ICP-OES and ICP-MS element analyses

Multi-element analysis of aqueous samples using ICP-OES (routine analysis) or ICP-MS (trace analysis and determination of elemental isotope compositions)

 

 

ICP-OES

Optical emission spectroscopy with inductively coupled plasma (ICP-OES) is used for the routine analysis of elements in aqueous solutions in the concentration range mg/L to µg/L. The method allows the simultaneous determination of all metals and some non-metals (up to 70 elements) from acidified, aqueous solutions up to a total dissolved substance content of approx. 1 g/L.

 

 

ICP-MS

Mass spectrometry with inductively coupled plasma (ICP-MS) is used for the analysis of trace elements and the isotopic composition of elements in aqueous solutions in the concentration range µg/L to ng/L. The method allows the simultaneous determination of nearly all metals and some non-metals (up to 70 elements) from acidified aqueous solutions up to a total dissolved substance content of approx. 1 g/L.

 

 
 

Definable elements

With these measuring methods about 70 elements up to atomic number 83 plus Th and U can be measured simultaneously. Not measurable are C, N, O, Tc, Pm, the halogens F and Cl and all noble gases.

 

 

Sample preparation and measuring principle

Sample collection and sample preparation:

Aqueous samples are filtered with a 0.45 µm filter and immediately after sampling acidified to 1-5 vol.% with highly pure, concentrated nitric acid and stored in sample bottles made of inert plastic (PE, FEP or PFA) to exclude element losses due to precipitation or adsorption on the vessel material. The samples can then be analysed directly in the laboratory without further preparation.

Measuring principle for ICP-OES:

In ICP-OES analysis, the sample solution is introduced into an inductively coupled argon plasma via a pneumatic atomisation system. At a temperature of 6000-8000 K in the plasma the elements are excited and ionised. By emitting an element-specific radiation (wavelength), they then return to their ground state, whereby the wavelength (resolution in the range of 0.005 nm) of the emitted radiation is element-specific. The quantitative determination is based on the proportionality of radiation intensity and element concentration in calibration and analyte solutions. Thus, analytes in the medium concentration and trace range can be determined in aqueous or digestion solutions.

ICP-MS Measuring principle:

In ICP-MS analysis, the sample solution is also introduced into an inductively coupled argon plasma via a pneumatic atomisation system. At a temperature of 6000-8000 K in the plasma, the elements are excited and ionised. The degree of ionisation of many elements is more than 50% at these temperatures. The present single positively charged ions pass through two pinholes (sampler and skimmer cone) via an electrostatic lens system into the high vacuum of the quadrupole mass spectrometer. If necessary, interfering molecular ions can be separated by a collision cell connected upstream. In the quadrupole, the ions or isotopes are separated according to their mass-to-charge ratio and detected by a sensitive charge-sensitive detector (dual mode SEV). The measurement signals on the individual isotope masses (element lithium-6 to uranium-238, resolution approx. 0.3 amu) are recorded sequentially and evaluated by a computer. For quantitative determination of the element content of a solution, the device is calibrated with standard solutions of known content.

 

 

Information on the analysis of metals in auqeous solutions via ICP-MS

The following things should be considered when giving samples:

  • The filtered samples should be in an aqueous, clear solution
  • The carbon content (organic as well as inorganic) should be < 1%
  • The samples should be acidified, please use concentrated nitric acid (65% HNO3; suprapure purity or comparable) (can be provided)
  • As sample vessels please use clean and dry plastic vessels (see Glass vessels can lead to falsified results due to bleeding of various cations from the glass
  • Please add a blank (contains everything in exactly the same ratio as the sample, except for the analytes to be analysed)

Example Blank: An aqueous washing solution of a brass bath (CuZn alloy) is to be tested for copper and zinc.

  • The sample contains the solution after the washing step including the added nitric acid.
  • The blank contains the washing solution before the washing step including the added nitric acid.

Only if both samples are present, the difference can be used to determine the exact amount of zinc and copper dissolved by the rinsing step.

