Publications of the team

  1. V. Lazić, S. MatsumuraTh. Peternell, N. Tsakanikas, Z. Xie, The Nonvanishing problem for varieties with nef anticanonical bundle, arXiv:2202.13814
  2. M. Hoff, I. Stenger, On the numerical dimension of Calabi-Yau 3-folds of Picard number 2, to appear in IMRN, arxiv:2111.13521
  3. Z. Xie, Anticanonical geometry of the blow-up of P4 in 8 points and its Fano modelarXiv:2111.02084
  4. M. Hoff, Giovanni Staglianò, Explicit constructions of K3 surfaces and unirational Noether-Lefschetz divisorsarXiv:2110.15819
  5. M. HoffA note on syzygies and normal generation for trigonal curvesarXiv:2108.06106
  6. V. Lazić, N. TsakanikasSpecial MMP for log canonical generalised pairsarXiv:2108.00993
  7. H. T. A. Nguyen, M. Hoff, T. L. Hoang, On cylindrical smooth rational Fano fourfolds, J. Korean Math. Soc. 59 (2022), no. 1, 87­­–103, arXiv:2101.04441
  8. G. Chen, N. Tsakanikas, On the termination of flips for log canonical generalized pairs, to appear in Acta Math. Sin. Engl. Ser., arXiv:2011.02236
  9. V. LazićJ. MoragaN. TsakanikasSpecial termination for log canonical pairsarXiv:2007.06458
  10. V. LazićF.-O. SchreyerBirational geometry and the canonical ring of a family of determinantal 3-folds, to appear in Rend. Istit. Mat. Univ. Trieste, arXiv:1911.10954
  11. V. LazićAbundance for uniruled pairs which are not rationally connectedarXiv:1908.06945
  12. V. Lazić, F. MengOn Nonvanishing for uniruled log canonical pairs, Electron. Res. Arch. 29 (2021), no. 5, 3297­­­–3308, arXiv:1907.11991
  13. E. FlorisV. LazićA travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (E. Colombo, B. Fantechi, P. Frediani, D. Iacono, R. Pardini, eds.), Springer INdAM Series, vol. 39, Springer, 2020, pp. 37−55, arXiv:1907.10490
  14. V. LazićN. TsakanikasOn the existence of minimal models for log canonical pairs, Publ. Res. Inst. Math. Sci. 58 (2022), no. 2, 311–339, arXiv:1905.05576
  15. V. LazićTh. PeternellOn Generalised Abundance, II, Peking Math. J. 3 (2020), no. 1, 1−46, arXiv:1809.02500
  16. V. LazićTh. PeternellMaps from K-trivial varieties and connectedness problems, Annales Henri Lebesgue 3 (2020), 473−500, arXiv:1808.01115
  17. E. FlorisV. LazićOn the B-Semiampleness Conjecture, Épijournal Géom. Algébrique, Volume 3 (2019), Article Nr. 12, arXiv:1808.00717
  18. V. LazićTh. PeternellOn Generalised Abundance, I, Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, 353−389, arXiv:1808.00438
  19. V. LazićK. OguisoTh. PeternellThe Morrison−Kawamata Cone Conjecture and Abundance on Ricci flat manifolds, Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations (L. Ji, S.-T. Yau, eds.), Advanced Lectures in Mathematics, vol. 42, International Press, 2018, pp. 157−185, arXiv:1611.00556
  20. D. Martinelli, S. Schreieder, L. TasinOn the number and boundedness of minimal models of general type, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1183-1210, arXiv:1610.08932
  21. V. LazićTh. PeternellRationally connected varieties − on a conjecture of Mumford, Sci. China Math. 60 (2017), no. 6, 1019−1028, arXiv:1608.04706
  22. S. Schreieder, L. TasinKähler structures on spin 6-manifolds, Math. Ann. 373 (2019), 397−419, arXiv:1606.09237
  23. V. LazićTh. PeternellAbundance for varieties with many differential forms, Épijournal Géom. Algébrique, Volume 2 (2018), Article Nr. 1, arXiv:1601.01602
  24. V. LazićK. OguisoTh. PeternellNef line bundles on Calabi-Yau threefolds, I, Int. Math. Res. Not. IMRN, Vol. 2020, No. 19, 6070−6119, arXiv:1601.01273
  25. C. Bisi, P. CasciniL. TasinA remark on the Ueno-Campana's threefold, Michigan Math. J. 65 (2016), no. 3, 567−572, arXiv:1512.06639
  26. S. Schreieder, L. TasinAlgebraic structures with unbounded Chern numbers, J. Topol. 9 (2016), 849−860, arXiv:1505.03086
  27. P. CasciniL. TasinOn the Chern numbers of a smooth threefold, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7923–7958, arXiv:1412.1686
  28. T. Dorsch, V. LazićA note on the abundance conjecture, Algebr. Geom. 2 (2015), no. 4, 476−488, arXiv:1406.6554
  29. V. LazićK. OguisoTh. PeternellAutomorphisms of Calabi-Yau threefolds with Picard number three, Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Mathematical Society of Japan, Tokyo, 2017, pp. 279−290, arXiv:1310.8151
  30. P. CasciniV. LazićOn the number of minimal models of a log smooth threefold, J. Math. Pures Appl. 102 (2014), 597−616, arXiv:1306.4579
  31. V. LazićAround and beyond the canonical class, Birational Geometry, Rational Curves, and Arithmetic (F. Bogomolov, B. Hassett, Y. Tschinkel, eds.), Simons Symposia, Springer New York, 2013, pp. 171−203, arXiv:1210.7382
  32. V. LazićTh. PeternellOn the Cone conjecture for Calabi-Yau manifolds with Picard number two, Math. Res. Lett. 20 (2013), no. 6, 1103−1113, arXiv:1207.3653
  33. A.-S. KaloghirosA. KüronyaV. LazićFinite generation and geography of models, Minimal Models and Extremal Rays (Kyoto 2011), Adv. Stud. Pure Math., vol. 70, Mathematical Society of Japan, Tokyo, 2016, pp. 215−245, arXiv:1202.1164
  34. P. CasciniV. LazićThe Minimal Model Program revisited, Contributions to Algebraic Geometry (P. Pragacz, ed.), EMS Series of Congress Reports, EMS Publishing House, 2012, pp. 169−187, arXiv:1202.0738
  35. P. CasciniV. LazićNew outlook on the Minimal Model Program, I, Duke Math. J. 161 (2012), no. 12, 2415−2467, arXiv:1009.3188
  36. A. CortiV. LazićNew outlook on the Minimal Model Program, II, Math. Ann. 356 (2013), no. 2, 617−633, arXiv:1005.0614
  37. V. LazićAdjoint rings are finitely generatedarXiv:0905.2707 (supersedes arXiv:0707.4414 and arXiv:0812.3046; a simplified proof published in Duke Math. J. 161 (2012))
  38. V. LazićTowards finite generation of the canonical ring without the MMParXiv:0812.3046
  39. A. CortiA.-S. KaloghirosV. LazićIntroduction to the Minimal Model Program and the existence of flips, Bull. London Math. Soc. 43 (2011), no. 3, 415−448, arXiv:0811.1047
  40. V. LazićOn Shokurov-type b-divisorial algebras of higher rankarXiv:0707.4414

Address

Fachrichtung Mathematik
Campus, Gebäude E2 4
Universität des Saarlandes
66123 Saarbrücken
Germany