulationsmodell und Animation werden jeweils sukzessive erweitert. Dadurch wird die Fehlersuche erleichtert und die Verifikation des Simulationsmodells, d.h. die Überprüfung, ob das auf dem Computer implementierte Modell das zugrundeliegende abstrakte Modell korrekt wiedergibt, unterstützt. Auch in der Phase der Validierung, d.h. der Überprüfung, ob das Modell innerhalb der geforderten Genauigkeit mit dem realen System übereinstimmt, läßt sich die Animation als Unterstützungsinstrument für den Experten, beispielsweise einen Fertigungsingenieur, sinnvoll einsetzen, da sie ihm, der mit den komplizierten Strukturen eines Simulationsmodells in der Regel weniger vertraut ist, das Verständnis der simulierten Abläufe erleichtert und damit eine Basis für den Vergleich des Modells mit den realen Systembedingungen schafft.

Die Animation wird somit zu einem wesentlichen Bindeglied zwischen dem Simulationsexperten und dem systemvertrauten Anwender. Mit der Verbesserung der Kommunikation zwischen dem Ersteller eines Simulationsmodells und dem Anwender sind eine Reihe von Synergieeffekten verbunden, die die Entwicklung einer Simulationsstudie begünstigen:

- **Erhöhte Akzeptanz**: Der Anwender kann aktiv in die Modellentwicklung einbezogen werden, was sich auf die spätere Akzeptanz der Simulation positiv auswirkt.

- **Zeitersparnis bei der Modellierung**: Durch die Animation ist für den Anwender eine schnellere Erfassung der im Modell implementierten Logik möglich. Somit entfallen zeitraubende Erläuterungen der simulierten Strukturen.

- **Schnellere Optimierung durch Einbezug von Fachkenntnissen**: Zur Verbesserung des realen Systems aufgrund der Ergebnisse eines Simulationsmodells kann die Animation eine zusätzliche Unterstützung liefern, indem sie dem Anwender, der ansonsten nur in Form von Statistiken angezeigt bekommt, was geschehen ist, auch anzeigt, wie es innerhalb des Simulationsablaufs zu einer bestimmten Situation kam.

- **Vermeidung von Informationsverlusten**: Insbesondere bei graphisch-interaktiven Softwarepaketen, die eine Modellerstellung unter Nutzung vorgegebener oder frei definierbarer Systemelemente erlauben, wird der Anwender zunehmend in die Lage versetzt, das Simulationsmodell selbst zu entwickeln. Indem der systemvertraute Anwender sein Fachwissen direkt in das Simulationsmodell einfließen läßt, werden somit Informationsverluste zwischen Anwender und Simulationsexperte verringert.

Bezüglich der Analyse des Simulationsmodells bietet die Animation zusätzliche Nutzeneffekte, indem das dynamische Verhalten und die Wechselwirkungen innerhalb des simulierten Systems transparent werden. Insbesondere lassen sich das zeitliche Auftreten und die Ursachen von Konfliktsituationen, wie Engpässe vor Maschinen, besser erkennen [55].

Ein wesentlicher Vorteil der Animation liegt in der Verbesserung der Ergebnispräsentation. Da bei einer Präsentation vor dem Management die Darbietung der für eine spätere Entscheidung relevanten Daten von entscheidender Bedeutung ist, kann hier durch den Einsatz der Animation die Aufmerksamkeit des Betrachters erhöht und die Glaubwürdigkeit der Aussagen verbessert werden. Insbesondere verlangt das Management nach einer komprimierten, möglichst anschaulichen Darstellung entscheidungsrelevanter Daten. Die Animation wird dieser Forderung gerecht, denn durch Bilder werden Informationen schneller übermittelt und vom Menschen aufgenommen, als dies durch Zahlentabellen und Textzeilen möglich ist [56].

5.2. Gefahren der Animation

An dieser Stelle soll auch auf die Gefahren hingewiesen werden, die sich durch die Darstellung von Simulationsabläufen durch Animation ergeben [57]. Solche Gefahren sind:

- Verschleierung wesentlicher Simulationsresultate: Durch eine aufwendige graphische Gestaltung einer Animation ist die Gefahr gegeben, daß wichtige Erkenntnisse im Verlauf einer Simulation wenig zur Geltung kommen, während unwesentliche Details die Aufmerksamkeit des Betrachters in Anspruch nehmen. Das Darstellungs niveau des Animationslayouts sollte sich daher an der Präsentation signifikanter Systemzustände orientieren [58].