 

Requests and contact

apl. Prof. Dr. Ralf Kautenburger
Universität des Saarlandes
Anorganische Chemie
Elementanalytik - WASTe
Campus C4 1, Room -1.06
66123 Saarbrücken

Phone:   +49 681 302 2171
Fax.:   +49 681 302 70655
E-mail: r.kautenburger(at)mx.uni-saarland.de

 

Auswahl an Publikationen mit ICP-MS-Daten

(peer reviewed)


WISSEL, K., HABEN, A., KÜSTER, K., STARKE, U., KAUTENBURGER, R., ENSINGER, W. AND CLEMENS, O. (2024) Direct Recycling of β-Li3PS4-Based All-Solid-State Li-Ion Batteries: Interactions of Electrode Materials and Electrolyte in a Dissolution-Based Separation Process. Adv. Energy Sustainability Res. 2300280.
https://doi.org/10.1002/aesr.202300280

BRIX, K., HABEN, A., KAUTENBURGER, R. (2023) Time-Dependent Retention of a Mixture of Cs(I), Sm(III), Eu(III) and U(VI) as Waste Cocktail by Calcium Silicate Hydrate (C-S-H) Phases. Minerals, 13, 1469.
https://doi.org/10.3390/min13121469

AHMED, A.S., MÜLLER, D.W., BRUYERE, S., HOLTSCH, A., MÜLLER, F., BARRIRERO, J., BRIX, K., MIGOT, S., KAUTENBURGER, R., JACOBS, K., PIERSON J.-F., MÜCKLICH, F. (2023) Surface Modification of Brass via Ultrashort Pulsed Direct Laser Interference Patterning and Its Effect on Bacteria-Substrate Interaction. ACS Applied Materials & Interfaces, ASAP Article.
https://doi.org/10.1021/acsami.3c04801

WAIDHA, A., SALIHOVIC, A., JACOB, M., VANITA,V., AKTEKIN, B., BRIX, K., WISSEL, K., KAUTENBURGER, R., JANEK, J., ENSINGER, W., CLEMENS, O. (2023) Cover Feature: Recycling of All-Solid-State Li-ion Batteries: A Case Study of the Separation of Individual Components Within a System Composed of LTO, LLZTO and NMC (ChemSusChem 13/2023). ChemSusChem 2023, 16, e202300896.
https://doi.org/10.1002/cssc.202300896

WAIDHA, A., SALIHOVIC, A., JACOB, M., VANITA,V., AKTEKIN, B., BRIX, K., WISSEL, K., KAUTENBURGER, R., JANEK, J., ENSINGER, W., CLEMENS, O. (2023) Recycling of All-Solid-State Li-ion Batteries: A Case Study of the Separation of Individual Components Within a System Composed of LTO, LLZTO, and NMC.ChemSusChem, e202202361.
https://doi.org/10.1002/cssc.202202361

ENGEL, S., GIESSELMANN, E.C., SCHANK, L.E., HEYMANN, G., BRIX, K., KAUTENBURGER, R., BECK, H.P., JANKA, O. (2023) Theoretical and 27Al NMR Spectroscopic Investigations of Binary Intermetallic Alkaline-Earth Aluminides. Inorganic Chemistry, 62(10), 4260-4271.
https://doi.org/10.1021/acs.inorgchem.2c04391

BAUR, S., BRIX, K., FEUERSTEIN, A., JANKA, O., & KAUTENBURGER, R. (2022) Retention of waste cocktail elements onto characterised calcium silicate hydrate (C–S–H) phases: A kinetic study under highly saline and hyperalkaline conditions. Applied Geochemistry, 105319.
https://doi.org/10.1016/j.apgeochem.2022.105319

KAUTENBURGER, R., BRIX, K., BAUR, S., & SANDER, J. M. (2022) Development of mini column experiments (MCE) by coupling microliter flow HPLC with ICP-MS for the analysis of metal retention under conditions close to nature. Talanta Open, 5, 100111.
https://doi.org/10.1016/j.talo.2022.100111

SIEMS K, MÜLLER DW, MAERTENS L, AHMED A, VAN HOUDT R, MANCINELLI RL, BAUR S, BRIX K, KAUTENBURGER R, CAPLIN N, KRAUSE J, DEMETS R, VUKICH M, TORTORA A, ROESCH C, HOLLAND G, LAUE M, MÜCKLICH F and MOELLER R (2022) Testing Laser-Structured Antimicrobial Surfaces Under Space Conditions: The Design of the ISS Experiment BIOFILMS. Front. Space Technol. 2, 773244.
https://doi.org/10.3389/frspt.2021.773244

BRIX, K., BAUR, S., HABEN, A., KAUTENBURGER, R. (2021) Building the bridge between U(VI) and Ca-bentonite – Influence of concentration, ionic strength, pH, clay composition and competing ions. Chemosphere, 131445.
https://doi.org/10.1016/j.chemosphere.2021.131445

