Publications of the team

  1. V. LazićZ. Xie, Rigid currents in birational geometryarXiv:2402.05807
  2. V. Lazić, A few remarks on effectivity and good minimal models, arXiv:240114190
  3. V. LazićProgramming the Minimal Model Program: a proposalarXiv:2310.01097
  4. N. Tsakanikas, Z. Xie, Comparison and uniruledness of asymptotic base loci, arXiv:2309.01031
  5. V. LazićZ. XieNakayama-Zariski decomposition and the termination of flipsarXiv:2305.01752
  6. I. Stenger, Z. XieCones of divisors on P3 blown up at eight very general pointsarXiv:2303.12005
  7. M. Hoff, I. Stenger, J. I. Yáñez, Movable cones of complete intersections of multidegree one on products of projective spaces, arxiv:2207.11150
  8. V. Lazić, S. MatsumuraTh. Peternell, N. Tsakanikas, Z. Xie, The Nonvanishing problem for varieties with nef anticanonical bundle, arXiv:2202.13814
  9. M. Hoff, I. Stenger, On the numerical dimension of Calabi-Yau 3-folds of Picard number 2, to appear in IMRN, arxiv:2111.13521
  10. Z. Xie, Anticanonical geometry of the blow-up of P4 in 8 points and its Fano modelarXiv:2111.02084
  11. M. Hoff, Giovanni Staglianò, Explicit constructions of K3 surfaces and unirational Noether-Lefschetz divisorsarXiv:2110.15819
  12. M. HoffA note on syzygies and normal generation for trigonal curvesarXiv:2108.06106
  13. V. Lazić, N. Tsakanikas, with an appendix joint with Xiaowei Jiang, Special MMP for log canonical generalised pairs, to appear in Selecta Math., arXiv:2108.00993
  14. H. T. A. Nguyen, M. Hoff, T. L. Hoang, On cylindrical smooth rational Fano fourfolds, J. Korean Math. Soc. 59 (2022), no. 1, 87­­–103, arXiv:2101.04441
  15. G. Chen, N. Tsakanikas, On the termination of flips for log canonical generalized pairs, to appear in Acta Math. Sin. Engl. Ser., arXiv:2011.02236
  16. V. LazićJ. MoragaN. TsakanikasSpecial termination for log canonical pairsarXiv:2007.06458
  17. V. LazićF.-O. SchreyerBirational geometry and the canonical ring of a family of determinantal 3-folds, to appear in Rend. Istit. Mat. Univ. Trieste, arXiv:1911.10954
  18. V. LazićAbundance for uniruled pairs which are not rationally connectedarXiv:1908.06945
  19. V. Lazić, F. MengOn Nonvanishing for uniruled log canonical pairs, Electron. Res. Arch. 29 (2021), no. 5, 3297­­­–3308, arXiv:1907.11991
  20. E. FlorisV. LazićA travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (E. Colombo, B. Fantechi, P. Frediani, D. Iacono, R. Pardini, eds.), Springer INdAM Series, vol. 39, Springer, 2020, pp. 37−55, arXiv:1907.10490
  21. V. LazićN. TsakanikasOn the existence of minimal models for log canonical pairs, Publ. Res. Inst. Math. Sci. 58 (2022), no. 2, 311–339, arXiv:1905.05576
  22. V. LazićTh. PeternellOn Generalised Abundance, II, Peking Math. J. 3 (2020), no. 1, 1−46, arXiv:1809.02500
  23. V. LazićTh. PeternellMaps from K-trivial varieties and connectedness problems, Annales Henri Lebesgue 3 (2020), 473−500, arXiv:1808.01115
  24. E. FlorisV. LazićOn the B-Semiampleness Conjecture, Épijournal Géom. Algébrique, Volume 3 (2019), Article Nr. 12, arXiv:1808.00717
  25. V. LazićTh. PeternellOn Generalised Abundance, I, Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, 353−389, arXiv:1808.00438
  26. V. LazićK. OguisoTh. PeternellThe Morrison−Kawamata Cone Conjecture and Abundance on Ricci flat manifolds, Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations (L. Ji, S.-T. Yau, eds.), Advanced Lectures in Mathematics, vol. 42, International Press, 2018, pp. 157−185, arXiv:1611.00556
