Freitag, 21. Februar 2014

Physiker aus Saarbrücken und Cambridge finden vielversprechendes neues System für die Quanten-Informationsverarbeitung

Physikern aus Saarbrücken und Cambridge (Großbritannien) ist ein wichtiger Schritt bei der Grundlagenforschung neuer Informationstechnologien gelungen. Bei der Quanteninformation spielen Diamanten eine wichtige Rolle. Diese im Labor hergestellten Diamanten sind bis auf eine gewollte Verunreinigung hochrein. In diesen Einschlüssen, die üblicherweise aus der Kombination einer Fehlstelle im Diamantgitter und einem Verunreinigungsatom bestehen, ist es möglich, den Zustand von Elektronen gezielt zu verändern und so Informationen zu speichern. Die Übertragung der Information geschieht mit Lichtteilchen (Photonen). Die Forscherteams um den Saarbrücker Professor für Quantenoptik, Christoph Becher, und Professor Mete Atatüre von der University of Cambridge haben nun gezielt ein Fehlstellen-Zentrum mit Silizium hergestellt und detailliert untersucht. Das resultierende Zentrum besitzt sehr gute optische Eigenschaften und ist daher prinzipiell hervorragend geeignet, um Informationen zu übertragen. Die Forscher haben ihre Ergebnisse in den renommierten Fachzeitschriften „Physical Review Letters“ sowie „Nature Communications“ publiziert.

 

„Für unsere Arbeiten brauchen wir Diamanten, die einen speziellen Einschluss, genauer gesagt, einen Defekt aufweisen“, erklärt Christoph Becher, Professor für Experimentalphysik an der Universität des Saarlandes. „Dieser besteht oft aus einem Stickstoffatom und einer angrenzenden Leerstelle in der Gitterstruktur des Diamanten. Diese Kombination wird auch Farbzentrum genannt.“ Bestrahlt man die Diamanten nun mit einem Laser, beginnen die Farbzentren Licht auszusenden – ebenso wie es Atome tun. „Dieses Licht trägt Informationen über den internen Zustand des Farbzentrums mit sich.“, sagt Becher weiter. So können die Wissenschaftler gezielt Informationen von einem Quantensystem auf ein anderes übertragen. Zusätzlich kann im Zustand der Elektronen des Farbzentrums Information lokal gespeichert werden. Diese Technologie ist beispielsweise Grundlage für den so genannten Quantencomputer, der um ein Vielfaches schneller und effizienter rechnet als heutige Computer – in der Theorie.

 

Praktisch hat das Stickstoff-Farbzentrum jedoch einen entscheidenden Nachteil: Seine optischen Eigenschaften sind alles andere als optimal. In der Praxis bedeutet das, dass in den meisten Fällen die die Information, die aus  den Stickstoff-Farbzentren im Diamant übertragen werden sollte, unterwegs verloren geht.

In der nun publizierten Studie haben die Wissenschaftler statt des Stickstoffs Siliziumatome als Verunreinigung im Diamant verwendet. Die optischen Eigenschaften des resultierenden Silizium-Farbzentrums sind deutlich vielversprechender. Jedoch waren die elektronischen Eigenschaften bislang unklar. In Zusammenarbeit mit den theoretischen Physikern Adam Gali aus Ungarn und Jeronimo Maze aus Chile haben die Forscher zunächst ein theoretisches Modell entworfen, das die atomaren Wechselwirkungen erklärt. Diese theoretischen Ansätze konnten auf Basis gemeinsamer Experimente mit der Universität Cambridge nun überprüft und verfeinert werden. Für die Experimente wurden Diamanten verwendet, die eigens von Wissenschaftlern aus Innsbruck und Augsburg produziert wurden.

Christian Hepp, Erstautor des Artikels und Mitarbeiter von Christoph Becher, erklärt, was das bedeutet: „Die Lichtteilchen aus dem Silizium-Fehlstellen-Zentrum besitzen ein deutlich saubereres Spektrum und ermöglichen es so, die gespeicherte Information effizient und mit hoher Güte zu übertragen.“

 

Die Experimente in Cambridge und Saarbrücken haben zugleich den Grundstein für die gezielte Manipulation der elektronischen Zustände gelegt. Damit haben die Wissenschaftler einen wichtigen Schritt in Richtung Quanteninformationsverarbeitung mit diesen Farbzentren vollzogen. Die Informationsübertragung mit dieser Technologie ist aber nicht nur für das Quantencomputing interessant. Die optischen Eigenschaften der Silizium-Farbzentren könnten auch mikroskopisch kleine Sensoren ermöglichen, die zum Beispiel in den Lebenswissenschaften zum Einsatz kommen können und aufklären könnten, was in Zellen auf atomarer Ebene vor sich geht.

 

Ihre Ergebnisse haben die Physiker aus dem Saarland und Cambridge in zwei Fachartikeln publiziert:

http://prl.aps.org/abstract/PRL/v112/i3/e036405
http://www.nature.com/ncomms/2014/140218/ncomms4328/full/ncomms4328.html

 

Weitere Informationen:

Prof. Dr. Christoph Becher
Tel.: (0681) 302-2466
E-Mail:
christoph.becher(at)physik.uni-saarland.de

 

Pressefotos für den kostenlosen Gebrauch im Zusammenhang mit der Berichterstattung über dieses Thema finden Sie unter www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.