FISCHER, T., TSCHERNIG, T., DREWS, F., BRIX, K., MEIER, C., SIMON, M., KAUTENBURGER, R., SCHNEIDER, M. (2021) SiRNA delivery to alveolar macrophages using aspherical, nanostructured microparticles as gene delivery system. European Journal of Pharmaceutics and Biopharmaceutics 158, 284-293.
https://doi.org/10.1016/j.ejpb.2020.11.024

MÜLLER, D.W., LÖSSLEIN, S., TERRIAC, E., BRIX, K., SIEMS, K., MOELLER, R., KAUTENBURGER, R., MÜCKLICH, F. (2021) Antimicrobial Copper Surfaces: Increasing Antibacterial Efficiency of Cu Surfaces by targeted Surface Functionalization via Ultrashort Pulsed Direct Laser Interference Patterning. Advanced Materials Interfaces 8 (5), (2021) 2170027.
https://doi.org/10.1002/admi.202170027

MÜLLER, D.W., LÖßLEIN, S., TERRIAC, E., BRIX, K., SIEMS, K., MOELLER, R., KAUTENBURGER, R., MÜCKLICH, F. (2021) Increasing Antibacterial Efficiency of Cu Surfaces by targeted Surface Functionalization via Ultrashort Pulsed Direct Laser Interference Patterning (USP-DLIP). Advanced Materials Interfaces 8 (5), 2001656.
https://doi.org/10.1002/admi.202001656

HARFOUSH, S.A., HANNIG, M., LE, D.D., HECK, S., LEITNER, M., OMLOR, A.J., TAVERNARO, I., KRAEGELOH, A., KAUTENBURGER, R., KICKELBICK, G., BEILHACK, A., BISCHOFF, M., NGUYEN, J., SESTER, M., BALS, R., DINH, Q.T. (2020) High-dose intranasal application of titanium dioxide nanoparticles induces the systemic uptakes and allergic airway inflammation in asthmatic mice. Respiratory Research 21, 168.  
https://doi.org/10.1186/s12931-020-01386-0

BOULARD, L., KAUTENBURGER, R. (2020) Short-term elemental release from Portland cement concrete by hypersaline leaching conditions. Advances in Cement Research, 32 (4), 148-157.
https://doi.org/10.1680/jadcr.18.00085

LUO, J., HEIN, C., PIERSON, J. F., & MÜCKLICH, F. (2020). Sodium chloride assists copper release, enhances antibacterial efficiency, and introduces atmospheric corrosion on copper surface. Surfaces and Interfaces, 20, 100630.
https://doi.org/10.1016/j.surfin.2020.100630

LUO, J., HEIN, C., GHANBAJA, J., PIERSON, J. F., & MÜCKLICH, F. (2019). Bacteria accumulate copper ions and inhibit oxide formation on copper surface during antibacterial efficiency test. Micron, 127, 102759.
http://dx.doi.org/10.1016/j.micron.2019.102759

BRIX, K., HEIN, C., HABEN, A., KAUTENBURGER, R. (2019) Adsorption of caesium on raw Ca-bentonite in high saline solutions: Influence of concentration, mineral composition, other radionuclides and modelling. Applied Clay Science, 182, 105275.
https://doi.org/10.1016/j.clay.2019.105275

LUO, J., HEIN, C., PIERSON, J. F., & MÜCKLICH, F. (2019). Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. Biointerphases, 14(6).
http://dx.doi.org/10.1063/1.5123039

KAUTENBURGER, R, BRIX, K., HEIN, C. (2019) Insights into the retention behaviour of europium(III) and uranium(VI) onto Opalinus Clay influenced by pore water composition, temperature, pH and organic compounds. Applied Geochemistry, 109, 104404.
https://doi.org/10.1016/j.apgeochem.2019.104404.

