Publications of the team

  1. M.Hoff, I. Stenger, J. I. Yáñez, Movable cones of complete intersections of multidegree one on products of projective spaces, arxiv:2207.11150
  2. V. Lazić, S. MatsumuraTh. Peternell, N. Tsakanikas, Z. Xie, The Nonvanishing problem for varieties with nef anticanonical bundle, arXiv:2202.13814
  3. M. Hoff, I. Stenger, On the numerical dimension of Calabi-Yau 3-folds of Picard number 2, to appear in IMRN, arxiv:2111.13521
  4. Z. Xie, Anticanonical geometry of the blow-up of P4 in 8 points and its Fano modelarXiv:2111.02084
  5. M. Hoff, Giovanni Staglianò, Explicit constructions of K3 surfaces and unirational Noether-Lefschetz divisorsarXiv:2110.15819
  6. M. HoffA note on syzygies and normal generation for trigonal curvesarXiv:2108.06106
  7. V. Lazić, N. Tsakanikas, with an appendix joint with Xiaowei Jiang, Special MMP for log canonical generalised pairs, to appear in Selecta Math., arXiv:2108.00993
  8. H. T. A. Nguyen, M. Hoff, T. L. Hoang, On cylindrical smooth rational Fano fourfolds, J. Korean Math. Soc. 59 (2022), no. 1, 87­­–103, arXiv:2101.04441
  9. G. Chen, N. Tsakanikas, On the termination of flips for log canonical generalized pairs, to appear in Acta Math. Sin. Engl. Ser., arXiv:2011.02236
  10. V. LazićJ. MoragaN. TsakanikasSpecial termination for log canonical pairsarXiv:2007.06458
  11. V. LazićF.-O. SchreyerBirational geometry and the canonical ring of a family of determinantal 3-folds, to appear in Rend. Istit. Mat. Univ. Trieste, arXiv:1911.10954
  12. V. LazićAbundance for uniruled pairs which are not rationally connectedarXiv:1908.06945
  13. V. Lazić, F. MengOn Nonvanishing for uniruled log canonical pairs, Electron. Res. Arch. 29 (2021), no. 5, 3297­­­–3308, arXiv:1907.11991
  14. E. FlorisV. LazićA travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (E. Colombo, B. Fantechi, P. Frediani, D. Iacono, R. Pardini, eds.), Springer INdAM Series, vol. 39, Springer, 2020, pp. 37−55, arXiv:1907.10490
  15. V. LazićN. TsakanikasOn the existence of minimal models for log canonical pairs, Publ. Res. Inst. Math. Sci. 58 (2022), no. 2, 311–339, arXiv:1905.05576
  16. V. LazićTh. PeternellOn Generalised Abundance, II, Peking Math. J. 3 (2020), no. 1, 1−46, arXiv:1809.02500
  17. V. LazićTh. PeternellMaps from K-trivial varieties and connectedness problems, Annales Henri Lebesgue 3 (2020), 473−500, arXiv:1808.01115
  18. E. FlorisV. LazićOn the B-Semiampleness Conjecture, Épijournal Géom. Algébrique, Volume 3 (2019), Article Nr. 12, arXiv:1808.00717
  19. V. LazićTh. PeternellOn Generalised Abundance, I, Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, 353−389, arXiv:1808.00438
  20. V. LazićK. OguisoTh. PeternellThe Morrison−Kawamata Cone Conjecture and Abundance on Ricci flat manifolds, Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations (L. Ji, S.-T. Yau, eds.), Advanced Lectures in Mathematics, vol. 42, International Press, 2018, pp. 157−185, arXiv:1611.00556
  21. D. Martinelli, S. Schreieder, L. TasinOn the number and boundedness of minimal models of general type, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1183-1210, arXiv:1610.08932
  22. V. LazićTh. PeternellRationally connected varieties − on a conjecture of Mumford, Sci. China Math. 60 (2017), no. 6, 1019−1028, arXiv:1608.04706
  23. S. Schreieder, L. TasinKähler structures on spin 6-manifolds, Math. Ann. 373 (2019), 397−419, arXiv:1606.09237
  24. V. LazićTh. PeternellAbundance for varieties with many differential forms, Épijournal Géom. Algébrique, Volume 2 (2018), Article Nr. 1, arXiv:1601.01602
  25. V. LazićK. OguisoTh. PeternellNef line bundles on Calabi-Yau threefolds, I, Int. Math. Res. Not. IMRN, Vol. 2020, No. 19, 6070−6119, arXiv:1601.01273
  26. C. Bisi, P. CasciniL. TasinA remark on the Ueno-Campana's threefold, Michigan Math. J. 65 (2016), no. 3, 567−572, arXiv:1512.06639
  27. S. Schreieder, L. TasinAlgebraic structures with unbounded Chern numbers, J. Topol. 9 (2016), 849−860, arXiv:1505.03086
  28. P. CasciniL. TasinOn the Chern numbers of a smooth threefold, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7923–7958, arXiv:1412.1686
  29. T. Dorsch, V. LazićA note on the abundance conjecture, Algebr. Geom. 2 (2015), no. 4, 476−488, arXiv:1406.6554
  30. V. LazićK. OguisoTh. PeternellAutomorphisms of Calabi-Yau threefolds with Picard number three, Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Mathematical Society of Japan, Tokyo, 2017, pp. 279−290, arXiv:1310.8151
  31. P. CasciniV. LazićOn the number of minimal models of a log smooth threefold, J. Math. Pures Appl. 102 (2014), 597−616, arXiv:1306.4579
  32. V. LazićAround and beyond the canonical class, Birational Geometry, Rational Curves, and Arithmetic (F. Bogomolov, B. Hassett, Y. Tschinkel, eds.), Simons Symposia, Springer New York, 2013, pp. 171−203, arXiv:1210.7382
  33. V. LazićTh. PeternellOn the Cone conjecture for Calabi-Yau manifolds with Picard number two, Math. Res. Lett. 20 (2013), no. 6, 1103−1113, arXiv:1207.3653
  34. A.-S. KaloghirosA. KüronyaV. LazićFinite generation and geography of models, Minimal Models and Extremal Rays (Kyoto 2011), Adv. Stud. Pure Math., vol. 70, Mathematical Society of Japan, Tokyo, 2016, pp. 215−245, arXiv:1202.1164
  35. P. CasciniV. LazićThe Minimal Model Program revisited, Contributions to Algebraic Geometry (P. Pragacz, ed.), EMS Series of Congress Reports, EMS Publishing House, 2012, pp. 169−187, arXiv:1202.0738
  36. P. CasciniV. LazićNew outlook on the Minimal Model Program, I, Duke Math. J. 161 (2012), no. 12, 2415−2467, arXiv:1009.3188
  37. A. CortiV. LazićNew outlook on the Minimal Model Program, II, Math. Ann. 356 (2013), no. 2, 617−633, arXiv:1005.0614
  38. V. LazićAdjoint rings are finitely generatedarXiv:0905.2707 (supersedes arXiv:0707.4414 and arXiv:0812.3046; a simplified proof published in Duke Math. J. 161 (2012))
  39. V. LazićTowards finite generation of the canonical ring without the MMParXiv:0812.3046
  40. A. CortiA.-S. KaloghirosV. LazićIntroduction to the Minimal Model Program and the existence of flips, Bull. London Math. Soc. 43 (2011), no. 3, 415−448, arXiv:0811.1047
  41. V. LazićOn Shokurov-type b-divisorial algebras of higher rankarXiv:0707.4414


Fachrichtung Mathematik
Campus, Gebäude E2 4
Universität des Saarlandes
66123 Saarbrücken