- Manipulation des Betrachters: Die Animation als Zusatz zu einem Simulationssystem kann so gestaltet werden, daß wichtige Daten nicht am Bildschirm angezeigt oder sogar bewußt eine falsche Darstellung erzeugt wird, um den Entscheidungsprozeß des Betrachters zu beeinflussen.

5.3. Beurteilungskriterien für graphisch animierte Simulationen

Um die Leistungsfähigkeit einer Animation zu beurteilen, lassen sich unterschiedliche Kriterien heranziehen, wie sie aus Abbildung 17 ersichtlich werden:

Abb. 17: Beurteilungskriterien für Animationssysteme

Die Qualität der verwendeten Graphik reicht von einer Abbildung mittels einfachster Graphiksymbole bis hin zur komplexen 3-D-Graphik.

So werden bei einigen Systemen die animierten Elemente in Form einer Character-Graphik als Zeichen oder Zeichenkombinationen dargestellt (z.B. FTI für einen fahrerlosen Transporter), während bei Bit-Map-Graphiken die Gestaltung realitätsnaher Symbole möglich ist. Mittlerweile existieren auch Systeme, die eine dreidimensionale Graphikdarstellung bieten [59].

Im Rahmen der mittlerweile verstärkt vorangetriebenen Kopplung von CAD- und Simulationssystemen ist durch die Schaffung geeigneter Schnittstellen für die Übernahme von CAD-Zeichnungen zur Erstellung des Animationslayouts ein wesentlicher Schritt in Richtung einer realistischen, detailgetreuen Darstellung ermöglicht worden [60].

Um die Aussagefähigkeit der Animation zu erhöhen, existieren in den einzelnen Systemen zusätzliche Unterstützungsmöglichkeiten. Dies sind insbesondere [61]:

- **Zoom-Funktion:**
 Durch Verwendung einer Zoom-Funktion können Ausschnitte aus dem betrachteten System durch Vergrößerung anschaulicher dargestellt werden. So ergibt sich beispielsweise die Möglichkeit sowohl einer globalen Betrachtung einer Fabrikhalle wie auch der detaillierteren Betrachtung einzelner Maschinen.

- **Pan-Funktion:**
 Die Pan-Funktion bewirkt ein "Schwenken" des Bildschirmausschnitts über die Gesamtdarstellung im Bildspeicher [62]. Da bei der Darstellung komplexer Produktions- oder Logistiksysteme ein Gesamtüberblick in einer hinreichenden Darstellungsgröße nicht möglich ist, wird durch das Panen ein bestimmter Bereich des Gesamtbildes im Bildspeicher markiert und auf dem Bildschirm dargestellt, wodurch sich das animierte Modell Bereichsweise betrachten läßt.

- **Multiple-Screen-Technik:**
 Durch Umschalten auf unterschiedliche Bildschirmdarstellungen lassen sich unterschiedliche Auswertungssichten eines zugrundelegenden Simulationsmodells während desselben Simulationslaufs graphisch animieren.

Durch das Vorhandensein eines Graphikeditors erhöhen sich für den Anwender die gestalterischen Möglichkeiten bei der Entwicklung der beweglichen und unbeweglichen Symbole, allerdings erfordert die Symbolerstellung einen hohen Zeitaufwand. Durch das Abspeichern selbsterzeugter Symbole in Bibliotheken können hier Rationalisierungseffekte erzielt werden.

Bezüglich des Laufzeiteverhaltens einer Animation läßt sich die Online-Animation bzw. die "Post-Processed"-Animation unterscheiden.

Bei Online-Animation läuft die Animation zeitgleich mit der Simulation ab. Dadurch ergibt sich die Möglichkeit der Beseitigung durch die Animation sichtbarer Modellfehler beziehungsweise des Änderungs von Parametern als interaktiver Prozeß, bei dem die laufende Simulation angehalten wird, Änderungen vorgenommen werden und die Simulation an der unterbrochenen Stelle fortgesetzt wird.

Insbesondere bei einer interaktiven Online-Animation ist auch die Möglichkeit der variablen Gestaltung der Animationsgeschwindigkeit von Bedeutung. Durch einen entsprechend hohen Zeitraffungsfaktor können weniger wesentliche Zeitintervalle schnell übergangen werden, während Detailuntersuchungen durch eine entsprechend langsame Animationsgeschwindigkeit bzw. durch die schrittweise Abarbeitung einzelner Simulationsereignisse (Step-Modus) ermöglicht werden.

Zur Zeit existieren auf dem Markt eine Vielzahl graphisch animierter Simulationssysteme sowohl auf PC's wie auch auf Graphik-Workstations, wobei eine stetige Weiterentwicklung der Systeme festzustellen ist.

