Autres projets (sélection)

Mathematik

Symbolische Werkzeuge in der Mathematik und ihre Anwendung

Deutsche Forschungsgemeinschaft

SFB/TRR (GRK) 195

Projektleiter: Roland Speicher, Mathematik
Förderzeitraum: seit 2017
Sprecherhochschule: TU Kaiserslautern

Das Berechnen von Beispielen war immer schon zentraler Bestandteil mathematischer Forschung. Im Bereich der Algebra und ihrer Anwendungen, wo exakte Berechnungen unumgänglich sind, wird die nötige mathematische Software von der Computeralgebra bereitgestellt. Aktuelle Herausforderungen auf diesem Gebiet ergeben sich durch die zunehmende Komplexität der Beispiele, durch erhöhte Abstraktionsgrade und die Einführung interdisziplinärer Methoden. Der Sonderforschungsbereich bietet nicht nur die einmalige Gelegenheit, die weitere Pflege und Entwicklung einzelner Systeme sicherzustellen, sondern sie auch in ein System der nächsten Generation zu integrieren, das seinerseits wiederum die kombinierten mathematischen Fähigkeiten der einzelnen Systeme übersteigt.

Sonderforschungsbereich

Hilberträume mit reproduzierendem Kern und Dilatationstheorie

DFG | Emmy Noether Nachwuchsgruppe

Projektleiter: Dr. Michael Hartz, Funktionalanalysis
Förderzeitraum: seit 2021

Operatortheorie und komplexe Analysis sind Zweige der mathematischen Analysis, die sich seit langer Zeit gegenseitig befruchten. Dabei hat jedes Fach wichtige Einblicke in das jeweils andere geliefert. Die Emmy Noether-Gruppe behandelt Fragen an der Schnittstelle  dieser beiden Gebiete und greift dabei zusätzlich auf Operatoralgebren und harmonische Analysis zurück. Insbesondere geht es um Fragestellungen zu Hilberträumen mit reproduzierendem Kern und Dilatationstheorie. Reproduzierende Kerne spielen in der Analysis seit über 100 Jahren eine wichtige Rolle. Darüber hinaus haben sie in jüngerer Vergangenheit bedeutende Anwendungen im Bereich des maschinellen Lernens gefunden.

Juniorprofessur Hartz

Naturwissenschaften

PUSH-IT: Ladungstrennung – Ein allgemeines Motiv zur Aktivierung und Funktionalisierung starker Bindungen

EU | European Research Council | ERC Starting Grant

Projektleiter: Dominik Munz, Anorganische Chemie
Förderzeitraum: 2021 – 2026

Das gezielte Moleküldesign ermöglicht die Entwicklung neuartiger Solarzellen, Batterien oder Medikamente. Problematisch ist bisher jedoch noch häufig die Spaltung sogenannter „starker Bindungen“. Diese sind jedoch essentiell für Energieumwandlungs- und Energiespeicherungsprozesse, wie Sie eben in Solarzellen und Batterien ablaufen. Das EU-Projekt PUSH-IT entwickelt einen neuartigen und allgemeinen Ansatz zur schonenden und potentiell nachhaltigen Veredelung dieser Bindungen und möchte Ladungstrennung als universelles Prinzip in der Synthesechemie etablieren.

ERC Starting Grant

spinGMI - Entwicklung und Integration vn GMI-Sensoren mit spintronischen Hochfrequenzbauelementen

Verbundprojekt: Erforschung neuartiger Magnetsensoren auf Basis spintronischer Effekte - ForMikro-spinGMI

BMBF | Verbundprojekt

Projektleiter: Uwe Hartmann, Physik
Förderzeitraum: 2019-2023

Im Projekt spinGMI soll ein neuartiges Verfahren zum Anregen und Auslesen hochsensitiver Magnetsensoren erforscht werden. Dadurch sollen vor allem die Sensorabmessungen reduziert werden. Dieses neue Verfahren ermöglicht es, die bisher zur Anregung notwendige Wechselspannung statt mit einer separaten Elektronik durch einen hoch-integrierten, spintronischen Oszillator direkt auf dem Sensorchip zu erzeugen. Ein äußeres Magnetfeld führt im Sensor zu einer Widerstandsänderung, die durch ein weiteres spintronisches Elektronikbauteil als Gleichspannungssignal detektiert werden kann. Alle spintronischen
Elektronikbauteile sollen in einen Chip integriert werden, der mithilfe der assoziierten Industriepartner anwendungsnah getestet wird.

Verbundprojekt

MultiBD Challenge - The Pursuit of Group 13-Group 15 (E13≡E15) Triple Bonds. Their Reactivity and Applications for Materials

EU | European Research Council | ERC Starting Grant

Projektleiter: Diego Andrada, Chemie
Förderzeitraum: seit 2019

Multiple bonds have an enourmous impact on our lives as they are extremely useful functionalities in important industrial chemical transformations and products. In case of elements other than carbon, the utilization of bulky ligands, with the appropriate steric and electronic effects, is a crucial factor in the stabilization of such species. Nevertheless, heteronuclear compounds containing triple bonds between the heavier elements of Group 13 and Group 15 are so far unknown. This project addresses this knowledge gap by the use of donor‐acceptor interactions to stabilize such compounds. It will utilize the tools of experimental and computational chemistry in tandem, as an efficient and predictive strategy to gain synthetic access to the hitherto unknown triple bonds. Achieving these aims will have a tremendous impact on various areas of academic and industrial interest ranging from catalysis and energy storage materials to photovoltaic devices.

