For­schung/Re­se­arch

We are interested in cellular processes involving reactive oxygen species (ROS). ROS can perform signaling functions, but they can also have harmful effects on cellular components in the form of oxidative stress. Our model systems are human and mural neuronal cell lines as well as the fruit fly Drosophila melanogaster.

    • For­schung am Mo­dell­or­ga­nis­mus Dro­so­phi­la me­la­no­gas­ter

      The oc­cur­rence of ova­ri­an dys­func­tion is often due to the im­ba­lan­ce bet­ween the for­ma­ti­on of re­ac­tive oxy­gen spe­cies (ROS) and the (in)ef­fec­tiven­ess of the an­ti­oxi­da­ti­ve de­fen­se me­cha­nisms. Pri­ma­ry sour­ces of ROS are the re­spi­ra­to­ry elec­tron trans­fer and the ac­tivi­ty of NADPH oxi­da­ses (NOX), while Su­per­oxi­de dis­mu­ta­ses (SOD) are the main key re­gu­la­tors that con­trol the le­vels of ROS and re­ac­tive ni­tro­gen spe­cies in­tra- and ex­tra­cel­lu­lar­ly. Be­cau­se of their cen­tral role, SODs are the sub­ject of re­se­arch on human ova­ri­an dys­func­tion, but the samp­le ac­qui­si­ti­on is low. The high de­gree of cel­lu­lar and mole­cu­lar si­mi­la­ri­ty bet­ween Dro­so­phi­la me­la­no­gas­ter ova­ries and human ova­ries pro­vi­des this model or­ga­nism with the best con­di­ti­ons for ana­ly­zing the role of ROS du­ring ova­ri­an func­tion (Pro­ject: Dr. E. Stein­metz).

    • For­schung an neu­ro­na­len Zell­li­ni­en

      Our brain re­qui­res a con­ti­nuous sup­p­ly of glu­co­se. An al­te­red glu­co­se ho­me­o­stasis, cau­sed for ex­amp­le by in­cor­rect tre­at­ment of dia­be­tes mel­li­tus, leads to me­ta­bo­lic stress, which can cont­ri­bu­te to the long-term de­ve­lop­ment of neu­ro­de­ge­ne­ra­ti­ve di­sea­ses. The avail­a­bi­li­ty of glu­co­se af­fects es­sen­ti­al com­po­n­ents such as ATP or NADPH, as well as si­gna­ling pa­thways and mole­cu­les like AMPK or Re­ac­tive Oxy­gen and Ni­tro­gen Spe­cies (RONS). To study the ef­fects of me­ta­bo­lic stress in a phy­sio­lo­gi­cal set­ting, the human neu­ro­b­last­o­ma cell line SH-SY5Y, a com­mon­ly used model to study neu­ro­de­ge­ne­ra­ti­ve di­sea­ses, is used (Pro­ject: MSc L. Kro­nen­ber­ger)

    • En­han­ced oxi­da­ti­ve stress is a cont­ri­bu­ting fac­tor in the pa­tho­ge­ne­sis of se­veral neu­ro­de­ge­ne­ra­ti­ve dis­or­ders such as Alz­hei­mer´s di­sea­se. Be­ne­fi­ci­al ef­fects have been de­mons­tra­ted for me­di­um-chain fatty acids (MCFAs) nut­ri­tio­nal­ly ad­mi­nis­te­red as me­di­um-chain trigly­ce­ri­des (MCTs) or co­co­nut oil (CO). The ob­ser­ved ef­fects on co­gni­ti­ve im­pair­ment are ge­ne­ral­ly at­tri­bu­ted to the he­pa­tic me­ta­bo­lism of MCFAs, where re­sul­ting ke­to­ne bo­dies serve as an al­ter­na­te en­er­gy sour­ce to com­pen­sa­te for the im­pai­red glu­co­se uti­li­sa­ti­on in the human brain (Pro­ject: Dr. J.​Mett)

    • Glut­amin im En­er­gie- und Neu­ro­trans­mit­ter­stoff­wech­sel in Neu­ro­b­last­om­zell­li­ni­en Glut­amin zählt zu den wich­tigs­ten Ami­no­säu­ren im Kör­per. Es dient als En­er­gie­quel­le und zur Syn­the­se le­bens­wich­ti­ger Pro­te­ine. Glut­amat ist der wich­tigs­te ex­zi­ta­to­ri­sche Neu­ro­trans­mit­ter in Neu­ro­nen und dient als Vor­läu­fer für den in­hi­bi­to­ri­schen Neu­ro­trans­mit­ter GABA. Eine Glut­amin-Glut­amat Ho­möo­stase ist von ent­schei­den­der Be­deu­tung für eine op­ti­ma­le Funk­ti­on des Ge­hirns. Neben Glu­ko­se und Py­ru­vat konn­te auch Glut­amin als wich­tigs­ter En­er­gie­lie­fe­rant für Zel­len iden­ti­fi­ziert wer­den. Ins­be­son­de­re Krebs­zel­len grei­fen ver­mehrt auf Glut­amin als En­er­gie­quel­le zu­rück. Ziel des Pro­jek­tes ist es, den Glut­amin­stoff­wech­sel der Neu­ro­b­last­om­zell­li­nie SH-SY5Y (human) und Krebs­zel­li­nie Neu­ro2A (murin) ge­nau­er zu ver­ste­hen (Pro­ject: BSc A. Pietz­ko).

Publikationen