LUO, J., HEIN, C., PIERSON, J. F., & MÜCKLICH, F. (2019). Localised corrosion attacks and oxide growth on copper in phosphate-buffered saline. Materials Characterization, 158, 109985.
http://dx.doi.org/10.1016/j.matchar.2019.109985

SARKAR, A., DJENADIC, R., WANG, D., HEIN, C., KAUTENBURGER, R., CLEMENS, O., HAHN, H. (2018) Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society 38, 2318-2327.
https://doi.org/10.1016/j.jeurceramsoc.2017.12.058

HAHN, C., HANS, M., HEIN, C., DENNSTEDT, A., MÜCKLICH, F., RETTBERG, P., ... & MOELLER, R. (2018). Antimicrobial properties of ternary eutectic aluminum alloys. BioMetals, 31, 759-770.
https://doi.org/10.1007/s10534-018-0119-1

BRIX, K., HEIN, C., SANDER, J.M., KAUTENBURGER, R. (2017) Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices. Talanta 167, 532-536.
http://dx.doi.org/10.1016/j.talanta.2017.02.056

HAHN, C., HANS, M., HEIN, C., MANCINELLI, R. L., MÜCKLICH, F., WIRTH, R., ... & MOELLER, R. (2017). Pure and oxidized copper materials as potential antimicrobial surfaces for spaceflight activities. Astrobiology, 17(12), 1183-1191.
https://doi.org/10.1089/ast.2016.1620

KAUTENBURGER, R., SANDER, J.M., HEIN, C. (2017) Europium (III) and Uranium (VI) complexation by natural organic matter (NOM): effect of source. Electrophoresis 38, 930-937.
http://dx.doi.org/10.1002/elps.201600488

LUO, J., HEIN, C., MÜCKLICH, F., & SOLIOZ, M. (2017). Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters. Biointerphases, 12(2).
http://dx.doi.org/10.1116/1.4980127

HAHN, R., HEIN, C., SANDER, J.M., KAUTENBURGER, R. (2017) Complexation of europium and uranium with natural organic matter (NOM) in highly saline water matrices analysed by ultrafiltration and inductively coupled plasma mass spectrometry (ICP-MS). Applied Geochemistry, 78, 241-249.
http://dx.doi.org/10.1016/j.apgeochem.2017.01.008

HEIN, C., SANDER, J.M., KAUTENBURGER, R. (2017) New Approach of a transient ICP-MS measurement method for samples with high salinity. Talanta, 164, 477-482.
http://dx.doi.org/10.1016/j.talanta.2016.06.059

OMLOR A. J., LE D.D., SCHLICKER J., HANNIG M., EWEN R., HECK S., HERR C., KRAEGELOH A., HEIN C., KAUTENBURGER R., KICKELBICK G., BALS R., NGUYEN J., DINH Q.T. (2016) Local Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and Citrated Gold Nanoparticles in Asthmatic Mice. Small, 1603070.
http://dx.doi.org/10.1002/smll.201603070

KOHLMANN, H., HEIN, C., KAUTENBURGER, R., HANSEN, T.C., RITTER, C., DOYLE, S. (2016) Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes 154Sm and 153Eu. Zeitschrift für Kristallographie-Crystalline Materials 231 (9), 517-523.
https://doi.org/10.1515/zkri-2016-1984

HAHN, R., KUNKEL, N., HEIN, C., KAUTENBURGER, R., KOHLMANN, H. (2015) Recovery rate and homogeneity of doping europium into luminescent metal hydrides by chemical analysis. RSC Advances 5, 9722-9726.
http://dx.doi.org/10.1039/C4RA14076A

HEIN, C., SANDER, J.M., KAUTENBURGER, R. (2014) Speciation via Hyphenation - Metal Speciation in Geological and Environmental Samples by CE-ICP-MS. Journal of Analytical & Bioanalytical Techniques 5, 225.
http://dx.doi.org/10.4172/2155-9872.1000225

HANS, M., TÁMARA, J.C., MATHEWS, S., BAX, B., HEGETSCHWEILER, A., KAUTENBURGER, R., SOLIOZ, M., MÜCKLICH, F. (2014) Laser cladding of stainless steel with a copper–silver alloy to generate surfaces of high antimicrobial activity. Applied Surface Science 320, 195-199.
http://dx.doi.org/10.1016/j.apsusc.2014.09.069

KAUTENBURGER, R. (2014) A new timescale dimension for migration experiments in clay: proof of principle for the application of miniaturized clay column experiments (MCCE). Journal of Radioanalytical and Nuclear Chemistry 300, 255-262.
http://dx.doi.org/10.1007/s10967-014-3017-1

KAUTENBURGER, R., HEIN, C., SANDER, J.M., BECK, H.P. (2014) Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE‑ICP-MS. Analytica Chimica Acta 816, 50-59.
http://dx.doi.org/10.1016/j.aca.2014.01.044