6. Nutzung von Simulations- und Animationstechniken in der kurzfristigen Fertigungssteuerung am Beispiel eines Prototypen

Am Institut für Wirtschaftsinformatik ist im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten Forschungsprojektes ein Prototyp entwickelt worden, der die Einsatzmöglichkeiten von Simulations- und Animationstechniken im Bereich der kurzfristigen Fertigungssteuerung dezentraler, flexibel automatisierter Fertigungsbereiche aufzeigen soll. Der Prototyp basiert auf der Simulationssprache SIMAN und der zugehörigen Animationsoftware CINEMA, die dispositiven Leitstandsfunctionen sind in der Programmmiersprache C implementiert. Exemplarisch wurde für den zu steuernden Bereich eine flexible Fertigungsstelle mit mehreren konventionellen Arbeitsplätzen, die als Ausweicharbeitsplätze dienen, sowie einem vorgelagerten Arbeitsplatz (Säge) und einem nachgelagerten Arbeitsplatz (Kontrolle) als Simulationsmodell und als graphisches Layout abgebildet. Abbildung 18 zeigt das Layout des betrachteten Bereichs:

Abb. 18: Teilautonomer Fertigungsbereich
Der grundsätzliche Aufbau des Prototypen wird aus Abbildung 19 ersichtlich.

Abb. 19: Aufbau des Prototypen

Auf dieser Ebene werden auch die detaillierten Arbeitspläne gehalten, die je nach Strategie (z.B. Fertigung auf der Fertigungszelle oder Fertigung auf der konventionellen Maschine) mit dem Auftrag verbunden werden können.

Somit ergibt sich eine vorläufige Schichtzuordnung, die an das Modul SAFE (Simulation und Animation in der Fertigungssteuerung) übergeben wird, wo die Simulation erfolgt. Auf dieser Ebene werden für die werkstückbezogene Feinsteuerung der Aufträge flexible Strategien bereitgestellt, wie

- Alternativbearbeitung von Werkstücken,
- Splitten und Raffen von Aufträgen,
- Auftragsmix,
- Änderung von Auftragsreihenfolgen.

Die Auswirkungen der gewählten Strategien werden simuliert und im Rahmen einer Animation dynamisch visualisiert. Durch die Visualisierung wird eine realitätsnahe Abbildung des geplanten Prozesses möglich; im Zeitablauf auftretende Schwachstellen, wie z.B. Engpässe vor Maschinen, werden transparent. Im Anschluß an die Simulation erfolgt eine Bewertung der simulierten Alternative. Hier lassen sich wahlweise die Durchlaufzeiten von Aufträgen als Auftragskonten, die Belegung der Maschinen als Kapazitätskonten sowie die die auftrags- und bereichsbezogenen Kosten in Form graphischer Darstellungen anzeigen.

Unterschiedliche simulierte Alternativen können gespeichert und für einen anschließenden Alternativenvergleich herangezogen werden. Der Vergleich von Alternativen erfolgt auf der Basis von verdichteten Daten, wie beispielsweise

- Summe der Durchlaufzeiten,
- Summe der Terminabweichungen,
- Summe der Kosten.

7. Integration wissensbasierter Systeme und Simulation

Die Integration von wissensbasierten Systemen und Simulation ist in der Literatur zur Zeit ein vielfach diskutiertes Thema. Im folgenden sollen Ansätze für die Integration aufgezeigt und ein mögliches Konzept am Beispiel der kurzfristigen Fertigungssteuerung aufgezeigt werden.

7.1. Ansätze für eine Integration von wissensbasierten Systemen und Simulation

Bezüglich der Ansätze zu einer Kopplung von wissensbasierten Systemen mit der Simulation schlägt O'Keefe eine Einteilung vor, die im wesentlichen folgende Punkte beinhaltet: [64]

1. Neue wissensbasierte Simulationstools, die durch die Kombination von Simulations- und wissensbasierten Techniken entstanden sind.
2. Beratungssysteme für die Simulation im Experimentier- und Analysebereich.
3. Intelligente Front-End-Systeme für bereits existierende Simulationspakete.

In der erste Gruppe sind vor allem integrierte wissensbasierte Simulationsumgebungen, wie das auf der Shell KEE basierende SimKit und die auf der Shell Knowledge Craft aufbauenden Simulations- bzw. Graphikpakete Simpak und Graphpak, zu nennen. Diese Systeme weisen neben der Möglichkeit einer objektorientierten, interaktiven Simulation auch eine graphische Unterstützung in Form von Meßanzeigen bzw. Animation auf [65].