  27. D. Martinelli, S. Schreieder, L. TasinOn the number and boundedness of minimal models of general type, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1183-1210, arXiv:1610.08932
  28. V. LazićTh. PeternellRationally connected varieties − on a conjecture of Mumford, Sci. China Math. 60 (2017), no. 6, 1019−1028, arXiv:1608.04706
  29. S. Schreieder, L. TasinKähler structures on spin 6-manifolds, Math. Ann. 373 (2019), 397−419, arXiv:1606.09237
  30. V. LazićTh. PeternellAbundance for varieties with many differential forms, Épijournal Géom. Algébrique, Volume 2 (2018), Article Nr. 1, arXiv:1601.01602
  31. V. LazićK. OguisoTh. PeternellNef line bundles on Calabi-Yau threefolds, I, Int. Math. Res. Not. IMRN, Vol. 2020, No. 19, 6070−6119, arXiv:1601.01273
  32. C. Bisi, P. CasciniL. TasinA remark on the Ueno-Campana's threefold, Michigan Math. J. 65 (2016), no. 3, 567−572, arXiv:1512.06639
  33. S. Schreieder, L. TasinAlgebraic structures with unbounded Chern numbers, J. Topol. 9 (2016), 849−860, arXiv:1505.03086
  34. P. CasciniL. TasinOn the Chern numbers of a smooth threefold, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7923–7958, arXiv:1412.1686
  35. T. Dorsch, V. LazićA note on the abundance conjecture, Algebr. Geom. 2 (2015), no. 4, 476−488, arXiv:1406.6554
  36. V. LazićK. OguisoTh. PeternellAutomorphisms of Calabi-Yau threefolds with Picard number three, Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Mathematical Society of Japan, Tokyo, 2017, pp. 279−290, arXiv:1310.8151
  37. P. CasciniV. LazićOn the number of minimal models of a log smooth threefold, J. Math. Pures Appl. 102 (2014), 597−616, arXiv:1306.4579
  38. V. LazićAround and beyond the canonical class, Birational Geometry, Rational Curves, and Arithmetic (F. Bogomolov, B. Hassett, Y. Tschinkel, eds.), Simons Symposia, Springer New York, 2013, pp. 171−203, arXiv:1210.7382
  39. V. LazićTh. PeternellOn the Cone conjecture for Calabi-Yau manifolds with Picard number two, Math. Res. Lett. 20 (2013), no. 6, 1103−1113, arXiv:1207.3653
  40. A.-S. KaloghirosA. KüronyaV. LazićFinite generation and geography of models, Minimal Models and Extremal Rays (Kyoto 2011), Adv. Stud. Pure Math., vol. 70, Mathematical Society of Japan, Tokyo, 2016, pp. 215−245, arXiv:1202.1164
  41. P. CasciniV. LazićThe Minimal Model Program revisited, Contributions to Algebraic Geometry (P. Pragacz, ed.), EMS Series of Congress Reports, EMS Publishing House, 2012, pp. 169−187, arXiv:1202.0738
  42. P. CasciniV. LazićNew outlook on the Minimal Model Program, I, Duke Math. J. 161 (2012), no. 12, 2415−2467, arXiv:1009.3188
  43. A. CortiV. LazićNew outlook on the Minimal Model Program, II, Math. Ann. 356 (2013), no. 2, 617−633, arXiv:1005.0614
  44. V. LazićAdjoint rings are finitely generatedarXiv:0905.2707 (supersedes arXiv:0707.4414 and arXiv:0812.3046; a simplified proof published in Duke Math. J. 161 (2012))
  45. V. LazićTowards finite generation of the canonical ring without the MMParXiv:0812.3046
  46. A. CortiA.-S. KaloghirosV. LazićIntroduction to the Minimal Model Program and the existence of flips, Bull. London Math. Soc. 43 (2011), no. 3, 415−448, arXiv:0811.1047
  47. V. LazićOn Shokurov-type b-divisorial algebras of higher rankarXiv:0707.4414


Fachrichtung Mathematik
Campus, Gebäude E2 4
Universität des Saarlandes
66123 Saarbrücken