MÖSER, C., BECK H.P., KAUTENBURGER, R. (2012) Complexation of Europium and Uranium by Humic Acids Analysed by Capillary Electrophoresis - Inductively Coupled Plasma Mass Spectrometry. Electrophoresis 33, 1482-1487.
http://dx.doi.org/10.1002/elps.201100652

KAUTENBURGER, R. (2011) Batch is bad? Leaching of Opalinus clay samples and ICP-MS determination of extracted elements. Journal of Analytical Atomic Spectrometry 26, 2089-2092.
http://dx.doi.org/10.1039/C1JA10142K

KAUTENBURGER, R., MÖSER, C., BECK, H.P. (2011) Metal mobility in clay formations – From batch experiments with mineral suspensions to column setup with compacted clay. Mineralogical Magazine 75, 1157.
http://minmag.geoscienceworld.org/content/75/3/1133

MÖSER, C., KAUTENBURGER, R., BECK, H.P. (2011) Migration of Europium and Uranium in Opalinus Clay Influenced by pH and Temperature. Mineralogical Magazine 75, 1504.
http://minmag.geoscienceworld.org/content/75/3/1374

KAUTENBURGER, R., BECK, H.P. (2010) Influence of geochemical parameters on the sorption and desorption behaviour of europium and gadolinium onto kaolinite. Journal of Environmental Monitoring 12, 1295-1301.
http://dx.doi.org/10.1039/B914861B

KAUTENBURGER, R., MÖSER, C. & H.P. BECK (2010): Influence of Lanthanide Concentration and the Presence of Competing Metal Ions on Europium and Gadolinium Speciation with Humic Acid Analyzed by CE-ICP-MS. In: ADVANCES IN NATURAL ORGANIC MATTER AND HUMIC SUBSTANCES RESEARCH 2008-2010 (Editors: J.A. González-Pérez, F.J. González-Vila & G. Almendros). Proceedings IHSS-15 (Vol. 1), 251-254.
http://hdl.handle.net/10261/26346

MÖSER, C., KAUTENBURGER, R. & H.P. BECK (2010): CE-ICP-MS as Speciation Technique to Analyze the Complexation Behavior of Europium, Gadolinium and Terbium with Humic Acid. In: ADVANCES IN NATURAL ORGANIC MATTER AND HUMIC SUBSTANCES RESEARCH 2008-2010 (Editors: J.A. González-Pérez, F.J. González-Vila & G. Almendros). Proceedings IHSS-15 (Vol. 3), 139-142.
http://hdl.handle.net/10261/26346

KAUTENBURGER, R. (2009) Influence of metal concentration and the presence of competing cations on lanthanide speciation with humic acid analysed by CE-ICP-MS. Journal of Analytical Atomic Spectrometry 24, 934-938.
http://dx.doi.org/10.1039/B904107A

Chatterjee, I., Schmitt, S., Batzilla, C.F., Engelmann, S., Keller, A., Ring, M.W., KAUTENBURGER, R., ZIEBUHR, W., HECKER, M., PREISSNER, K.T., BISCHOFF, M., PROCTOR R.A., BECK, H.P., LENHOF, H-P., SOMERVILLE, G.A., HERRMANN, M. (2009) Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence. Proteomics 9, 1152-1176.
http://dx.doi.org/10.1002/pmic.200800586

KAUTENBURGER, R., BECK, H.P.(2008) Waste disposal in clay formations: Influence of humic acid on the migration of heavy metal pollutants. ChemSusChem 1, 295-297.
http://dx.doi.org/10.1002/cssc.200800014

Kazmaier, U., Hähn, S., Weiss, T.D., KAUTENBURGER, R. & W.F. MAIER (2007): Palladium-doped Mixed Oxides as “Slow Release” Catalysts for Suzuki Couplings. Synlett 16, 2579-2583.
http://dx.doi.org/10.1055/s-2007-986639

KAUTENBURGER, R. & H.P. Beck (2007): Complexation studies with lanthanides and humic acids analysed by ultrafiltration and capillary electrophoresis - inductively coupled plasma mass spectrometry. Journal of Chromatography A 1159, 75-80.
http://dx.doi.org/10.1016/j.chroma.2007.03.092

KAUTENBURGER, R., NOWOTKA, K. & H.P. BECK (2006): Online analysis of europium and gadolinium species complexed or uncomplexed with humic acid by capillary electrophoresis–inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry 384, 1416-1422.
http://dx.doi.org/10.1007/s00216-006-0299-3