Bei wissensbasierten Beratungssystemen für die Simulation besteht die Motivation darin, dem unerfahrenen Benutzer bei der Durchführung und Analyse von Simulationsexperimenten zu unterstützen. Als Schwerpunkte lassen sich dabei unterscheiden:

- die Konfiguration von Parametern für die durchzuführende Simulation: so kann das wissensbasierte System z.B. Prioritätsregeln oder Schwellwerte festlegen.
- die Analyse der Simulationsergebnisse: das wissensbasierte System analysiert die innerhalb des Simulationslaufs ermittelten Daten und führt eine Bewertung durch, z.B. in Form der Extraktion kostenrelevanter Daten.

7.2. Kopplung von wissensbasierten Systemen und Simulation am Beispiel der kurzfristigen Fertigungssteuerung

In Abbildung 20 sind zusammenfassend die Interaktionsmöglichkeiten zwischen Benutzer, wissensbasiertem System und Simulation, bezogen auf den Bereich der Fertigungssteuerung, dargestellt.

![Diagramm](image)

Abb. 20: Interaktionsmodell Anwender - Wissensbasiertes System - Simulation für die Fertigungssteuerung

8. Simulation als zentraler Bestandteil integrierter Informationssysteme in CIM

Die Simulationstechnik hat sich als ein bewährtes Hilfsmittel zur Lösung eher technischer Problemstellungen bezüglich der Planung, Gestaltung und Steuerung von Produktions- und Materialflußsystemen erwiesen und wird in diesen Bereichen häufig eingesetzt. Zu beobachten sind jedoch weitgehende Insellösungen bei dem Erstellen simulativer Studien, was bedingt ist durch die mangelnde Integrationsfähigkeit der zur Zeit zur Verfügung stehenden Werkzeuge. Insbesondere fehlt die Verbindung zu Datenbanken und die Bereitstellung geeigneter Benutzerschnittstellen. Dadurch wird die Nutzung der Simulationstechnik im Rahmen integrierter Informationssysteme, insbesondere im Hinblick auf eher betriebswirtschaftlich-planerische Fragestellungen, erschwert. Wünschenswert erscheint es deswegen, die Simulationstechnik als Entscheidungsunterstützungsinstrument einer Vielzahl von Anwendern zugänglich zu machen.

Abb. 2.1: Unternehmenssimulationsmodell als Basis von integrierten Informationssystemen

- Planungs- und Entscheidungssysteme
- Analyse-Informationssysteme
- Wertorientierte Abrechnungssysteme
- Mengenorientierte operative Systeme

Unternehmenssimulationsmodell
Das Heranführen des Anwenders an die für die Bearbeitung der Problemstellung auszuwählende Methode kann über ein intelligentes Zugangs- und Analysesystem erfolgen. Das Zugangs- und Analysesystem hat in diesem Zusammenhang folgende Aufgaben zu erfüllen:

- Problemorientierte Modellkonfiguration in Abhängigkeit von der Entscheidungssituation,
- Unterstützung bei der Durchführung der Simulation durch Bereitstellen von Strategien und Bilden von Szenarien,
- Datenselektion und Datenaufbereitung im Anschluß an die Simulation,
- Darstellung von sich aus der Analyse ergebenden Konsequenzen.

Abbildung 22 zeigt den Aufbau eines simulationsgestützten Informationssystems.

![Diagramm](https://example.com/diagram.png)

Abb. 22: Simulationsgestütztes Informationssystem

Abschließend soll festgehalten werden, daß die Simulationstechnik sich als Entscheidungsunterstützungsinstrument für betriebswirtschaftliche und technische Informationssysteme nur dann wirksam nutzen läßt, wenn eine anwenderorientierte Gestaltung der Entscheidungsunterstützung erfolgt. In diesem Zusammenhang ist insbesondere eine zielorientierte Benutzerführung sowie die Darstellung entscheidungsrelevanter Daten in geeigneter, auch graphischer Form von Bedeutung. Diese Faktoren bilden die Grundlage für die Einbindung von Simulationstechniken als Bestandteil integrierter Informationssysteme.
Literaturverzeichnis

o.V.: Modellbasiertes Schlußfolgern in KEE- und SimKit-Systemen, Informationsschrift der Firma IntelliCorp, 1986.
o.V.: SimAL (Simulationssystem für die Auftragsreihenfolgeplanung und Losgrößenbestimmung) - Ein Instrument für die Werkstattsteuerung, Funktionsbeschreibung der SimulationsDienstleistungsZentrum GmbH, Dortmund 1989.

