Articles with peer review


  • C. Meiser, A. Wald and T. Schuster. Learned anomaly detection with terahertz radiation in inline process monitoring. Sensing and Imaging, 23:30, 2022.

  • L. Vierus and T. Schuster. Well-defined forward operators in dynamic diffractive tensor tomography using viscosity solutions of transport equations. Electronic Transactions on Numerical Analysis, 57:80-100, 2022.
  • R. Rothermel, W. Panlenko, P. Sharma, A. Wald, T. Schuster, A. Jung and S. Diebels. A method for determining the parameters in a rheological model for viscoelastic materials by minimizing Tikhonov functionals. Applied
    Mathematics in Science and Engineering, 30(1):141-165, 2022.


  • D. Rothermel, T. Schuster, R. Schorr and M. Peglow. Determination of the temperature-dependent thermal material properties in the cooling process of steel plates. Mathematical Problems in Engineering,
    DOI:10.1155/2021/6653388, Article ID 6653388, 2021.

  • D. Rothermel and T. Schuster. Solving an inverse heat convection problem with an implicit forward operator by using a projected quasi-Newton method. Inverse Problems, 37(4):36pp, 2021.


  • S.E. Blanke, B.N. Hahn and A. Wald. Inverse Problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, to appear, 2020.

  • E.Y. Derevtsov, Y.S. Volkov and T. Schuster. Generalized attenuated ray transforms and their integral angular moments. Applied Mathematics and Computation, DOI:10.1016/j.amc.2020.125494, 2020.


  • F. Heber, F. Schöpfer and T. Schuster. Acceleration of sequential subspace optimization in Banach spaces by orthogonal search directions. J. Comp. Appl. Math., 345:1-22, DOI:10.1016/, 2019.


  • A. Wald. A fast subspace optimization method for nonlinear inverse problems in Banach spaces with an application in parameter identification. Inverse Problems, 34(8):27pp, DOI:10.1088/1361-6420/aac8f3, 2018.
  • S. Diebels, T. Schuster and A. Wewior. Identifying elastic and viscoelastic material parameters by Tikhonov regularization. Mathematical Problems in EngineeringDOI:10.1155/2018/1895208, Article ID 1895208, 11pp, 2018.


  • J. Seydel and T. Schuster. Identifying the stored energy of a hyperelastic structure from surface measurements by using an attenuated Landweber method. Inverse Problems. Special Issue: Dynamic Inverse Problems, Special Issue: Dynamic Inverse Problems, 33(12):31pp, DOI:10.1088/1361-6420/aa8d91, 2017.
  • A. Katsevich, D. Rothermel, and T. Schuster. An improved exact inversion formula for solenoidal fields in cone beam vector tomography. Inverse Problems, 33(6):19pp, Special issue: 100 Years of the Radon transform, DOI:10.1088/1361-6420/aa58d5, 2017.
  • C. Schorr, L. Dörr, M. Maisl and T. Schuster. Registration of a priori information for computed laminography. NDT&E International, 86:106-112, DOI:10.1016/j.ndteint.2016.12.005, 2017.
  • A. Wald and T. Schuster. Sequential subspace optimization for nonlinear inverse problems. J. Inv. Ill-Posed Prob., 25(1), DOI:10.1515/jiip-2016-0014, 2017.
  • J. Tepe, T. Schuster, and B. Littau. A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography.
    Inverse Problems in Science and Engineering, 25:1448-1473, DOI:10.1080/17415977.2016.1267168, 2017.


  • U. Schröder and T. Schuster. A numerical algorithm to determine the refractive index of an inhomogeneous medium from time-of-flight measurements.
    Inverse Problems, 32(8):35pp, DOI:10.1088/0266-5611/32/8/085009, 2016.
  • J. Seydel and T. Schuster. On the linearization of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field.
    Math. Meth. Appl. Sci., DOI:10.1002/mma.3979, 2016.


  • F. Binder, F. Schöpfer and T. Schuster. PDE-based defect localization in fibre-reinforced composites from surface sensor measurements.
    Inverse Problems, 31(2):22pp, DOI:10.1088/0266-5611/31/2/025006, 2015.
  • A. Wöstehoff, T. Schuster. Uniqueness and stability result for Cauchy's equation of motion for a certain class of hyperelastic materials.
    Applicable Analysis, 94(8):1561-1593, DOI:10.1080/00036811.2014.940519, 2015.