ERC Starting Grant

Quantum Cooperativity of Light and Matter

SFB/TRR 306

Projektleiterin: Prof. Giovanna Morigi, Physik
Förderzeitraum: seit 2021
Sprecherhochschule: Friedrich-Alexander-Universität Erlangen-Nürnberg

Die Deutsche Forschungsgemeinschaft (DFG) hat den Sonderforschungsbereich/Transregio 306 "Quantenkooperativität von Licht und Materie" (QuCoLiMa) zur Untersuchung von quantenkollektivem Verhalten von physikalischen Systemen an der Schnittstelle von Quantenoptik und kondensierter Materie mit einer Fördersumme von insgesamt rund 11 Millionen Euro für die kommenden vier Jahre bewilligt. Neben der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) als Sprecherhochschule sind die Johannes Gutenberg-Universität Mainz (JGU), die Universität des Saarlandes und die Johannes Kepler Universität Linz sowie das Max-Planck-Institut für die Physik des Lichts, das Deutsche Elektronen-Synchrotron (DESY) und die Friedrich-Schiller-Universität Jena an dem Forschungsprojekt beteiligt. Das Forschungszentrum Jülich stellt seine Quantencomputer-Ressourcen zur Verfügung.

Sonderforschungsbereich

Ingenieurwissenschaften

KI-Predict - Elektronik für verteilte künstliche Intelligenz zur sensorbasierten Prozess- und Zustandskontrolle

BMBF | Verbundvorhaben

Projektleiter: Tizian Schneider, Systems Engineering
Förderzeitraum: März 2020 bis Februar 2023

Um die Effizienz von modernen Maschinen im Kontext von Industrie 4.0 zu steigern, müssen diese immer selbstständiger und “intelligenter” werden. In KI-Predict erforscht die UdS Algorithmen des maschinellen Lernens, die genau diese Form von Intelligenz ermöglichen. Sie analysieren Verschleißmuster in aufgezeichneten Maschinendaten und können anhand dieser Muster die Lebensdauer und die Prozessqualität vorhersagen. Projektziel ist die Integration dieser Algorithmen in einen Mikrochip, welcher sensornah die gelernten Verschleißmuster wiedererkennt und den Zustand von Maschine und Prozess bewertet.

KI-MUSIK-4.0 – Mikroelektronik-basierte universelle Sensor-Schnittstelle mit Künstlicher Intelligenz für Industrie 4.0

BMBF | Verbundvorhaben

Projektleiter: Tizian Schneider, Systems Engineering
Förderzeitraum: April 2020 bis März 2023

Schon in der 1986 stillgelegten und heute als Weltkulturerbe erhaltenen Völklinger Hütte gab es Experten, die darauf geschult waren, durch genaues Hinhören früh zu erkennen, ob die Maschinen der Hütte noch so arbeiten, wie sie sollen, oder ob sich Probleme anbahnen. In KI-MUSIK-4.0 geht es um intelligente Mikrophone, die genau das können. Die UdS erforscht dazu maschinelle Lernalgorithmen, die – in einen kleinen Chip integriert – Mikrophone in die Lage versetzen, nicht nur zu hören, sondern aus dem Gehörten auch auf den Verschleißzustand und die verbliebene Lebensdauer verschiedenster Maschinen zu schließen.

H2SkaProMo - Skalierbare cyber-physische Produktionssysteme zur Montage von Brennstoffzellen-Stacks | Systeme zur physisch-kognitiven Mitarbeiterassistenz und selbstoptimierenden Montagesteuerung mithilfe Künstlicher Intelligenz

BMWK | Verbundvorhaben

Projektleiter: Prof. Rainer Müller, Lehrstuhl für Montagesysteme
Förderzeitraum: 2021-2024

Im Rahmen des Forschungsprojekts H2SkaProMo soll ein Grundstein für die notwendig werdende flexible und skalierbare Produktion von Brennstoffzellen-Stacks gelegt werden.
Die Produktion von Brennstoffzellen-Stacks soll mit industrienahen und skalierbaren Produktionssystemen wirtschaftlich abgebildet werden.
Um den verschiedenen Anforderungen an Produktvariabilität, Produktionssystemflexibilität und –ausbringung gerecht zu werden, erfolgt im Rahmen des Forschungsprojekts die Entwicklung von drei cyber-physischen Produktionslinien in einer manuellen, einer teilautomatisierten und einer automatisierten Ausbaustufe, die in Form von prototypischen Demonstratoren aufgebaut werden.

Projektwebseite

AM2SoftMag - Additive Manufacturing of Amorphous Metals for Soft Magnetics

EU Horizon Europe | Verbundprojekt

Projektleiter: Isabella Gallino, Lehrstuhl für Metallische Werkstoffe
Förderzeitraum: März 2022 bis Februar 2026

Additive Fertigung könnte sich bald als Standardverfahren für die Herstellung von weichmagnetischen Komponenten für hocheffiziente elektrische Maschinen sowie für passive elektrische Systeme etablieren. Aufgrund ihrer exzellenten mechanischen sowie magnetischen Eigenschaften eignen sich metallische Gläser für die Realisierung von hocheffizienten, 3D-gedruckten elektrischen Motoren. Das von der EU geförderte Projekt AM2SoftMag wird metallische Glass-Legierungen entwerfen und -Pulvern entwickeln für das auf selektives Lasersintern (SLM) basierte Verfahren zur additiven Fertigung von weichmagnetischen Komponenten für elektrische Maschinen. Vom Design amorpher weichmagnetischer Pulverlegierungen über die Optimierung SLM-Druckparameter bis hin zur Verifizierung der resultierenden elektromagnetischen Systeme, AM2SoftMag wird das technologische Potenzial elektrischer Motoren und ihre Anwendung in Assistenzgeräte sowie für e-Mobilität bedeutsam erhöhen.

Projektwebseite