Vladimir Lazić – Publications

Published/accepted

  1. On the existence of minimal models for log canonical pairs (with N. Tsakanikas), arXiv:1905.05576, to appear in Publ. Res. Inst. Math. Sci.
  2. On Nonvanishing for uniruled log canonical pairs (with F. Meng), Electron. Res. Arch. 29 (2021), no. 5, 3297­­­–3308.
  3. Nef line bundles on Calabi-Yau threefolds, I (with K. Oguiso and Th. Peternell), Int. Math. Res. Not. IMRN, Vol. 2020, No. 19, 6070−6119.
  4. Maps from K-trivial varieties and connectedness problems (with Th. Peternell), Annales Henri Lebesgue 3 (2020), 473−500.
  5. On Generalised Abundance, II (with Th. Peternell), Peking Math. J. 3 (2020), no. 1, 1−46.
  6. On Generalised Abundance, I (with Th. Peternell), Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, 353−389.
  7. A travel guide to the canonical bundle formula (with E. Floris), Birational Geometry and Moduli Spaces (E. Colombo, B. Fantechi, P. Frediani, D. Iacono, R. Pardini, eds.), Springer INdAM Series, vol. 39, Springer, 2020, pp. 37−55.
  8. On the B-Semiampleness Conjecture (with E. Floris), Épijournal Géom. Algébrique, Volume 3 (2019), Article Nr. 12
  9. Abundance for varieties with many differential forms (with Th. Peternell), Épijournal Géom. Algébrique, Volume 2 (2018), Article Nr. 1
  10. The Morrison−Kawamata Cone Conjecture and Abundance on Ricci flat manifolds (with K. Oguiso and Th. Peternell), Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations (L. Ji, S.-T. Yau, eds.), Advanced Lectures in Mathematics, vol. 42, International Press, 2018, pp. 157−185.
  11. Automorphisms of Calabi-Yau threefolds with Picard number three (with K. Oguiso and Th. Peternell), Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Mathematical Society of Japan, Tokyo, 2017, pp. 279−290.
  12. Rationally connected varieties − on a conjecture of Mumford (with Th. Peternell), Sci. China Math. 60 (2017), no. 6, 1019−1028. 
  13. Finite generation and geography of models (with A.-S. Kaloghiros and A. Küronya), Minimal Models and Extremal Rays (Kyoto 2011), Adv. Stud. Pure Math., vol. 70, Mathematical Society of Japan, Tokyo, 2016, pp. 215−245.
  14. A note on the abundance conjecture (with T. Dorsch), Algebr. Geom. 2 (2015), no. 4, 476−488.
  15. On the number of minimal models of a log smooth threefold (with P. Cascini), J. Math. Pures Appl. 102 (2014), 597−616.
  16. On the Cone conjecture for Calabi-Yau manifolds with Picard number two (with Th. Peternell), Math. Res. Lett. 20 (2013), no. 6, 1103−1113.
  17. Around and beyond the canonical class, Birational Geometry, Rational Curves, and Arithmetic (F. Bogomolov, B. Hassett, Y. Tschinkel, eds.), Simons Symposia, Springer New York, 2013, pp. 171−203. 
  18. New outlook on the Minimal Model Program, II (with A. Corti), Math. Ann. 356 (2013), no. 2, 617−633.
  19. New outlook on the Minimal Model Program, I (with P. Cascini), Duke Math. J. 161 (2012), no. 12, 2415−2467.
  20. The Minimal Model Program revisited (with P. Cascini), Contributions to Algebraic Geometry (P. Pragacz, ed.), EMS Series of Congress Reports, EMS Publishing House, 2012, pp. 169−187.
  21. Introduction to the Minimal Model Program and the existence of flips (with A. Corti and A.-S. Kaloghiros), Bull. London Math. Soc. 43 (2011), no. 3, 415−448.

Preprints

  1. Special MMP for log canonical generalised pairs (with N. Tsakanikas), arXiv:2108.00993
  2. Special termination for log canonical pairs (with J. Moraga and N. Tsakanikas), arXiv:2007.06458
  3. Birational geometry and the canonical ring of a family of determinantal 3-folds (with F.-O. Schreyer), arXiv:1911.10954
  4. Abundance for uniruled pairs which are not rationally connectedarXiv:1908.06945
  5. Adjoint rings are finitely generatedarXiv:0905.2707 (supersedes arXiv:0707.4414 and arXiv:0812.3046; a simplified proof published in Duke Math. J. 161 (2012))
  6. Towards finite generation of the canonical ring without the MMParXiv:0812.3046
  7. On Shokurov-type b-divisorial algebras of higher rankarXiv:0707.4414

Address

Fachrichtung Mathematik
Campus, Gebäude E2 4
Universität des Saarlandes
66123 Saarbrücken
Germany