  • T. Schuster, A. Wöstehoff. On the identifiable of the stored energy function of hyperelastic materials from sensor data at the boundary.
    Inverse Problems, 30(10):26pp, DOI:10.1088/0266-5611/30/10/105002, 2014.
  • I.E. Svetov, E.Y. Derevtsov, Y.S. Volkov, and T. Schuster. A numerical solver based on B-splines for 2D vector field tomography in a refracting medium.
    Mathematics and Computers in Simulation, 97:207-223, 2014. DOI:10.1016/j.matcom.2013.05.008


  • D. Kern, M. Rösner, E. Bauma, W. Seemann, R. Lammering and T. Schuster. Key features of exure hinges used as rotational joints.
    Forschung im Ingenieurwesen, DOI:10.1007/s10010-013-0169-z, 2013.
  • J.P. Wulfsberg, R. Lammering, T. Schuster, N. Kong, M. Rösner, E. Bauma, and R. Friedrich. A novel methodology for the development of compliant mechanisms with application to feed units. Production Engineering, DOI:10.1007/s11740-013-0472-4, 2013.






  • E. Derevtsov, V. Pickalov, and T. Schuster. Application of local operators for numerical reconstruction of the singular support of a vector field by its known ray transforms.
    Journal of Physics: Conference Series, IOP Publishing, Vol. 135, Article ID 012035, doi:10.1088/1742-6596/135/1/012035, 2008.
  • F. Schöpfer, T. Schuster, and A. K. Louis. Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods.
    Journal of Inverse and Ill-Posed Problems, 16(5):479-506, 2008. DOI:10.1515/JIIP.2008.026
  • F. Schöpfer, T. Schuster, and A. K. Louis. An iterative regularization method for the solution of the split feasibility problem in Banach spaces.
    Inverse Problems, 24(5):20pp, 2008. DOI:10.1088/0266-5611/24/5/055008


  • T. Bonesky, K. Kazimierski, P. Maass, F. Schöpfer, and T. Schuster. Minimization of Tikhonov functionals in Banach spaces.
    Journal of Abstract and Applied Analysis, Article ID 192679, 19 pages, 2007. DOI:10.1155/2008/192679
  • T. Schuster. The formula of Grangeat for tensor fields of arbitrary order in n dimensions.
    International Journal of Biomedical Imaging, Article ID 12839, 4 pages, 2007. DOI:10.1155/2007/12839
  • E. Derevtsov, S. Kazantsev, and T. Schuster. Polynomial bases for subspaces of potential and solenoidal vector fields in the unit ball of R3.
    Journal of Inverse and Ill-Posed Problems, 15(1):19-55, 2007. DOI:10.1515/JIIP.2007.002


  • T. Schuster. Error estimates for defect correction methods in Doppler tomography.
    Journal of Inverse and Ill-Posed Problems, 14:83-106, 2006. DOI:10.1515/156939406776237465


  • T. Schuster. Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method.
    Inverse Problems, 21:75-91, 2005. DOI:10.1088/0266-5611/21/1/006


  • E. Derevtsov, A. K. Louis, and T. Schuster. Two approaches to the problem of defect correction in vector field tomography solving boundary value problems.
    Journal of Inverse and Ill-Posed Problems, 12:597-626, 2004. DOI:10.1515/1569394042545111


  • T. Schuster. A stable inversion scheme for the Laplace opterator using arbitrarily distributed data scanning points.
    Journal of Inverse and Ill-Posed Problems, 11:263-287, 2003. DOI:10.1515/156939403769237051
  • A. Rieder and T. Schuster. The approximate inverse in action II: convergence and stability.
    Mathematics of Computations, 72:1399-1415, 2003.DOI:10.1090/S0025-5718-03-01526-6



  • E. Derevtsov, R. Dietz, T. Schuster, and A. K. Louis. Influence of refraction to the accuracy of a solution for the 2D-emission tomography problem.
    Journal of Inverse and Ill-Posed Problems, 8(2):161-191, DOI: 10.1515/jiip.2000.8.2.161, 2000.
  • A. Rieder and T. Schuster. The approximate inverse in action with an application to computerized tomography.
    SIAM Journal on Numerical Analysis, 37(6):1909-1929, 2000. DOI:10.1137/S0036142998347619


  • A. K. Louis and T. Schuster. A novel filter design technique in 2D computerized tomography. Inverse Problems, 12:685-696, 1996. DOI:10.1088/0266-5611/12/5/0112014