Lectures
Theoretische Physik Ia: Rechenmethoden der Mechanik
Dien. 10 - 12 Uhr im Geb. C4 4, Raum 0.01
Don. 10 - 12 Uhr im Geb. E2 5, Raum 0.01 (Hörsaal 1)
LsF-Nummer: 158953
Previous Semesters
Quantum Algorithms and Quantum Error Correction
Summer Semester 2025
This lecture introduces students to basics of quantum information science and to several quantum computing algorithms with a focus on those that can be implemented on current and near-term quantum hardware. The lecture also introduces quantum error correction. Students acquire a practical knowledge of quantum computer programming using Qiskit.
Brief Syllabus
- Introduction to quantum information with focus on description of noisy quantum hardware
- Density operator, quantum entanglement, Schmidt decomposition, purification, distance measures
- Quantum channels, gate fidelity
- Quantum circuits, decomposition into discrete set of native gates
- Quantum algorithms
- Quantum error correction: general conditions for QEC, Shor code, CSS codes, stabilizer formalism, fault-tolerancy
- Practical implementation of the discussed algorithms using open source software packages and toolkits
Sommersemester 2024
Theoretische Physik 1b: Klassische Mechanik
Veranstaltungsnummer: 148951
Die Vorlesung ist eine Einführung in die analytische Mechanik und behandelt die folgenden Themen: Newtonsche Gesetze, Spezielle Relativitätstheorie, Lagrangeformalismus, Hamiltonsches Prinzip, Symmetrien und Erhaltungsgrößen, Zentralkraftbewegungen, Starrer Körper, Lineare Schwingungen, Hamiltonformalismus, Hamilton-Jacobi Theorie, Komplexe Systeme
Empfohlene Lehrbücher sind:
- John R. Taylor, “Klassische Mechanik”
- Friedhelm Kuypers, “Klassische Mechanik”
- T.M. Helliwell, V. V. Sahakian, “Modern Classical Mechanics”
Empfohlenes Lehrbuch zur benötigten Mathematik:
- R. Shankar, “Basic Training in Mathematics”
"Applied Quantum Information Science: Quantum algorithms and error correction"
This lecture introduces students to quantum computing algorithms with a focus on those that can be implemented on current quantum hardware. The lecture also covers quantum error mitigation and quantum error correction. Students acquire a practical knowledge of quantum computer programming using Qiskit.
Brief Syllabus
- Introduction to quantum information with focus on description of noisy quantum hardware
- Density operator, quantum entanglement, Schmidt decomposition, purification, distance measures
- Quantum channels, gate fidelity
- Quantum noise tomography: state tomography and gate tomography
- Algorithms for optimization and Hamiltonian simulation (Trotterization)
- NISQ quantum algorithms: hybrid quantum-classical algorithms, variational quantum algorithms
- Quantum error mitigation
- Quantum error correction: general conditions for QEC, Shor code, CSS codes, stabilizer formalism, fault-tolerancy
- Practical implementation of quantum computing algorithms, tomography, error mitigation and correction using open source software packages and toolkits